Veruscha Fester

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9444517/publications.pdf

Version: 2024-02-01

758635 794141 32 404 12 19 h-index citations g-index papers 32 32 32 506 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Green-synthesized ZnO via Hyphaene thebaica fruit extracts: Structure & catalytic effect on the ozonation of Coralene Rubine-S2G azo disperse dye. Environmental Nanotechnology, Monitoring and Management, 2021, 16, 100515.	1.7	2
2	Effect of cobalt complexes on cobalt oxide particles for the activation of peroxymonosulphate in textile wastewater treatment. International Journal of Environmental Science and Technology, 2021, 18, 2831-2846.	1.8	O
3	Is the combination of two particles with different degrees of hydrophobicity an alternative method for tuning the average particle hydrophobicity?. Journal of Molecular Liquids, 2020, 313, 113444.	2.3	3
4	Non-Newtonian fluid flow from bottom of tank using orifices of different shapes. Chemical Engineering Research and Design, 2020, 157, 34-45.	2.7	8
5	Commissioning of a novel in-line rheometery system in a wastewater treatment plant for more efficient polymer dosing. Flow Measurement and Instrumentation, 2019, 65, 309-317.	1.0	5
6	Co3O4/TiO2 hetero-structure for methyl orange dye degradation. Water Science and Technology, 2019, 79, 947-957.	1.2	11
7	Prediction of filtrate suspended solids and solids capture based on operating parameters for belt filter press. Chemical Engineering Research and Design, 2018, 134, 268-276.	2.7	2
8	Charge transfer between biogenic jarosite derived Fe 3+ and TiO 2 enhances visible light photocatalytic activity of TiO 2. Journal of Environmental Sciences, 2017, 54, 256-267.	3.2	8
9	Transitional flow of non-Newtonian fluids in open channels of different cross-sectional shapes. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2017, 39, 2171-2189.	0.8	1
10	Binderless Solution Processed Zn Doped Co ₃ O ₄ Film on FTO for Rapid and Selective Nonâ€enzymatic Glucose Detection. Electroanalysis, 2017, 29, 578-586.	1.5	40
11	\hat{l}^2 -FeOOH/TiO2 Heterojunction for Visible Light-Driven Photocatalytic Inactivation of E. coli. , 2016, , .		0
12	In-line rheological characterisation of wastewater sludges using non-invasive ultrasound sensor technology. Water S A, 2015, 41, 683.	0.2	8
13	Rapid and large-scale synthesis of Co ₃ O ₄ octahedron particles with very high catalytic activity, good supercapacitance and unique magnetic properties. RSC Advances, 2015, 5, 104991-105002.	1.7	13
14	A novel \hat{I}^2 -FeOOH/NiO composite material as a potential catalyst for catalytic ozonation degradation of 4-chlorophenol. RSC Advances, 2015, 5, 59513-59521.	1.7	20
15	Catalytic activities of ultra-small \hat{l}^2 -FeOOH nanorods in ozonation of 4-chlorophenol. Journal of Environmental Sciences, 2015, 35, 83-90.	3.2	56
16	Critical process parameters and their interactions on the continuous hydrothermal synthesis of ironoxide nanoparticles. Chemical Engineering Journal, 2015, 281, 312-321.	6.6	9
17	Photocatalytic activities of ultra-small \hat{l}^2 -FeOOH and TiO 2 heterojunction structure under simulated solar irradiation. Materials Research Bulletin, 2015, 68, 133-141.	2.7	39
18	A feasibility study of in-line rheological characterisation of a wastewater sludge using ultrasound technology. Water S A, 2014, 40, 579.	0.2	4

#	Article	IF	CITATIONS
19	Effect of fly ash size fraction on the potential to neutralise acid mine drainage and rheological properties of sludge. Desalination and Water Treatment, 2014, 52, 6947-6955.	1.0	3
20	Hydrothermal precipitation of \hat{l}^2 -FeOOH nanostructure(s) in mixed solvent: study of their morphological and structural evolution. Journal of Nanoparticle Research, 2014, 16, 1.	0.8	14
21	Growth kinetics evaluation of hydrothermally synthesized \hat{I}^2 -FeOOH nanorods. Journal of Crystal Growth, 2014, 387, 57-65.	0.7	17
22	Effectiveness of Fractal Orifices for Flow Measurement. , 2012, , .		0
23	Modeling pressure losses for Newtonian and non-Newtonian laminar and turbulent flow in long square edged orifices. Chemical Engineering Research and Design, 2012, 90, 863-869.	2.7	15
24	Pressure Losses and Limiting Reynolds Numbers for Non-Newtonian Fluids in Short Square-Edged Orifice Plates. Journal of Fluids Engineering, Transactions of the ASME, 2012, 134, .	0.8	14
25	Measurement and analysis of flow behaviour in complex geometries using the Ultrasonic Velocity Profiling (UVP) technique. Flow Measurement and Instrumentation, 2011, 22, 110-119.	1.0	22
26	Meeting of the Southern African Society of Rheology: SASOR 2010. Applied Rheology, 2011, 21, 47-47.	3.5	0
27	Prediction of non-Newtonian head losses through diaphragm valves at different opening positions. Chemical Engineering Research and Design, 2010, 88, 959-970.	2.7	11
28	Evaluating resistance coefficients of straightâ€through diaphragm control valves. Canadian Journal of Chemical Engineering, 2009, 87, 704-714.	0.9	7
29	Dynamic similarity for non-Newtonian fluids in globe valves. Chemical Engineering Research and Design, 2009, 87, 291-297.	2.7	7
30	Energy losses of non-Newtonian fluids in sudden pipe contractions. Chemical Engineering Journal, 2008, 145, 57-63.	6.6	38
31	Loss Coefficients for Flow of Newtonian and Non-Newtonian Fluids Through Diaphragm Valves. Chemical Engineering Research and Design, 2007, 85, 1314-1324.	2.7	22
32	Resistance Coefficients for Non-Newtonian Flows in Pipe Fittings. , 0, , .		5