
Federica Zanetti

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9445467/publications.pdf Version: 2024-02-01

FEDERICA ZANETTI

#	Article	IF	CITATIONS
1	Untargeted metabolomic analyses reveal the diversity and plasticity of the specialized metabolome in seeds of different <i>Camelina sativa</i> genotypes. Plant Journal, 2022, 110, 147-165.	2.8	9
2	Correlational Analysis of Agronomic and Seed Quality Traits in Camelina sativa Doubled Haploid Lines under Rain-Fed Condition. Agronomy, 2022, 12, 359.	1.3	3
3	ls switchgrass good for carbon savings? Longâ€ŧerm results in marginal land. GCB Bioenergy, 2022, 14, 814-823.	2.5	6
4	Camelina germination under osmotic stress â^' Trend lines, time-courses and critical points. Industrial Crops and Products, 2022, 181, 114761.	2.5	2
5	Yield and Quality Prediction of Winter Rapeseed—Artificial Neural Network and Random Forest Models. Agronomy, 2022, 12, 58.	1.3	31
6	Camelina [Camelina sativa (L.) Crantz] seeds as a multi-purpose feedstock for bio-based applications. Industrial Crops and Products, 2022, 182, 114944.	2.5	9
7	Social considerations for the cultivation of industrial crops onÂmarginal agricultural land as feedstock forÂbioeconomy. Biofuels, Bioproducts and Biorefining, 2022, 16, 1319-1341.	1.9	4
8	Safflower (Carthamus tinctorius L.) a winter multipurpose oilseed crop for the Mediterranean region: Lesson learnt from on-farm trials. Industrial Crops and Products, 2022, 184, 115042.	2.5	13
9	Camelina, an ancient oilseed crop actively contributing to the rural renaissance in Europe. A review. Agronomy for Sustainable Development, 2021, 41, 1.	2.2	68
10	Yield-Related Traits of 20 Spring Camelina Genotypes Grown in a Multi-Environment Study in Serbia. Agronomy, 2021, 11, 858.	1.3	8
11	Winter camelina seed quality in different growing environments across Northern America and Europe. Industrial Crops and Products, 2021, 169, 113639.	2.5	19
12	Optimization of agricultural practices for crambe in Europe. Industrial Crops and Products, 2021, 171, 113880.	2.5	4
13	Crambe (Crambe abyssinica Hochst): A Non-Food Oilseed Crop with Great Potential: A Review. Agronomy, 2020, 10, 1380.	1.3	22
14	Long-Term Productivity of Thirteen Lowland and Upland Switchgrass Ecotypes in the Mediterranean Region. Agronomy, 2020, 10, 923.	1.3	6
15	Is Drought Stress Tolerance Affected by Biotypes and Seed Size in the Emerging Oilseed Crop Camelina?. Agronomy, 2020, 10, 1856.	1.3	15
16	Winter camelina root characteristics and yield performance under contrasting environmental conditions. Field Crops Research, 2020, 252, 107794.	2.3	22
17	Turning a burden into an opportunity: Pennycress (Thlaspi arvense L.) a new oilseed crop for biofuel production. Biomass and Bioenergy, 2019, 130, 105354.	2.9	25
18	Marginal Agricultural Land Low-Input Systems for Biomass Production. Energies, 2019, 12, 3123.	1.6	113

Federica Zanetti

#	Article	IF	CITATIONS
19	Trade-off between harvest date and lignocellulosic crop choice for advanced biofuel production in the Mediterranean area. Industrial Crops and Products, 2019, 138, 111439.	2.5	14
20	Shifting sowing of camelina from spring to autumn enhances the oil quality for bio-based applications in response to temperature and seed carbon stock. Industrial Crops and Products, 2019, 137, 66-73.	2.5	48
21	Development of a process-based simulation model of camelina seed and oil production: A case study in Northern Italy. Industrial Crops and Products, 2019, 134, 234-243.	2.5	9
22	Salinity effects on germination, seedlings and full-grown plants of upland and lowland switchgrass cultivars. Biomass and Bioenergy, 2019, 120, 273-280.	2.9	18
23	Nitrogen Fertilization Management of Switchgrass, Miscanthus and Giant Reed: A Review. Advances in Agronomy, 2019, 153, 87-119.	2.4	20
24	Switchgrass. , 2018, , 61-105.		4
25	Comparison of new castor (Ricinus communis L.) genotypes in the mediterranean area and possible valorization of residual biomass for insect rearing. Industrial Crops and Products, 2017, 107, 581-587.	2.5	16
26	Long-term studies on switchgrass grown on a marginal area in Greece under different varieties and nitrogen fertilization rates. Industrial Crops and Products, 2017, 107, 446-452.	2.5	23
27	Agronomic performance and seed quality attributes of Camelina (Camelina sativa L. crantz) in multi-environment trials across Europe and Canada. Industrial Crops and Products, 2017, 107, 602-608.	2.5	100
28	A phenological model of winter oilseed rape according to the BBCH scale. Crop and Pasture Science, 2016, 67, 345.	0.7	18
29	Crambe abyssinica a non-food crop with potential for the Mediterranean climate: Insights on productive performances and root growth. Industrial Crops and Products, 2016, 90, 152-160.	2.5	29
30	The bio-based economy can serve as the springboard for camelina and crambe to quit the limbo. OCL - Oilseeds and Fats, Crops and Lipids, 2016, 23, D504.	0.6	37
31	New Insights into the Propagation Methods of Switchgrass, Miscanthus and Giant Reed. Bioenergy Research, 2015, 8, 1480-1491.	2.2	22
32	Long-Term Yields of Switchgrass, Giant Reed, and Miscanthus in the Mediterranean Basin. Bioenergy Research, 2015, 8, 1492-1499.	2.2	62
33	Crop management modifies the benefits of insect pollination in oilseed rape. Agriculture, Ecosystems and Environment, 2015, 207, 61-66.	2.5	65
34	What to harvest when? Autumn, winter, annual and biennial harvesting of giant reed, miscanthus and switchgrass in northern and southern Mediterranean area. Industrial Crops and Products, 2015, 75, 129-134.	2.5	38
35	Comparative studies on several castor (Ricinus communis L.) hybrids: Growth, yields, seed oil and biomass characterization. Industrial Crops and Products, 2015, 75, 8-13.	2.5	28
36	Challenges and opportunities for new industrial oilseed crops in EU-27: A review. Industrial Crops and Products, 2013, 50, 580-595.	2.5	122

#	Article	IF	CITATIONS
37	On Farm Agronomic and First Environmental Evaluation of Oil Crops for Sustainable Bioenergy Chains. Italian Journal of Agronomy, 2009, 4, 171.	0.4	19
38	Yield and oil variability in modern varieties of high-erucic winter oilseed rape (Brassica napus L. var.) Tj ETQq0 0 0 Industrial Crops and Products, 2009, 30, 265-270.	rgBT /Ove 2.5	erlock 10 Tf 5(47
39	Phytoremediation trials on metal- and arsenic-contaminated pyrite wastes (Torviscosa, Italy). Environmental Pollution, 2009, 157, 887-894.	3.7	104
40	Studying root distribution with geostatistics. Plant Biosystems, 2008, 142, 428-433.	0.8	5
41	Can we "cultivate―erucic acid in southern Europe?. Italian Journal of Agronomy, 2006, 1, 3.	0.4	13