List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9445318/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Degradation of Sulfamethoxazole by Double Cylindrical Dielectric Barrier Discharge System combined with Ti /C-N-TiO2 supported Nanocatalyst. Journal of Hazardous Materials Advances, 2022, 5, 100051.	3.0	3
2	Removal of Pharmaceutical Residues from Water and Wastewater Using Dielectric Barrier Discharge Methods—A Review. International Journal of Environmental Research and Public Health, 2021, 18, 1683.	2.6	45
3	Modeling of transient luminous events in Earth's middle atmosphere with apokamp discharge. Physics-Uspekhi, 2021, 64, 191-210.	2.2	10
4	Effect of Nanosecond Repetitively Pulsed X-Ray Radiation on the Sowing Quality of Seeds and the Productivity of Wheat. High Energy Chemistry, 2021, 55, 324-328.	0.9	2
5	A critical review on ozone and co-species, generation and reaction mechanisms in plasma induced by dielectric barrier discharge technologies for wastewater remediation. Journal of Environmental Chemical Engineering, 2021, 9, 105758.	6.7	50
6	Energy Release in a Thundercloud Necessary for the Formation of Middle Atmosphere Transient Light Phenomena. Atmospheric and Oceanic Optics, 2021, 34, 722-725.	1.3	3
7	A new data on priming of plant seeds by UVB radiation. , 2021, , .		1
8	Whether and how the vapors of Al, Cu, Fe, and W influence the dynamics of apokamps. Journal of Physics: Conference Series, 2020, 1499, 012051.	0.4	1
9	Barrier Discharge Excilamps with a Small-Diameter Exit Window and Their Application. Instruments and Experimental Techniques, 2020, 63, 607-610.	0.5	0
10	Laboratory Simulation of the Effect of Volcanic Material on the Formation of Transient Phenomena Near the Boundary between the Middle and Lower Atmosphere. Atmospheric and Oceanic Optics, 2020, 33, 419-423.	1.3	1
11	Experimental modelling of apokamp discharge formation under outer electric field. Journal of Physics: Conference Series, 2020, 1499, 012016.	0.4	0
12	A New Models of Barrier Discherge Excilamps for Liquid Penetrant Inspection. , 2020, , .		0
13	Fungicidal Effect of Apokampic Discharge Plasma Jet on Wheat Seeds Infected with Alternaria Sp. and Bipolaris Sorokiniana Shoemaker. , 2020, , .		1
14	Pre-Sowing Stimulation of Wheat with UV-B Radiation of XeCl-Excilamp. , 2020, , .		1
15	Observation of Streamer Coronas Preceding the Formation of an Apokampic Discharge. Russian Physics Journal, 2019, 62, 992-995.	0.4	2
16	The Initial Stage of Diffuse Jet Formation in a Pulsed Discharge with a Non-Uniform Electric Field in Air. Atmospheric and Oceanic Optics, 2019, 32, 607-611.	1.3	0
17	Role of Streamers in the Formation of a Corona Discharge in a Highly Nonuniform Electric Field. JETP Letters, 2019, 110, 85-89.	1.4	12
18	On Pulsed Modes of the Glowing Corona Region. Russian Physics Journal, 2019, 62, 893-899.	0.4	5

#	Article	IF	CITATIONS
19	Apokampic Discharge: Formation Conditions and Mechanisms. Russian Physics Journal, 2019, 62, 1289-1297.	0.4	6
20	Laboratory Simulation of Blue Jets with Apokampic Discharge in the Hz Frequency Range. Atmospheric and Oceanic Optics, 2019, 32, 710-715.	1.3	4
21	Fluorescent Penetrant Testing by Means of Excilamps. Materials Science Forum, 2019, 942, 131-140.	0.3	2
22	Apokamp discharge as a laboratory analogue of the transient luminous events of middle atmosphere. , 2019, , .		0
23	A Planar Source of Atmospheric-Pressure Plasma Jet. Plasma Physics Reports, 2018, 44, 153-156.	0.9	3
24	Production of nitrogen oxides in air pulse-periodic discharge with apokamp. Journal Physics D: Applied Physics, 2018, 51, 204005.	2.8	5
25	The Influence of Frequency and Voltage to Apokamp Discharge Dynamics at Moderate Pressures. , 2018, , .		1
26	Radiation Intensity Profiles at Different Stages of the Formation of Apokamp Discharge. High Temperature, 2018, 56, 837-842.	1.0	6
27	The Influence of Molecular Gas on the Apokamp Discharge Formation. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2018, 125, 324-330.	0.6	6
28	Characteristics of a Pulse-Periodic Corona Discharge in Atmospheric Air. Plasma Physics Reports, 2018, 44, 520-532.	0.9	15
29	On the Question of the Source of the Apokamp. Technical Physics, 2018, 63, 924-927.	0.7	3
30	The Field Strength Necessary for the Formation of Blue Jets in the Middle Atmosphere. Atmospheric and Oceanic Optics, 2018, 31, 397-399.	1.3	2
31	Apokamps produced by repetitive discharges in air. Physics of Plasmas, 2018, 25, 083513.	1.9	14
32	Inactivation of Shewanella putrefaciens by Plasma Activated Water. Plasma Chemistry and Plasma Processing, 2018, 38, 1035-1050.	2.4	57
33	Presowing XeCl excilamp irradiation of crops: field research and prospects. , 2018, , .		3
34	NOx formation in apokamp-type atmospheric pressure plasma jets in air initiated by a pulse-repetitive discharge. , 2018, , .		0
35	Dynamics of apokamp-type atmospheric pressure plasma jets. European Physical Journal D, 2017, 71, 1.	1.3	23
36	Dynamics of apokamp-type atmospheric pressure plasma jets initiated in air by a repetitive pulsed discharge. Physics of Plasmas, 2017, 24, .	1.9	19

#	Article	IF	CITATIONS
37	UV excilamp inactivation of helminth eggs in wastewater. Journal of Physics: Conference Series, 2017, 830, 012154.	0.4	1
38	Emission properties of apokamp discharge at atmospheric pressure in air, argon, and helium. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2017, 122, 168-174.	0.6	13
39	Ministarters and mini blue jets in air and nitrogen at a pulse-periodic discharge in a laboratory experiment. JETP Letters, 2017, 105, 641-645.	1.4	12
40	Formation of Nitrogen Oxides in an Apokamp-Type Plasma Source. Russian Physics Journal, 2017, 60, 701-705.	0.4	5
41	Numerical and experimental study on atmospheric pressure ionization waves propagating through a U-shape channel. Journal Physics D: Applied Physics, 2017, 50, 345201.	2.8	18
42	Efficient UV and VUV Radiation Sources – Excilamps and Photoreactors on Their Basis. Russian Physics Journal, 2017, 60, 1298-1302.	0.4	4
43	On the physical nature of apokampic discharge. Journal of Experimental and Theoretical Physics, 2017, 125, 920-925.	0.9	16
44	Laboratory demonstration in the air red and blue mini-jets. Journal of Physics: Conference Series, 2017, 927, 012062.	0.4	2
45	Excilamps and their Applications. Chemical Engineering and Technology, 2016, 39, 39-50.	1.5	15
46	Formation of an Apokampic Discharge Under Atmospheric Pressure Conditions. Russian Physics Journal, 2016, 59, 707-711.	0.4	23
47	Phenomenon of apokamp discharge. JETP Letters, 2016, 103, 761-764.	1.4	28
48	Computational Investigation of the Influence of Gravitational Convection on the Gaseous Mixture Parameters of the Barrier Discharge Xecl Excilamp. Journal of Engineering Physics and Thermophysics, 2016, 89, 942-949.	0.6	1
49	Determining the energy balance in barrier-discharge Xe2 excilamp by the pressure jump method. Technical Physics, 2016, 61, 1209-1213.	0.7	0
50	Dynamics and Structure of Nonthermal Atmospheric-Pressure Air Plasma Jets: Experiment and Simulation. IEEE Transactions on Plasma Science, 2016, 44, 3249-3253.	1.3	11
51	Source of an atmospheric-pressure plasma jet formed in air or nitrogen under barrier discharge excitation. Technical Physics, 2016, 61, 789-792.	0.7	15
52	The inactivation of helminth eggs with the narrow-bandwidth radiation of excimer lamps. Russian Journal of Parasitology, 2016, 3, 107-113.	0.3	1
53	KrCl barrier-discharge excilamps: Energy characteristics and applications (Review). Instruments and Experimental Techniques, 2015, 58, 309-318.	0.5	27
54	Dielectric barrier discharge KrCl- and XeCl-excilamps radiation power control by pressure jump method. Proceedings of SPIE, 2015, , .	0.8	0

#	Article	IF	CITATIONS
55	Application of excilamps in agriculture and animal breeding (review). Proceedings of SPIE, 2015, , .	0.8	4
56	The inactivation of eggs of helminthes under the action of narrowband ultraviolet radiation of excilamps. Proceedings of SPIE, 2015, , .	0.8	0
57	Numerical simulation and experimental study of thermal and gas-dynamic processes in barrier-discharge coaxial excilamps. High Temperature, 2015, 53, 558-563.	1.0	2
58	A new DBD-driven atmospheric pressure plasma jet source on air or nitrogen. , 2015, , .		2
59	Influence of convection on the energy characteristics of XeCl excilamps. European Physical Journal D, 2015, 69, 1.	1.3	5
60	Pyoverdine as a fluorescent marker of antibiotic sensitivity of Pseudomonas Aeruginosa. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2014, 117, 1018-1024.	0.6	1
61	New marker for determining the degree of inhomogeneity of capacitive and barrier discharges. Technical Physics, 2014, 59, 1801-1804.	0.7	3
62	X-ray emission during the combustion of condensed systems with solid-phase reaction products. Doklady Physical Chemistry, 2014, 454, 5-7.	0.9	0
63	Thermodynamic Approach to Determination of the Degree of Inhomogeneity of a Capacitive Discharge. Russian Physics Journal, 2014, 56, 1258-1261.	0.4	2
64	Xel barrier discharge excilamp. Optics and Spectroscopy (English Translation of Optika I) Tj ETQq0 0 0 rgBT /Ove	rlock 10 T	f 50 382 Td (
65	Influence of the chlorine concentration on the radiation efficiency of a XeCl exciplex lamp. Plasma Physics Reports, 2013, 39, 768-778.	0.9	38
66	Theoretical and experimental study of the acoustic spectrum of a DBD-driven planar KrCl excilamp. European Physical Journal D, 2013, 67, 1.	1.3	1
67	Barrier-discharge excilamps: history, operating principle, prospectsâ^—â^—To the radiant memory of Galina Arkad'evna Volkova (1935–2011). Journal of Optical Technology (A Translation of Opticheskii Zhurnal), 2012, 79, 653.	0.4	4
68	Areas in which vacuum ultraviolet excilamps are used (Review). Journal of Optical Technology (A) Tj ETQq0 0 0 r	gBT/Qverl	ock310 Tf 50 2
69	Studying the thermodynamic processes in excilamps by the pressure jump method (Review). Instruments and Experimental Techniques, 2012, 55, 513-521.	0.5	6
70	High-power module based on inert gas–halogen mixtures for UV irradiation. Journal of Applied Spectroscopy, 2012, 79, 334-336.	0.7	2
71	Excilamps and their applications. Progress in Quantum Electronics, 2012, 36, 51-97.	7.0	43

Acoustic characteristics of a barrier-discharge XeCl excilamp. Technical Physics, 2012, 57, 981-987. 0.7 3

#	Article	IF	CITATIONS
73	UV and VUV Excilamps with High Peak Power. Journal of Light and Visual Environment, 2011, 35, 227-233.	0.2	6
74	Application of excilamps in a flow reactor for recovery of stable toxic compounds. Instruments and Experimental Techniques, 2011, 54, 841-845.	0.5	2
75	Optical characteristics of cylindrical exciplex and excimer lamps excited by microwave radiation. Technical Physics, 2011, 56, 526-530.	0.7	10
76	The radiative and thermodynamic processes in DBD driven XeBr and KrBr exciplex lamps. European Physical Journal D, 2011, 62, 405-411.	1.3	13
77	The use of modern UV radiation sources for the utilization of persistent toxic substances. Atmospheric and Oceanic Optics, 2010, 23, 55-59.	1.3	4
78	Radiation of nitrogen molecules in a dielectric barrier discharge with small additives of chlorine and bromine. Plasma Physics Reports, 2010, 36, 719-728.	0.9	5
79	Dynamic pressure jump in barrier-discharge excilamps. Technical Physics, 2010, 55, 807-811.	0.7	5
80	Optical emission spectrum in combustion with formation of condensed reaction products. Combustion, Explosion and Shock Waves, 2010, 46, 117-120.	0.8	4
81	Energy and Spectral Characteristics of Radiation during Filtration Combustion of Natural Gas. Combustion, Explosion and Shock Waves, 2010, 46, 523-527.	0.8	13
82	Compact dielectric barrier discharge excilamps. Physica Scripta, 2010, 82, 045403.	2.5	14
83	Factors that limit the service life of sealed chlorine-containing barrier-discharge exciplex lamps. Journal of Optical Technology (A Translation of Opticheskii Zhurnal), 2010, 77, 42.	0.4	10
84	High power VUV and UV excilamps. , 2009, , .		2
85	Optical characteristics of radiation from N 2 * dimers in a barrier discharge. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2009, 106, 10-16.	0.6	4
86	Lamps as a new instrument of fluorescent spectroscopy. Atmospheric and Oceanic Optics, 2009, 22, 556-559.	1.3	0
87	Application of a KrCl-excilamp (222 nm) for identification of natural and synthetic diamonds. , 2009, , .		Ο
88	High Power UV and VUV Excilamps and Their Applications. Acta Physica Polonica A, 2009, 116, 576-578.	0.5	2
89	X-ray radiation in self-propagating high-temperature synthesis processes. Combustion, Explosion and Shock Waves, 2008, 44, 729-731.	0.8	4
90	Two-band emission source based on a three-barrier KrCl-XeBr excilamp. Technical Physics Letters, 2008, 34, 725-727.	0.7	3

#	Article	IF	CITATIONS
91	Degradation of chlorophenols in aqueous media using UV XeBr excilamp in a flow-through reactor. Chemosphere, 2008, 70, 1124-1127.	8.2	30
92	Spectral and energy parameters of multiband barrier-discharge KrBr excilamps. Quantum Electronics, 2008, 38, 702-706.	1.0	8
93	Emision of Cl2* molecules in a barrier discharge. Quantum Electronics, 2008, 38, 791-793.	1.0	4
94	Comparative study of UV radiation action of XeBr-excilamp and conventional low-pressure mercury lamp on bacteria. , 2007, , .		7
95	Emission of I2*molecules in a barrier discharge. Quantum Electronics, 2007, 37, 107-110.	1.0	7
96	A new method of chlorophenols decomposition based on UV-irradiation by XeBr-excilamp and their subsequent biodegradation. Proceedings of SPIE, 2007, , .	0.8	0
97	Optical characteristics of plasma of I*2, CI*2, Br*2 halogen dimer barrier-discharge excilamps. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2007, 103, 526-532.	0.6	9
98	Investigation of the conditions of efficient I*2 (342 nm) luminescence in a barrier discharge in a Kr-I2 mixture. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2007, 103, 910-919.	0.6	8
99	Optimal length of capacitive-discharge and glow-discharge excilamps. Laser Physics, 2007, 17, 798-806.	1.2	4
100	Barrier-discharge excilamp on a mixture of krypton and molecular bromine and chlorine. Laser Physics, 2007, 17, 1119-1123.	1.2	15
101	UV Excimer Lamp Irradiation of Fibroblasts: The Influence on Antioxidant Homeostasis. IEEE Transactions on Plasma Science, 2006, 34, 1359-1364.	1.3	11
102	VUV and UV excilamps and their applications. , 2006, , .		1
103	<title>A comparative study of atmospheric plasma and narrowband UV radiation effect on
bacteria</title> . , 2006, , .		0
104	<title>Photochemical transformation of methylphenols under different excitation</title> ., 2006, , .		0
105	<title>The first narrow-band XeCl-excilamp application for complex psoriasis curing</title> . , 2006, , .		3
106	An electrochemical methanol actinometer and its application to measurements of the intensity of vacuum UV radiation of a Xe 2 * excilamp. Instruments and Experimental Techniques, 2006, 49, 101-105.	0.5	2
107	Capacitive and barrier discharge excilamps and their applications (Review). Instruments and Experimental Techniques, 2006, 49, 595-616.	0.5	56
108	Applications of capacitive and barrier discharge excilamps in photoscience. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2006, 7, 145-163.	11.6	185

#	Article	IF	CITATIONS
109	Generation of nanosecond pulses in a barrier-discharge XeBr excimer lamp. Technical Physics, 2006, 51, 878-881.	0.7	5
110	Methanol photomineralization in a Xe2 photoreactor (λ = 172 nm) with aeration of a solution. Russian Physics Journal, 2006, 49, 1145-1148.	0.4	3
111	Photoconversion of 2-methylphenol, 4-methylphenol, and 2-amino-4-methylphenol in water. Journal of Applied Spectroscopy, 2006, 73, 632-639.	0.7	9
112	An ultraviolet barrier-discharge OH molecular lamp. Quantum Electronics, 2006, 36, 981-983.	1.0	13
113	UV and VUV light sources on R2* and RX* molecules. , 2005, , .		0
114	A Bactericidal Barrier-Discharge KrBr Excilamp. Instruments and Experimental Techniques, 2005, 48, 663-666.	0.5	25
115	Capacitive discharge exciplex lamps. Journal Physics D: Applied Physics, 2005, 38, 3194-3201.	2.8	20
116	<title>New bactericidal UV light sources: excilamps</title> . , 2004, , .		11
117	Bactericidal iodine lamp excited by capacitive discharge. Technical Physics Letters, 2004, 30, 615-617.	0.7	4
118	The Effects of UV Irradiation and Gas Plasma Treatment on Living Mammalian Cells and Bacteria: A Comparative Approach. IEEE Transactions on Plasma Science, 2004, 32, 1544-1550.	1.3	121
119	<title>Biological objects pretreatment optimization using XeBr excilamps for mercury concentration control by ASVA method</title> . , 2004, , .		6
120	<title>Study of cresol phototransformations in neutral and acidic medium</title> . , 2004, , .		0
121	<title>Fluorescence investigations of cresol photolysis</title> ., 2004, 5743, 234.		0
122	<title>Study of photocatalytic effect of narrow band irradiation at 206 and 282 nm on oil in aqueous
solution using TiO<formula><inf><roman>2</roman></inf></formula></title> . , 2004, , .		0
123	<title>Small-sized KrCl, XeCl, and XeBr excilamps</title> . , 2004, , .		0
124	Miniature KrCl and XeBr Excimer Lamps. Journal of Applied Spectroscopy, 2003, 70, 807-810.	0.7	1
125	Title is missing!. Instruments and Experimental Techniques, 2003, 46, 73-76.	0.5	9
126	Excilamps: efficient sources of spontaneous UV and VUV radiation. Physics-Uspekhi, 2003, 46, 193-209.	2.2	111

#	Article	IF	CITATIONS
127	Comparative analysis of the laser and lamp radiation absorption by the aqueous media with phenols. , 2003, , .		Ο
128	Photolysis of water phenol solutions under UV excitation by KrCl laser and KrCl excilamp. , 2002, , .		1
129	Excilamp application in the chemical sample pretreatment process. , 2002, , .		5
130	Improvement of photodecomposition methods of phenol containing exotoxicants in aqueous media. , 2002, 4747, 240.		1
131	Study of the service characteristics of a capacitive-discharge excilamp. Journal of Optical Technology (A Translation of Opticheskii Zhurnal), 2002, 69, 509.	0.4	7
132	Phototransformations of Phenols in Aqueous Solutions under Different Excitation Modes. High Energy Chemistry, 2002, 36, 272-275.	0.9	6
133	Capacitive Discharge Excilamps. Instruments and Experimental Techniques, 2002, 45, 838-839.	0.5	5
134	Capacitive-discharge KrCl excilamps with short radiation pulsewidth. Journal of Optical Technology (A Translation of Opticheskii Zhurnal), 2001, 68, 785.	0.4	1
135	Stabilization and effective generation laser on SF 6 -H 2 mixture. , 2001, , .		0
136	<title>Capacitive discharge excilamps with short duration of radiation pulse</title> . , 2001, 4274, 484.		1
137	A 1-kW/cm2 flash KrCl excimer lamp. Technical Physics, 2001, 46, 1341-1344.	0.7	4
138	Capacitive discharge excilamps. , 2000, 3933, 425.		4
139	High-power spontaneous ultraviolet sources. Russian Physics Journal, 2000, 43, 405-408.	0.4	Ο
140	Efficiency of an H2—SF6laser with electron-beam initiation of chemical reactions. Quantum Electronics, 2000, 30, 486-488.	1.0	10
141	Efficiency of e-beam and electric discharge-pumped SF 6 -H 2 laser. , 2000, , .		Ο
142	Improvement of output parameters of glow discharge UV excilamps. Optics Communications, 1999, 161, 249-252.	2.1	16
143	Efficiency of an electron-beam-pumped chemical laser with an SF6-H2 working mixture. Technical Physics, 1999, 44, 69-73.	0.7	1
144	Sealed efficient excilamps excited by a capacitive discharge. Technical Physics Letters, 1999, 25, 858-859.	0.7	5

1

#	Article	IF	CITATIONS
145	UV and VUV excilamps excited by glow, barrier and capacitive discharges. Applied Physics A: Materials Science and Processing, 1999, 69, S327-S329.	2.3	19
146	Glow discharge in low-pressure excilamps. Russian Physics Journal, 1999, 42, 557-573.	0.4	12
147	<title>Reliability and lifetime of UV excilamps pumped by glow, barrier, and capacitive
discharges</title> . , 1999, 3618, 425.		2
148	<title>Radiant energy distribution over the output beam cross-section for wide-aperture lasers excited with a radially convergent electron beam</title> . , 1999, 3686, 56.		0
149	Cylindrical glow-discharge-pumped excimer lamps. Technical Physics, 1998, 43, 192-196.	0.7	0
150	<title>UV and VUV efficient excilamps</title> ., 1998, , .		3
151	Efficient nonchain chemical HF lasers initiated by e-beam and self-sustained discharge. , 1998, , .		0
152	Glow-and-barrier-discharge efficient excilamps. , 1998, , .		2
153	<title>Ultraviolet and infrared lasers with high efficiency</title> . , 1998, 3343, 715.		4
154	Laser based on an SF6— H2mixture pumped by a radially converging electron beam. Quantum Electronics, 1997, 27, 761-765.	1.0	0
155	Excilamp producing up to 130 W of output power and possibility of its applications. Laser and Particle Beams, 1997, 15, 339-345.	1.0	15
156	<title>Coaxial, cylindrical, and planar UV excilamps pumped by glow or barrier discharge</title> . , 1997, 2992, 24.		2
157	Ultraviolet KrCl excilamps pumped by a pulsed longitudinal discharge. Technical Physics, 1997, 42, 68-71.	0.7	3
158	A planar XeCl-exilamp pumped by a low-pressure glow discharge. Technical Physics, 1997, 42, 1411-1413.	0.7	2
159	High-power HF laser pumped by an electron-beam-initiated chemical nonchain reaction. Technical Physics Letters, 1997, 23, 193-195.	0.7	1
160	Characteristics of an exciplex KrCl lamp pumped by a volume discharge. Quantum Electronics, 1996, 26, 336-340.	1.0	9
161	High-power coherent and incoherent UV and VUV sources. , 1996, , .		0

162 High-average-power exciplex flashlamps. , 1995, , .

#	Article	IF	CITATIONS
163	Coaxial excimer lamps pumped by barrier and longitudinal discharges. Quantum Electronics, 1995, 25, 494-497.	1.0	9
164	Pulsed chemical electric-discharge SF6—H2laser. Quantum Electronics, 1994, 24, 1064-1066.	1.0	7
165	Comparative study of interference elimination in heavy metals control by Anodic Stripping Voltammetry (ASV) method. , 0, , .		1
166	Novel electrochemical ferroxalate actinometer for excilamp intensity measurement. , 0, , .		0
167	Novel electrochemical formaldehyde actinometer for Xe/sub 2/-excimer lamp intensity control. , 0, , .		Ο