Markus Albert

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9445486/publications.pdf

Version: 2024-02-01

27 1,765 17
papers citations h-index

17 25
h-index g-index

29 29 all docs citations

29 times ranked 2021 citing authors

#	Article	IF	CITATIONS
1	An RLP23–SOBIR1–BAK1 complex mediates NLP-triggered immunity. Nature Plants, 2015, 1, 15140.	9.3	373
2	The rice immune receptor XA21 recognizes a tyrosine-sulfated protein from a Gram-negative bacterium. Science Advances, 2015, 1, e1500245.	10.3	209
3	Peptides as triggers of plant defence. Journal of Experimental Botany, 2013, 64, 5269-5279.	4.8	139
4	The systemin receptor SYR1 enhances resistance of tomato against herbivorous insects. Nature Plants, 2018, 4, 152-156.	9.3	122
5	The Receptor-Like Protein ReMAX of <i>Arabidopsis</i> Detects the Microbe-Associated Molecular Pattern eMax from <i>Xanthomonas</i> Å. Plant Cell, 2013, 25, 2330-2340.	6.6	114
6	Detection of the plant parasite <i>Cuscuta reflexa</i> by a tomato cell surface receptor. Science, 2016, 353, 478-481.	12.6	108
7	The pattern-recognition receptor CORE of Solanaceae detects bacterial cold-shock protein. Nature Plants, 2016, 2, 16185.	9.3	101
8	Parasitic plants of the genus Cuscuta and their interaction with susceptible and resistant host plants. Frontiers in Plant Science, 2015, 6, 45.	3.6	96
9	Chimeric FLS2 Receptors Reveal the Basis for Differential Flagellin Perception in <i>Arabidopsis</i> and Tomato. Plant Cell, 2012, 24, 2213-2224.	6.6	69
10	The dynamics of root cap sloughing in Arabidopsis is regulated by peptide signalling. Nature Plants, 2018, 4, 596-604.	9.3	62
11	Regulation of cell behaviour by plant receptor kinases: Pattern recognition receptors as prototypical models. European Journal of Cell Biology, 2010, 89, 200-207.	3.6	49
12	Perception of Agrobacterium tumefaciens flagellin by FLS2XL confers resistance to crown gall disease. Nature Plants, 2020, 6, 22-27.	9.3	46
13	Distinct immune sensor systems for fungal endopolygalacturonases in closely related Brassicaceae. Nature Plants, 2021, 7, 1254-1263.	9.3	40
14	Cuscuta spp: "Parasitic Plants in the Spotlight of Plant Physiology, Economy and Ecology― Progress in Botany Fortschritte Der Botanik, 2008, , 267-277.	0.3	37
15	The tomato receptor CuRe1 senses a cell wall protein to identify Cuscuta as a pathogen. Nature Communications, 2020, 11, 5299.	12.8	36
16	A Two-Hybrid-Receptor Assay Demonstrates Heteromer Formation as Switch-On for Plant Immune Receptors Â. Plant Physiology, 2013, 163, 1504-1509.	4.8	27
17	Plants under stress by parasitic plants. Current Opinion in Plant Biology, 2017, 38, 34-41.	7.1	24
18	Genotyping-by-sequencing-based identification of Arabidopsis pattern recognition receptor RLP32 recognizing proteobacterial translation initiation factor IF1. Nature Communications, 2022, 13, 1294.	12.8	20

#	Article	IF	Citations
19	Mechanisms of resistance and virulence in parasitic plant–host interactions. Plant Physiology, 2021, 185, 1282-1291.	4.8	19
20	Chimeric receptors of the Arabidopsis thalian apattern recognition receptors EFR and FLS2. Plant Signaling and Behavior, 2010, 5, 1430-1432.	2.4	18
21	Complex N-Glycans Are Important for Normal Fruit Ripening and Seed Development in Tomato. Frontiers in Plant Science, 2021, 12, 635962.	3.6	16
22	Quantitative Detection of Oxidative Burst upon Activation of Plant Receptor Kinases. Methods in Molecular Biology, 2017, 1621, 69-76.	0.9	14
23	Calcium signaling during the plant-plant interaction of parasitic <i>Cuscuta reflexa</i> with its hosts. Plant Signaling and Behavior, 2010, 5, 1144-1146.	2.4	10
24	Parasitic <i>Cuscuta</i> factor(s) and the detection by tomato initiates plant defense. Communicative and Integrative Biology, 2016, 9, e1244590.	1.4	10
25	A cell wall-localized glycine-rich protein of dodder acts as pathogen-associated molecular pattern. Communicative and Integrative Biology, 2021, 14, 111-114.	1.4	3
26	Quinones shuffling the CARDs. Nature Plants, 2020, 6, 1074-1075.	9.3	0
27	Growth Assay for the Stem Parasitic Plants of the Genus Cuscuta. Bio-protocol, 2017, 7, e2243.	0.4	O