Marc N Hirt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9445353/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cardiac Tissue Engineering. Circulation Research, 2014, 114, 354-367.	2.0	351
2	Functional improvement and maturation of rat and human engineered heart tissue by chronic electrical stimulation. Journal of Molecular and Cellular Cardiology, 2014, 74, 151-161.	0.9	305
3	Human Engineered Heart Tissue: Analysis of Contractile Force. Stem Cell Reports, 2016, 7, 29-42.	2.3	292
4	Human iPSC-derived cardiomyocytes cultured in 3D engineered heart tissue show physiological upstroke velocity and sodium current density. Scientific Reports, 2017, 7, 5464.	1.6	140
5	Increased afterload induces pathological cardiac hypertrophy: a new in vitro model. Basic Research in Cardiology, 2012, 107, 307.	2.5	131
6	Long Noncoding RNA-Enriched Vesicles Secreted by Hypoxic Cardiomyocytes Drive Cardiac Fibrosis. Molecular Therapy - Nucleic Acids, 2019, 18, 363-374.	2.3	83
7	Targeting muscle-enriched long non-coding RNA <i>H19</i> reverses pathological cardiac hypertrophy. European Heart Journal, 2020, 41, 3462-3474.	1.0	81
8	Glycoproteomics Reveals Decorin Peptides With Anti-Myostatin Activity in Human Atrial Fibrillation. Circulation, 2016, 134, 817-832.	1.6	43
9	Pharmacological inhibition of DNA methylation attenuates pressure overload-induced cardiac hypertrophy in rats. Journal of Molecular and Cellular Cardiology, 2018, 120, 53-63.	0.9	42
10	Deciphering the microRNA signature of pathological cardiac hypertrophy by engineered heart tissue- and sequencing-technology. Journal of Molecular and Cellular Cardiology, 2015, 81, 1-9.	0.9	41
11	An Important Role for DNMT3A-Mediated DNA Methylation in Cardiomyocyte Metabolism and Contractility. Circulation, 2020, 142, 1562-1578.	1.6	38
12	Analysis of Tyrosine Kinase Inhibitor-Mediated Decline in Contractile Force in Rat Engineered Heart Tissue. PLoS ONE, 2016, 11, e0145937.	1.1	36
13	General practitioners' adherence to chronic heart failure guidelines regarding medication: the GP-HF study. Clinical Research in Cardiology, 2016, 105, 441-450.	1.5	32
14	DNA methylation in an engineered heart tissue model of cardiac hypertrophy: common signatures and effects of DNA methylation inhibitors. Basic Research in Cardiology, 2016, 111, 9.	2.5	27
15	Spontaneous Formation of Extensive Vessel-Like Structures in Murine Engineered Heart Tissue. Tissue Engineering - Part A, 2016, 22, 326-335.	1.6	19
16	Magnetics-Based Approach for Fine-Tuning Afterload in Engineered Heart Tissues. ACS Biomaterials Science and Engineering, 2019, 5, 3663-3675.	2.6	15
17	Phosphomimetic cardiac myosin-binding protein C partially rescues a cardiomyopathy phenotype in murine engineered heart tissue. Scientific Reports, 2019, 9, 18152.	1.6	13
18	Toward Secondâ€Generation Cardiomyogenic and Anti ardiofibrotic 1,4â€Dihydropyridineâ€Class TGFβ Inhibitors. ChemMedChem, 2019, 14, 810-822.	1.6	11

Marc N Hirt

#	Article	IF	CITATIONS
19	Assessment of Cardiotoxicity With Stem Cell-based Strategies. Clinical Therapeutics, 2020, 42, 1892-1910.	1.1	11
20	Blockade of miR-140-3p prevents functional deterioration in afterload-enhanced engineered heart tissue. Scientific Reports, 2019, 9, 11494.	1.6	7
21	Effects of the Delta Opioid Receptor Agonist DADLE in a Novel Hypoxia-Reoxygenation Model on Human and Rat-Engineered Heart Tissue: A Pilot Study. Biomolecules, 2020, 10, 1309.	1.8	5
22	S100A4 as a Target of the E3-Ligase Asb2Î ² and Its Effect on Engineered Heart Tissue. Frontiers in Physiology, 2018, 9, 1292.	1.3	3
23	Hypertrophic signaling compensates for contractile and metabolic consequences of DNA methyltransferase 3A loss in human cardiomyocytes. Journal of Molecular and Cellular Cardiology, 2021, 154, 115-123.	0.9	3
24	Recapitulation of dyssynchrony-associated contractile impairment in asymmetrically paced engineered heart tissue. Journal of Molecular and Cellular Cardiology, 2022, 163, 97-105.	0.9	1
25	Piezo2 is not an indispensable mechanosensor in murine cardiomyocytes. Scientific Reports, 2022, 12, 8193.	1.6	1
26	Magnetic Adjustment of Afterload in Engineered Heart Tissues. Journal of Visualized Experiments, 2020, , .	0.2	0