Peter Lipp

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9445330/publications.pdf

Version: 2024-02-01

78 papers 7,641 citations

28
h-index

70 g-index

80 all docs 80 docs citations

80 times ranked

10172 citing authors

#	Article	IF	CITATIONS
1	The versatility and universality of calcium signalling. Nature Reviews Molecular Cell Biology, 2000, 1 , $11\text{-}21$.	16.1	4,933
2	Dantrolene rescues arrhythmogenic RYR2 defect in a patientâ€specific stem cell model of catecholaminergic polymorphic ventricular tachycardia. EMBO Molecular Medicine, 2012, 4, 180-191.	3.3	298
3	The role of inositol 1,4,5â€ŧrisphosphate receptors in Ca 2+ signalling and the generation of arrhythmias in rat atrial myocytes. Journal of Physiology, 2002, 541, 395-409.	1.3	202
4	Fundamental calcium release events revealed by two-photon excitation photolysis of caged calcium in guinea-pig cardiac myocytes. Journal of Physiology, 1998, 508, 801-809.	1.3	137
5	Sustained Activity of Calcium Release-activated Calcium Channels Requires Translocation of Mitochondria to the Plasma Membrane. Journal of Biological Chemistry, 2006, 281, 40302-40309.	1.6	135
6	Predetermined recruitment of calcium release sites underlies excitation ontraction coupling in rat atrial myocytes. Journal of Physiology, 2001, 530, 417-429.	1.3	127
7	Differential Behavior of Fibroblasts and Epithelial Cells on Structured Implant Abutment Materials: A Comparison of Materials and Surface Topographies. Clinical Implant Dentistry and Related Research, 2015, 17, 1237-1249.	1.6	93
8	A background Ca ²⁺ entry pathway mediated by TRPC1/TRPC4 is critical for development of pathological cardiac remodelling. European Heart Journal, 2015, 36, 2257-2266.	1.0	88
9	Hormone-evoked Elementary Ca2+ Signals Are Not Stereotypic, but Reflect Activation of Different Size Channel Clusters and Variable Recruitment of Channels within a Cluster. Journal of Biological Chemistry, 1998, 273, 27130-27136.	1.6	84
10	Calcium imaging of individual erythrocytes: Problems and approaches. Cell Calcium, 2006, 39, 13-19.	1.1	83
11	A hierarchical concept of cellular and subcellular Ca2+-signalling. Progress in Biophysics and Molecular Biology, 1996, 65, 265-296.	1.4	76
12	Direct Nkx2-5 Transcriptional Repression of Isl1 Controls Cardiomyocyte Subtype Identity. Stem Cells, 2015, 33, 1113-1129.	1.4	76
13	Protein Kinase C: The "Masters" of Calcium and Lipid. Cold Spring Harbor Perspectives in Biology, 2011, 3, a004556-a004556.	2.3	74
14	Genetically determined NLRP3 inflammasome activation associates with systemic inflammation and cardiovascular mortality. European Heart Journal, 2021, 42, 1742-1756.	1.0	63
15	Subtype-specific promoter-driven action potential imaging for precise disease modelling and drug testing in hiPSC-derived cardiomyocytes. European Heart Journal, 2017, 38, ehw189.	1.0	62
16	Conceptual and technical aspects of transfection and gene delivery. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 1171-1176.	1.0	61
17	Genetically Encoded Ca ²⁺ Indicators in Cardiac Myocytes. Circulation Research, 2014, 114, 1623-1639.	2.0	60
18	PKCα: a versatile key for decoding the cellular calcium toolkit. Journal of Cell Biology, 2006, 174, 521-533.	2.3	59

#	Article	IF	CITATIONS
19	Functional and morphological preservation of adult ventricular myocytes in culture by sub-micromolar cytochalasin D supplement. Journal of Molecular and Cellular Cardiology, 2012, 52, 113-124.	0.9	57
20	Photolysis of caged compounds characterized by ratiometric confocal microscopy: a new approach to homogeneously control and measure the calcium concentration in cardiac myocytes. Cell Calcium, 1996, 19, 255-266.	1.1	55
21	Cardiac Rac1 overexpression in mice creates a substrate for atrial arrhythmias characterized by structural remodelling. Cardiovascular Research, 2010, 87, 485-493.	1.8	55
22	A primary culture system for sustained expression of a calcium sensor in preserved adult rat ventricular myocytes. Cell Calcium, 2008, 43, 59-71.	1.1	47
23	Calcium signalling: Ringing changes to the †bell-shaped curve'. Current Biology, 1999, 9, R876-R878.	1.8	36
24	Interleukin- $\hat{\Pi}$ t Is a Central Regulator of Leukocyte-Endothelial Adhesion in Myocardial Infarction and in Chronic Kidney Disease. Circulation, 2021, 144, 893-908.	1.6	36
25	Suppression of Arrhythmia by EnhancingÂMitochondrial Ca2+ Uptake inÂCatecholaminergic Ventricular Tachycardia Models. JACC Basic To Translational Science, 2017, 2, 737-747.	1.9	35
26	Exercise Promotes Collateral Artery Growth Mediated by Monocytic Nitric Oxide. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, 1862-1871.	1.1	32
27	Targeted Activation of Conventional and Novel Protein Kinases C through Differential Translocation Patterns. Molecular and Cellular Biology, 2014, 34, 2370-2381.	1.1	31
28	Remodelling of Ca2+ handling organelles in adult rat ventricular myocytes during long term culture. Journal of Molecular and Cellular Cardiology, 2010, 49, 427-437.	0.9	30
29	Optical Action Potential Screening on Adult Ventricular Myocytes as an Alternative QT-screen. Cellular Physiology and Biochemistry, 2011, 27, 281-290.	1.1	30
30	Noise-Free Visualization of Microscopic Calcium Signaling by Pixel-Wise Fitting. Circulation Research, 2012, 111, 17-27.	2.0	27
31	Mutation of the Calmodulin Binding Motif IQ of the L-type Cav1.2 Ca2+ Channel to EQ Induces Dilated Cardiomyopathy and Death. Journal of Biological Chemistry, 2012, 287, 22616-22625.	1.6	26
32	Isolation and Genetic Manipulation of Adult Cardiac Myocytes for Confocal Imaging. Journal of Visualized Experiments, 2009, , .	0.2	25
33	Genetically Encoded Voltage Indicators in Circulation Research. International Journal of Molecular Sciences, 2015, 16, 21626-21642.	1.8	22
34	Ca2+ signaling and gene transcription in glucose-stimulated insulinoma cells. Cell Calcium, 2012, 52, 137-151.	1.1	21
35	IP3 Receptor-Dependent Cytoplasmic Ca2+ Signals Are Tightly Controlled by CavÎ ² 3. Cell Reports, 2018, 22, 1339-1349.	2.9	21
36	A system for optical high resolution screening of electrical excitable cells. Cell Calcium, 2010, 47, 224-233.	1.1	19

#	Article	IF	CITATIONS
37	DREADD technology reveals major impact of Gq signalling on cardiac electrophysiology. Cardiovascular Research, 2019, 115, 1052-1066.	1.8	19
38	Bitter taste signaling in tracheal epithelial brush cells elicits innate immune responses to bacterial infection. Journal of Clinical Investigation, 2022, 132, .	3.9	19
39	Large scale, unbiased analysis of elementary calcium signaling events in cardiac myocytes. Journal of Molecular and Cellular Cardiology, 2019, 135, 79-89.	0.9	17
40	Hyperaldosteronism induces left atrial systolic and diastolic dysfunction. American Journal of Physiology - Heart and Circulatory Physiology, 2016, 311, H1014-H1023.	1.5	16
41	Does Erythropoietin Regulate TRPC Channels in Red Blood Cells?. Cellular Physiology and Biochemistry, 2017, 41, 1219-1228.	1.1	16
42	Aberrant Deactivation-Induced Gain of Function in TRPM4 Mutant Is Associated with Human Cardiac Conduction Block. Cell Reports, 2018, 24, 724-731.	2.9	16
43	Guanidinylated Apolipoprotein C3 (ApoC3) Associates with Kidney and Vascular Injury. Journal of the American Society of Nephrology: JASN, 2021, 32, 3146-3160.	3.0	16
44	C2-domain mediated nano-cluster formation increases calcium signaling efficiency. Scientific Reports, 2016, 6, 36028.	1.6	15
45	$\hat{Gl}\pm q$ and $\hat{Gl}\pm 11$ contribute to the maintenance of cellular electrophysiology and Ca2+ handling in ventricular cardiomyocytes. Cardiovascular Research, 2012, 95, 48-58.	1.8	14
46	Angiotensin-II-Evoked Ca2+ Entry in Murine Cardiac Fibroblasts Does Not Depend on TRPC Channels. Cells, 2020, 9, 322.	1.8	12
47	Linalool inhibits the angiogenic activity of endothelial cells by downregulating intracellular ATP levels and activating TRPM8. Angiogenesis, 2021, 24, 613-630.	3.7	12
48	Screening Action Potentials: The Power of Light. Frontiers in Pharmacology, 2011, 2, 42.	1.6	11
49	Induced Pluripotent Stem Cells in Cardiovascular Research. , 2012, 163, 1-26.		10
50	Calcium dysregulation in ventricular myocytes from mice expressing constitutively active Rac1. Cell Calcium, 2013, 54, 26-36.	1.1	10
51	A Porcine Animal Model for Early Meniscal Degeneration – Analysis of Histology, Gene Expression and Magnetic Resonance Imaging Six Months after Resection of the Anterior Cruciate Ligament. PLoS ONE, 2016, 11, e0159331.	1.1	10
52	An adaptation of astronomical image processing enables characterization and functional 3D mapping of individual sites of excitation-contraction coupling in rat cardiac muscle. ELife, 2017, 6, .	2.8	9
53	Human BIN1 isoforms grow, maintain, and regenerate excitation–contraction couplons in adult rat and human stem cell-derived cardiomyocytes. Cardiovascular Research, 2022, 118, 1479-1491.	1.8	9
54	Detecting calcium in cardiac muscle: fluorescence to dye for. American Journal of Physiology - Heart and Circulatory Physiology, 2014, 307, H1687-H1690.	1.5	8

#	Article	IF	CITATIONS
55	Multi-Channel Imaging of Cellular Signaling: Interplay of Ca 2+ and Conventional Protein Kinase C. Cold Spring Harbor Protocols, 2014, 2014, pdb.prot077024.	0.2	8
56	Cardiac remodeling in $\widehat{Gl}\pm q$ and $\widehat{Gl}\pm 11$ knockout mice. International Journal of Cardiology, 2016, 202, 836-845.	0.8	7
57	Domain zipping and unzipping modulates TRPM4's properties in human cardiac conduction disease. FASEB Journal, 2020, 34, 12114-12126.	0.2	7
58	Differential targeting of cPKC and nPKC decodes and regulates Ca2+ and lipid signalling. Biochemical Society Transactions, 2014, 42, 1538-1542.	1.6	6
59	ATOM - an OMERO add-on for automated import of image data. BMC Research Notes, 2011, 4, 382.	0.6	5
60	$PKC\hat{l}_{\pm}$ diffusion and translocation are independent of an intact cytoskeleton. Scientific Reports, 2017, 7, 475.	1.6	5
61	Transcriptional signatures regulated by TRPC1/C4-mediated Background Ca2+ entry after pressure-overload induced cardiac remodelling. Progress in Biophysics and Molecular Biology, 2021, 159, 86-104.	1.4	5
62	Multi-Beam Two-Photon Imaging of Fast Ca ²⁺ Signals in the Langendorff Mouse Heart. Cold Spring Harbor Protocols, 2014, 2014, pdb.prot077016.	0.2	4
63	Silica nanoparticles of microrods enter lung epithelial cells. Biomedical Reports, 2018, 9, 156-160.	0.9	4
64	Positional Information Readout in <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msup><mml:mrow><mml:mi>Ca</mml:mi></mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mro< td=""><td>nl:n2m→2<!--</td--><td>mmal:mn><mn< td=""></mn<></td></td></mml:mro<></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:msup></mml:mrow></mml:math>	nl:n 2 m→2 </td <td>mmal:mn><mn< td=""></mn<></td>	mmal:mn> <mn< td=""></mn<>
65	Analysis of Gene Expression and Ultrastructure of Stifle Menisci from Juvenile and Adult Pigs. Comparative Medicine, 2016, 66, 30-40.	0.4	4
66	Action Potentials in Heart Cells. Springer Series on Fluorescence, 2011, , 163-182.	0.8	3
67	Cardiac safety screens: molecular, cellular, and optical advancements. , 2011, , .		3
68	Confocal FLIM of Genetically Encoded FRET Sensors for Quantitative Ca2+Imaging. Cold Spring Harbor Protocols, 2014, 2014, pdb.prot077040.	0.2	3
69	Endothelin-1-induced remodelling of murine adult ventricular myocytes. Cell Calcium, 2016, 59, 41-53.	1.1	3
70	Accuracy of position determination in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msup><mml:mrow><mml:mi>Ca</mml:mi><td>:mrōv8><n< td=""><td>nml3mrow><m< td=""></m<></td></n<></td></mml:mrow></mml:msup></mml:math>	:mr ōv8 > <n< td=""><td>nml3mrow><m< td=""></m<></td></n<>	nml 3 mrow> <m< td=""></m<>
71	Generation of heterozygous (MRli003-A-5) and homozygous (MRli003-A-6) voltage-sensing knock-in human iPSC lines by CRISPR/Cas9 editing of the AAVS1 locus. Stem Cell Research, 2022, 61, 102785.	0.3	2
72	Concepts for optical high content screens of excitable primary isolated cells for molecular imaging. Proceedings of SPIE, 2009, , .	0.8	1

#	Article	IF	CITATIONS
73	Apparent calcium spark properties and fast-scanning 2D confocal imaging modalities. Cell Calcium, 2021, 93, 102303.	1.1	1
74	Cardiac action potential imaging. Proceedings of SPIE, 2013, , .	0.8	0
75	Two-Photon Photolysis Combined with a Kilobeam Array Scanner to Probe Calcium Signaling in Cardiomyocytes. Cold Spring Harbor Protocols, 2014, 2014, pdb.prot077008.	0.2	O
76	Two-Dimensional Imaging of Fast Intracellular Ca ²⁺ Release. Cold Spring Harbor Protocols, 2014, 2014, pdb.prot077032.	0.2	0
77	Investigating the InsP3 Receptor in Living Cells by Caged InsP3. Methods in Molecular Biology, 2020, 2091, 121-129.	0.4	O
78	Generation of heterozygous (MRli003-A-3) and homozygous (MRli003-A-4) TRPM4 knockout human iPSC lines. Stem Cell Research, 2022, 60, 102731.	0.3	0