Niyazi S Sariciftci

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/9444492/niyazi-s-sariciftci-publications-by-year.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

572	51,275	99	215
papers	citations	h-index	g-index
616	54,258 ext. citations	5.6	7.65
ext. papers		avg, IF	L-index

#	Paper	IF	Citations
572	Near-infrared absorbing hydrogen-bonded dithioketopyrrolopyrrole (DTPP) n-type semiconductors. <i>Dyes and Pigments</i> , 2022 , 197, 109884	4.6	O
57 ¹	Nanometer-Thick Thiophene Monolayers as Templates for the Gas-Phase Epitaxy of Poly(3,4-Ethylenedioxythiophene) Films on Gold: Implications for Organic Electronics. <i>ACS Applied Nano Materials</i> , 2022 , 5, 3194-3200	5.6	
570	Immobilized Poly(anthraquinones) for Electrochemical Energy Storage Applications: Structure-Property Relations. <i>ChemElectroChem</i> , 2021 , 8, 4360	4.3	O
569	Single-Component Organic Solar Cells Based on Intramolecular Charge Transfer Photoabsorption. <i>Materials</i> , 2021 , 14,	3.5	5
568	Revealing the electrocatalytic behaviour by a novel rotating ring-disc electrode (RRDE) subtraction method: A case-study on oxygen reduction using anthraquinone sulfonate. <i>Electrochemistry Communications</i> , 2021 , 125, 106988	5.1	2
567	High-performance CoII-phthalocyanine-based polymer for practical heterogeneous electrochemical reduction of carbon dioxide. <i>Electrochimica Acta</i> , 2021 , 367, 137506	6.7	4
566	Low Band Gap Conjugated Semiconducting Polymers. Advanced Materials Technologies, 2021, 6, 200085	57 6.8	28
565	Overcoming intra-molecular repulsions in PEDTT by sulphate counter-ion <i>Science and Technology of Advanced Materials</i> , 2021 , 22, 985-997	7.1	1
564	Metal-Free Hydrogen-Bonded Polymers Mimic Noble Metal Electrocatalysts. <i>Advanced Materials</i> , 2020 , 32, e1902177	24	10
563	Mechanically Interlocked Carbon Nanotubes as a Stable Electrocatalytic Platform for Oxygen Reduction. <i>ACS Applied Materials & amp; Interfaces</i> , 2020 , 12, 32615-32621	9.5	10
562	Enhanced methane producing microbial electrolysis cells for wastewater treatment using poly(neutral red) and chitosan modified electrodes. <i>Sustainable Energy and Fuels</i> , 2020 , 4, 4238-4248	5.8	5
561	Efficient heterogeneous catalysis by pendant metalloporphyrin-functionalized polythiophenes for the electrochemical reduction of carbon dioxide. <i>New Journal of Chemistry</i> , 2020 , 44, 12486-12495	3.6	2
560	Light-Sensitive Material Structure-Electrical Performance Relationship for Optical Memory Transistors Incorporating Photochromic Dihetarylethenes. <i>ACS Applied Materials & amp; Interfaces</i> , 2020 , 12, 32987-32993	9.5	7
559	Tunable Properties of Nature-Inspired ,'-Alkylated Riboflavin Semiconductors. <i>Molecules</i> , 2020 , 26,	4.8	5
558	Cofunction of Protons as Dopant and Reactant Activate the Electrocatalytic Hydrogen Evolution in Emeraldine-Polyguanine. <i>Advanced Materials Interfaces</i> , 2020 , 7, 1901364	4.6	5
557	Controlling Quantum Confinement in Luminescent Perovskite Nanoparticles for Optoelectronic Devices by the Addition of Water. <i>ACS Applied Nano Materials</i> , 2020 , 3, 1242-1249	5.6	11
556	Immobilized Enzymes on Graphene as Nanobiocatalyst. <i>ACS Applied Materials & Description</i> (12, 250-259)	9.5	29

555	Conducting Polymer-Based Biocomposites Using Deoxyribonucleic Acid (DNA) as Counterion. <i>Advanced Materials Technologies</i> , 2020 , 5, 1900699	6.8	8	
554	Localizing Binding Sites on Bioconjugated Hydrogen-Bonded Organic Semiconductors at the Nanoscale. <i>ChemPhysChem</i> , 2020 , 21, 659-666	3.2	2	
553	Impedance Spectroscopy of Perovskite Solar Cells: Studying the Dynamics of Charge Carriers Before and After Continuous Operation. <i>Physica Status Solidi (A) Applications and Materials Science</i> , 2020 , 217, 2000291	1.6	19	
55 ²	Are Polyaniline and Polypyrrole Electrocatalysts for Oxygen (O) Reduction to Hydrogen Peroxide (HO)?. <i>ACS Applied Energy Materials</i> , 2020 , 3, 10611-10618	6.1	9	
551	Synthesis conditions influencing formation of MAPbBr perovskite nanoparticles prepared by the ligand-assisted precipitation method. <i>Scientific Reports</i> , 2020 , 10, 15720	4.9	9	
550	Purity of organic semiconductors as a key factor for the performance of organic electronic devices. <i>Materials Chemistry Frontiers</i> , 2020 , 4, 3678-3689	7.8	9	
549	Designing Ultraflexible Perovskite X-Ray Detectors through Interface Engineering. <i>Advanced Science</i> , 2020 , 7, 2002586	13.6	20	
548	Anti-Stokes photoluminescence study on a methylammonium lead bromide nanoparticle film. <i>Nanoscale</i> , 2020 , 12, 16556-16561	7.7	2	
547	Universal Transfer Printing of Micelle-Templated Nanoparticles Using Plasma-Functionalized Graphene. <i>ACS Applied Materials & amp; Interfaces</i> , 2020 , 12, 46530-46538	9.5	0	
546	Acetylacetone Improves the Performance of Mixed Halide Perovskite Solar Cells. <i>Journal of Physical Chemistry C</i> , 2019 , 123, 23807-23816	3.8	7	
545	Cyclic Peptide Stabilized Lead Halide Perovskite Nanoparticles. Scientific Reports, 2019 , 9, 12966	4.9	7	
544	Proteinogenic Amino Acid Assisted Preparation of Highly Luminescent Hybrid Perovskite Nanoparticles. <i>ACS Applied Nano Materials</i> , 2019 , 2, 4267-4274	5.6	17	
543	Persistent radical anions in the series of -arylenes: broadband light absorption until far in the NIR and purely organic magnetism. <i>Monatshefte Fil Chemie</i> , 2019 , 150, 885-900	1.4	2	
542	Photoconductive Properties of Dibenzotetrathiafulvalene-Tetracyanoquinodimethane (DBTTF-TCNQ) Nanorods Prepared by the Reprecipitation Method. <i>Journal of Nanoscience and Nanotechnology</i> , 2019 , 19, 4599-4602	1.3	1	
541	Indigoidine Biosynthesized organic semiconductor. Dyes and Pigments, 2019, 171, 107768	4.6	10	
540	Stability of Selected Hydrogen Bonded Semiconductors in Organic Electronic Devices. <i>Chemistry of Materials</i> , 2019 , 31, 6315-6346	9.6	33	
539	Improving the Performance of Perovskite Solar Cells using a Polyphosphazene Interfacing Layer. <i>Physica Status Solidi (A) Applications and Materials Science</i> , 2019 , 216, 1900436	1.6	4	
538	High temperature-stability of organic thin-film transistors based on quinacridone pigments. <i>Organic Electronics</i> , 2019 , 66, 53-57	3.5	18	

537	Enhanced Bio-Electrochemical Reduction of Carbon Dioxide by Using Neutral Red as a Redox Mediator. <i>ChemBioChem</i> , 2019 , 20, 1196-1205	3.8	19
536	The influence of perovskite precursor composition on the morphology and photovoltaic performance of mixed halide MAPbI3-xClx solar cells. <i>Solar Energy</i> , 2018 , 163, 215-223	6.8	29
535	Nanofibrous cobalt oxide for electrocatalysis of CO2 reduction to carbon monoxide and formate in an acetonitrile-water electrolyte solution. <i>Applied Catalysis B: Environmental</i> , 2018 , 229, 163-170	21.8	42
534	Photoelectrocatalytic Synthesis of Hydrogen Peroxide by Molecular Copper-Porphyrin Supported on Titanium Dioxide Nanotubes. <i>ChemCatChem</i> , 2018 , 10, 1793-1797	5.2	17
533	Direct Electrical Neurostimulation with Organic Pigment Photocapacitors. <i>Advanced Materials</i> , 2018 , 30, e1707292	24	73
532	Metallic conductivity beyond the Mott minimum in PEDOT: Sulphate at low temperatures. <i>Synthetic Metals</i> , 2018 , 240, 59-66	3.6	17
531	Size control of CH3NH3PbBr3 perovskite cuboid fine crystals synthesized by ligand-free reprecipitation method. <i>Microsystem Technologies</i> , 2018 , 24, 619-623	1.7	2
530	Degradation kinetics in different polymerfullerene blends investigated by electron spin resonance. <i>Journal of Materials Research</i> , 2018 , 33, 1853-1859	2.5	8
529	Anthraquinone thin-film electrodes for reversible CO2 capture and release. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 15095-15101	13	14
528	Inverted (p-i-n) perovskite solar cells using a low temperature processed TiO interlayer. <i>RSC Advances</i> , 2018 , 8, 24836-24846	3.7	10
528 527		3.7	10
	Advances, 2018 , 8, 24836-24846	3.7	
527	Advances, 2018, 8, 24836-24846 4.15 Solar Cells 2018, 637-658 Chemical vapor deposition - based synthesis of conductive polydopamine thin-films. Thin Solid Films		1
527 526	Advances, 2018, 8, 24836-24846 4.15 Solar Cells 2018, 637-658 Chemical vapor deposition - based synthesis of conductive polydopamine thin-films. Thin Solid Films, 2018, 645, 320-325 Synthesis and investigation of tetraphenyltetrabenzoporphyrins for electrocatalytic reduction of	2.2	33
527 526 525	Advances, 2018, 8, 24836-24846 4.15 Solar Cells 2018, 637-658 Chemical vapor deposition - based synthesis of conductive polydopamine thin-films. Thin Solid Films, 2018, 645, 320-325 Synthesis and investigation of tetraphenyltetrabenzoporphyrins for electrocatalytic reduction of carbon dioxide. Sustainable Energy and Fuels, 2018, 2, 2747-2753 X-ray study of anisotropically shaped metal halide perovskite nanoparticles in tubular pores.	2.2	33
527 526 525 524	Advances, 2018, 8, 24836-24846 4.15 Solar Cells 2018, 637-658 Chemical vapor deposition - based synthesis of conductive polydopamine thin-films. Thin Solid Films, 2018, 645, 320-325 Synthesis and investigation of tetraphenyltetrabenzoporphyrins for electrocatalytic reduction of carbon dioxide. Sustainable Energy and Fuels, 2018, 2, 2747-2753 X-ray study of anisotropically shaped metal halide perovskite nanoparticles in tubular pores. Applied Physics Letters, 2018, 113, 251901 Ellipsometric Spectroelectrochemistry: An in Situ Insight in the Doping of Conjugated Polymers.	2.2 5.8 3.4	1 33 4
527 526 525 524 523	Advances, 2018, 8, 24836-24846 4.15 Solar Cells 2018, 637-658 Chemical vapor deposition - based synthesis of conductive polydopamine thin-films. Thin Solid Films, 2018, 645, 320-325 Synthesis and investigation of tetraphenyltetrabenzoporphyrins for electrocatalytic reduction of carbon dioxide. Sustainable Energy and Fuels, 2018, 2, 2747-2753 X-ray study of anisotropically shaped metal halide perovskite nanoparticles in tubular pores. Applied Physics Letters, 2018, 113, 251901 Ellipsometric Spectroelectrochemistry: An in Situ Insight in the Doping of Conjugated Polymers. Journal of Physical Chemistry C, 2018, 122, 24309-24320 Application of MIS-CELIV technique to measure hole mobility of hole-transport material for organic	2.2 5.8 3.4 3.8	1 33 4 5

(2017-2017)

519	Optical and electronic properties of mixed halide (X = I, Cl, Br) methylammonium lead perovskite solar cells. <i>Journal of Materials Chemistry C</i> , 2017 , 5, 1714-1723	7.1	94
518	Organic Microboxes Prepared by Self-assembly of a Charge-transfer Dye. <i>Chemistry Letters</i> , 2017 , 46, 557-559	1.7	1
517	Adamantane substitutions: a path to high-performing, soluble, versatile and sustainable organic semiconducting materials. <i>Journal of Materials Chemistry C</i> , 2017 , 5, 4716-4723	7.1	30
516	Electrochemical self-assembly of CuSCN-DAST hybrid thin films. <i>Monatshefte Fil Chemie</i> , 2017 , 148, 845-	8 ₁ 5 <u>4</u>	5
515	Magnetic Field Effects on the Current of PCPDTBT-based Diode. <i>Journal of Physical Chemistry C</i> , 2017 , 121, 11727-11732	3.8	5
514	Anderson-Localization and the MottlbffeRegel Limit in Glassy-Metallic PEDOT. <i>Advanced Electronic Materials</i> , 2017 , 3, 1700050	6.4	28
513	Organic and Inorganic Hybrid Solar Cells 2017 , 1-35		2
512	Enhancing the c-TiO2 based perovskite solar cell performance via modification by a serial of boronic acid derivative self-assembled monolayers. <i>Applied Surface Science</i> , 2017 , 423, 521-527	6.7	16
511	Organic, Organometallic and Bioorganic Catalysts for Electrochemical Reduction of CO. <i>ChemPhysChem</i> , 2017 , 18, 3094-3116	3.2	25
510	Electrochemical Capture and Release of CO in Aqueous Electrolytes Using an Organic Semiconductor Electrode. <i>ACS Applied Materials & Amp; Interfaces</i> , 2017 , 9, 12919-12923	9.5	12
509	Increase in electron scattering length in PEDOT:PSS by a triflic acid post-processing. <i>Monatshefte Fil Chemie</i> , 2017 , 148, 871-877	1.4	4
508	Biocatalytic and Bioelectrocatalytic Approaches for the Reduction of Carbon Dioxide using Enzymes. <i>Energy Technology</i> , 2017 , 5, 812-821	3.5	44
507	Carbon dioxide conversion to synthetic fuels using biocatalytic electrodes. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 2429-2443	13	30
506	Paper Electronics 2017 , 163-189		1
505	Emerging Green Materials and Technologies for Electronics 2017, 1-53		6
504	Doping-Induced Polaron Formation and Solid-State Polymerization in Benzoporphyrin Dligothiophene Conjugated Systems. <i>Journal of Physical Chemistry C</i> , 2017 , 121, 24397-	2 ³ 4 ⁸ 407	. 7
503	Biofunctionalized conductive polymers enable efficient CO electroreduction. <i>Science Advances</i> , 2017 , 3, e1700686	14.3	61
502	Confining metal-halide perovskites in nanoporous thin films. <i>Science Advances</i> , 2017 , 3, e1700738	14.3	81

501 Biocompatible Circuits for Human Machine Interfacing **2017**, 91-118

500	Engineering DNA and Nucleobases for Present and Future Device Applications 2017 , 191-233		4
499	Cellular interfaces with hydrogen-bonded organic semiconductor hierarchical nanocrystals. <i>Nature Communications</i> , 2017 , 8, 91	17.4	37
498	Bio-Electrocatalytic Application of Microorganisms for Carbon Dioxide Reduction to Methane. <i>ChemSusChem</i> , 2017 , 10, 226-233	8.3	26
497	Microwave-assisted Hydrothermal Synthesis of Structure-controlled ZnO Nanocrystals and Their Properties in Dye-sensitized Solar Cells. <i>Electrochemistry</i> , 2017 , 85, 253-261	1.2	13
496	2017,		21
495	Photocatalysis: Hydrogen-Bonded Organic Semiconductors as Stable Photoelectrocatalysts for Efficient Hydrogen Peroxide Photosynthesis (Adv. Funct. Mater. 29/2016). <i>Advanced Functional Materials</i> , 2016 , 26, 5247-5247	15.6	
494	Photovoltaic cells based on ternary P3HT:PCBM:polymethine dye active layer transparent in the visible range of light. <i>Applied Surface Science</i> , 2016 , 389, 419-427	6.7	14
493	Systematic Investigation of Porphyrin-Thiophene Conjugates for Ternary Bulk Heterojunction Solar Cells. <i>Advanced Energy Materials</i> , 2016 , 6, 1600957	21.8	21
492	Colloids of polypyrrole nanotubes/nanorods: A promising conducting ink. <i>Synthetic Metals</i> , 2016 , 221, 67-74	3.6	24
491	Influence of molecular designs on polaronic and vibrational transitions in a conjugated push-pull copolymer. <i>Scientific Reports</i> , 2016 , 6, 35096	4.9	13
490	Spectroscopic characterization of charge carriers of the organic semiconductor quinacridone compared with pentacene during redox reactions. <i>Journal of Materials Chemistry C</i> , 2016 , 4, 10265-1027	7 .1	11
489	Improvement of Catalytic Activity by Nanofibrous CuInS for Electrochemical CO Reduction. <i>ACS Applied Materials & Applied & Applied Materials & Applied & Ap</i>	9.5	16
488	Local order drives the metallic state in PEDOT:PSS. <i>Journal of Materials Chemistry C</i> , 2016 , 4, 6982-6987	7.1	15
487	Solution processed perovskite solar cells using highly conductive PEDOT:PSS interfacial layer. <i>Solar Energy Materials and Solar Cells</i> , 2016 , 157, 318-325	6.4	61
486	Factors determining large observed increases in power conversion efficiency of P3HT:PCBM solar cells embedded with Mo6S9Ix nanowires. <i>Synthetic Metals</i> , 2016 , 212, 105-112	3.6	13
485	Electrochemical Reduction of Carbon Dioxide to Methanol by Direct Injection of Electrons into Immobilized Enzymes on a Modified Electrode. <i>ChemSusChem</i> , 2016 , 9, 631-5	8.3	65
484	Hydrogen-Bonded Organic Semiconductors as Stable Photoelectrocatalysts for Efficient Hydrogen Peroxide Photosynthesis. <i>Advanced Functional Materials</i> , 2016 , 26, 5248-5254	15.6	92

(2015-2016)

483	Synthesis and Investigation of N,NEbenzylated Epindolidione Derivatives as Organic Semiconductors. <i>ChemistrySelect</i> , 2016 , 1, 6349-6355	1.8	1
482	Photoelectrochemical Reduction of CO2 Using Third-Generation Conjugated Polymers. <i>ChemistrySelect</i> , 2016 , 1, 1156-1162	1.8	10
481	Direct Electrochemical Addressing of Immobilized Alcohol Dehydrogenase for the Heterogeneous Bioelectrocatalytic Reduction of Butyraldehyde to Butanol. <i>ChemCatChem</i> , 2015 , 7, 967-971	5.2	17
480	Conducting materials prepared by the oxidation of p-phenylenediamine with p-benzoquinone. Journal of Solid State Electrochemistry, 2015, 19, 2653-2664	2.6	12
479	Reversible photochemical isomerization of N,N'-di(t-butoxycarbonyl)indigos. <i>Journal of Physical Chemistry A</i> , 2015 , 119, 3563-8	2.8	16
478	Using the Alkynyl-Substituted Rhenium(I) Complex (4,4?-Bisphenyl-Ethynyl-2,2?-Bipyridyl)Re(CO)3Cl as Catalyst for CO2 ReductionBynthesis, Characterization, and Application. <i>Electrocatalysis</i> , 2015 , 6, 185-197	2.7	22
477	CuI as versatile hole-selective contact for organic solar cell based on anthracene-containing PPEPPV. Solar Energy Materials and Solar Cells, 2015, 143, 369-374	6.4	30
476	Enhanced near-infrared response of nano- and microstructured silicon/organic hybrid photodetectors. <i>Applied Physics Letters</i> , 2015 , 107, 083302	3.4	14
475	Flexible high power-per-weight perovskite solar cells with chromium oxide-metal contacts for improved stability in air. <i>Nature Materials</i> , 2015 , 14, 1032-9	27	652
474	A polydiacetylenefiested porphyrin conjugate for dye-sensitized solar cells. <i>New Journal of Chemistry</i> , 2015 , 39, 9228-9233	3.6	6
473	Colloidal CuZnSnSe4\Sx nanocrystals for hybrid solar cells. <i>Optical Materials</i> , 2015 , 39, 103-109	3.3	20
472	Polycyclic anthanthrene small molecules: semiconductors for organic field-effect transistors and solar cells applications. <i>Journal of Materials Chemistry C</i> , 2015 , 3, 601-606	7.1	29
471	The Role of Heteroatoms Leading to Hydrogen Bonds in View of Extended Chemical Stability of Organic Semiconductors. <i>Advanced Functional Materials</i> , 2015 , 25, 6679-6688	15.6	19
470	Spectroelectrochemical Studies on Quinacridone by Using Poly(vinyl alcohol) Coating as Protection Layer. <i>ChemPhysChem</i> , 2015 , 16, 2206-10	3.2	5
469	Ambipolar inverters with natural origin organic materials as gate dielectric and semiconducting layer. <i>Physica Status Solidi - Rapid Research Letters</i> , 2015 , 9, 358-361	2.5	7
468	Quinoxalineimide as a Novel Electron-accepting Building Block for Organic Optoelectronics. <i>Chemistry Letters</i> , 2015 , 44, 1128-1130	1.7	4
467	Electrocatalytic Reduction of Carbon Dioxide using Sol-gel Processed Copper Indium Sulfide (CIS) Immobilized on ITO-Coated Glass Electrode. <i>Electrocatalysis</i> , 2015 , 6, 405-413	2.7	13
466	Iodide-capped PbS quantum dots: full optical characterization of a versatile absorber. <i>Advanced Materials</i> , 2015 , 27, 1533-9	24	12

465	Photoresistance and photo induced current hysteresis in bulk heterojunction systems P3HTBCBMpolymethine dye. <i>Organic Electronics</i> , 2014 , 15, 1105-1112	3.5	16
464	Photosensitivity of top gate C60 based OFETs: Potential applications for high efficiency organic photodetector. <i>Organic Electronics</i> , 2014 , 15, 175-181	3.5	22
463	Origin of Electric Field Dependence of the Charge Mobility and Spatial Energy Correlations in C60-Based Field Effect Transistors. <i>Molecular Crystals and Liquid Crystals</i> , 2014 , 589, 18-28	0.5	3
462	4% Efficient Polymer Solar Cells on Paper Substrates. <i>Journal of Physical Chemistry C</i> , 2014 , 118, 16813-	·1 58 17	72
461	Direct electrochemical capture and release of carbon dioxide using an industrial organic pigment: quinacridone. <i>Angewandte Chemie - International Edition</i> , 2014 , 53, 6819-22	16.4	47
460	Anthracene-containing conjugated polymer showing four optical transitions upon doping: A spectroscopic study. <i>Journal of Polymer Science, Part B: Polymer Physics</i> , 2014 , 52, 338-346	2.6	8
459	White organic light emitting diodes based on fluorene-carbazole dendrimers. <i>Journal of Luminescence</i> , 2014 , 146, 6-10	3.8	8
458	Photoelectrochemical scanning droplet cell microscopy for localized photovoltaic investigations on organic semiconductors. <i>Physical Chemistry Chemical Physics</i> , 2014 , 16, 3739-48	3.6	11
457	Polydiacetylene-nested porphyrin as a potential light harvesting component in bulk heterojunction solar cells. <i>RSC Advances</i> , 2014 , 4, 3045-3050	3.7	16
456	A Comparison of Pyridazine and Pyridine as Electrocatalysts for the Reduction of Carbon Dioxide to Methanol. <i>ChemElectroChem</i> , 2014 , 1, 1543-1548	4.3	37
455	Air-stable organic semiconductors based on 6,6?-dithienylindigo and polymers thereof. <i>Journal of Materials Chemistry C</i> , 2014 , 2, 8089-8097	7.1	49
454	Hydrogen-bonded diketopyrrolopyrrole (DPP) pigments as organic semiconductors. <i>Organic Electronics</i> , 2014 , 15, 3521-3528	3.5	83
453	Rhodium-coordinated poly(arylene-ethynylene)-alt-poly(arylene-vinylene) copolymer acting as photocatalyst for visible-light-powered NAD+/NADH reduction. <i>Journal of the American Chemical Society</i> , 2014 , 136, 12721-9	16.4	54
452	Solgel derived In 2 S 3 buffer layers for inverted organic photovoltaic cells. <i>Solar Energy</i> , 2014 , 108, 230-237	6.8	23
451	Electrochemical Self-Assembly of Nanostructured CuSCN/Rhodamine B Hybrid Thin Film and Its Dye-Sensitized Photocathodic Properties. <i>Journal of Physical Chemistry C</i> , 2014 , 118, 16581-16590	3.8	25
450	Hydrogen-bonded organic semiconductor micro- and nanocrystals: from colloidal syntheses to (opto-)electronic devices. <i>Journal of the American Chemical Society</i> , 2014 , 136, 16522-32	16.4	61
449	(Photo)physical Properties of New Molecular Glasses End-Capped with Thiophene Rings Composed of Diimide and Imine Units. <i>Journal of Physical Chemistry C</i> , 2014 , 118, 13070-13086	3.8	34
448	Photoelectrochemical and Electrochemical Characterization of Sub-Micro-Gram Amounts of Organic Semiconductors Using Scanning Droplet Cell Microscopy. <i>Journal of Physical Chemistry C</i> , 2014 , 118, 16919-16926	3.8	9

447	Inverted bulk-heterojunction solar cell with cross-linked hole-blocking layer. <i>Organic Electronics</i> , 2014 , 15, 997-1001	3.5	36
446	Effect of Varying Thiophene Units on Charge-Transport and Photovoltaic Properties of Poly(phenylene ethynylene)-alt-poly(phenylene vinylene) Polymers. <i>Macromolecular Chemistry and Physics</i> , 2014 , 215, 1473-1484	2.6	3
445	Role of recombination, dissociation, and competition between exciton-charge reactions in magnetoconductance of polymeric semiconductor device. <i>Journal of Applied Physics</i> , 2014 , 116, 183901	2.5	7
444	Direkte elektrochemische Speicherung und Freisetzung von Kohlendioxid unter der Verwendung eines Industriepigments: Chinacridon. <i>Angewandte Chemie</i> , 2014 , 126, 6937-6940	3.6	3
443	Origin of Meyer-Neldel type compensation behavior in organic semiconductors at large carrier concentrations: Disorder versus thermodynamic description. <i>Physical Review B</i> , 2014 , 90,	3.3	21
442	Substrate-oriented nanorod scaffolds in polymer-fullerene bulk heterojunction solar cells. <i>ChemPhysChem</i> , 2014 , 15, 1070-5	3.2	12
441	Two-electron carbon dioxide reduction catalyzed by rhenium(I) bis(imino)acenaphthene carbonyl complexes. <i>ChemSusChem</i> , 2014 , 7, 1347-51	8.3	22
440	Photoinduced energy transfer from poly(N-vinylcarbazole) to tricarbonylchloro-(2,2'-bipyridyl)rhenium(I). <i>ChemPhysChem</i> , 2014 , 15, 3634-8	3.2	8
439	Localized photovoltaic investigations on organic semiconductors and bulk heterojunction solar cells. <i>Science and Technology of Advanced Materials</i> , 2014 , 15, 054201	7.1	1
438	Fabrication and characterization of green light emitting diode. Turkish Journal of Physics, 2014, 38, 509-	·511. 6	1
437	Laser ultrasonic receivers based on organic photorefractive polymer composites. <i>Applied Physics B: Lasers and Optics</i> , 2014 , 114, 509-515	1.9	7
436	Improved Photovoltaic Performance of PPV-Based Copolymers Using Optimized Fullerene-Based Counterparts. <i>Advanced Energy Materials</i> , 2013 , 3, 161-166	21.8	22
435	Surface morphology, optical properties and conductivity changes of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) by using additives. <i>Thin Solid Films</i> , 2013 , 536, 211-215	2.2	85
434	Ultrathin, highly flexible and stretchable PLEDs. <i>Nature Photonics</i> , 2013 , 7, 811-816	33.9	706
433	On the potential of porphyrin-spiked triarylamine stars for bulk heterojunction solar cells. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 10524	13	19
432	Organic nanomaterials for efficient bulk heterojunction solar cells 2013 , 549-578		4
431	Reprint of: Ultrafast photoinduced electron transfer in conducting polymerBuckminsterfullerene composites. <i>Chemical Physics Letters</i> , 2013 , 589, 63-66	2.5	4
430	Comparative study of arylene bisimides substituted with imidazole side group for different dielectrics on the OFET application. <i>Synthetic Metals</i> , 2013 , 172, 5-10	3.6	6

429	Dielectric Function of Undoped and Doped Poly[2-methoxy-5-(3',7'-dimethyloctyloxy)-1,4-phenylene-vinylene] by Ellipsometry in a Wide Spectral Range. <i>Journal of Physical Chemistry C</i> , 2013 , 117, 22010-22016	3.8	15
428	Doping-Induced Immobile Charge Carriers in Polyazomethine: A Spectroscopic Study. <i>Journal of Physical Chemistry C</i> , 2013 , 117, 2584-2589	3.8	22
427	Electrochemical characterization of sub-micro-gram amounts of organic semiconductors using scanning droplet cell microscopy. <i>Journal of Electroanalytical Chemistry</i> , 2013 , 691, 77-82	4.1	20
426	Optical and electrical properties of electrochemically doped organic field effect transistors. <i>Journal of Luminescence</i> , 2013 , 134, 107-112	3.8	17
425	Characterization of local electrochemical doping of high performance conjugated polymer for photovoltaics using scanning droplet cell microscopy. <i>Electrochimica Acta</i> , 2013 , 113, 834-839	6.7	10
424	Temperature dependent charge transport in organic field-effect transistors with the variation of both carrier concentration and electric field. <i>Journal Physics D: Applied Physics</i> , 2013 , 46, 495105	3	14
423	Historical perspective on: Ultrafast photoinduced electron transfer in conducting polymerBuckminsterfullerene composites [Volume 213, Issues 3월, 8 October 1993, Pages 389日94]. Chemical Physics Letters, 2013 , 589, 61-62	2.5	1
422	Hydrogen-bonded semiconducting pigments for air-stable field-effect transistors. <i>Advanced Materials</i> , 2013 , 25, 1563-9	24	199
421	Electrocatalytic Reduction of Carbon Dioxide to Carbon Monoxide by a Polymerized Film of an Alkynyl-Substituted Rhenium(I) Complex. <i>ChemCatChem</i> , 2013 , 5, 1790-1796	5.2	41
420	Natural resin shellac as a substrate and a dielectric layer for organic field-effect transistors. <i>Green Chemistry</i> , 2013 , 15, 1473	10	73
419	Hydrogen-bonds in molecular solids - from biological systems to organic electronics. <i>Journal of Materials Chemistry B</i> , 2013 , 1, 3742-3753	7.3	199
418	Efficiency of bulk-heterojunction organic solar cells. <i>Progress in Polymer Science</i> , 2013 , 38, 1929-1940	29.6	755
417	Natural Materials for Organic Electronics. Springer Series in Materials Science, 2013, 295-318	0.9	6
416	Dipole-Controlled Energy Level Alignment at Dielectric Interfaces in Organic Field-Effect Transistors. <i>Springer Series in Materials Science</i> , 2013 , 273-293	0.9	
415	A facile protection-deprotection route for obtaining indigo pigments as thin films and their applications in organic bulk heterojunctions. <i>Chemical Communications</i> , 2013 , 49, 6063-5	5.8	57
414	Silicon/organic hybrid heterojunction infrared photodetector operating in the telecom regime. <i>Organic Electronics</i> , 2013 , 14, 1344-1350	3.5	27
413	Breakthroughs in Photonics 2012: Large-Area Ultrathin Photonics. <i>IEEE Photonics Journal</i> , 2013 , 5, 070	0808-0	7020805
412	25th anniversary article: progress in chemistry and applications of functional indigos for organic electronics. <i>Advanced Materials</i> , 2013 , 25, 6783-800	24	161

(2012-2013)

411	Electro- and photo-chemistry of rhenium and rhodium complexes for carbon dioxide and proton reduction: a mini review. <i>Nanomaterials and Energy</i> , 2013 , 2, 134-147	1.1	16
410	Vacuum-processed polyethylene as a dielectric for low operating voltage organic field effect transistors. <i>Organic Electronics</i> , 2012 , 13, 919-924	3.5	53
409	Electrochemical doping for lowering contact barriers in organic field effect transistors. <i>Organic Electronics</i> , 2012 , 13, 1296-1301	3.5	13
408	Indigoa natural pigment for high performance ambipolar organic field effect transistors and circuits. <i>Advanced Materials</i> , 2012 , 24, 375-80	24	334
407	Investigation of Poly(Cyclopentadithiophenes) as Electron Donor Materials for Organic Solar Cells. <i>Energy Procedia</i> , 2012 , 31, 1-10	2.3	4
406	Intermolecular hydrogen-bonded organic semiconductors Quinacridone versus pentacene. <i>Applied Physics Letters</i> , 2012 , 101, 023305	3.4	72
405	Electrocatalytic and photocatalytic reduction of carbon dioxide to carbon monoxide using the alkynyl-substituted rhenium(I) complex (5,5?-bisphenylethynyl-2,2?-bipyridyl)Re(CO)3Cl. <i>Journal of Organometallic Chemistry</i> , 2012 , 716, 19-25	2.3	53
404	Organic Materials and Chemistry for Bulk Heterojunction Solar Cells 2012 , 643-683		
403	Green and biodegradable electronics. <i>Materials Today</i> , 2012 , 15, 340-346	21.8	307
402	Photosensitizing porphyrin E riazine compound for bulk heterojunction solar cells. <i>Journal of Materials Chemistry</i> , 2012 , 22, 23030		28
402 401			28
	Materials Chemistry, 2012 , 22, 23030	2.5	
401	Materials Chemistry, 2012, 22, 23030 Supramolecular Chemistry for Organic Photovoltaics 2012, Charge carrier mobility, photovoltaic, and electroluminescent properties of anthracene-based conjugated polymers bearing randomly distributed side chains. Journal of Polymer Science Part A,	2.5	1
401	Materials Chemistry, 2012, 22, 23030 Supramolecular Chemistry for Organic Photovoltaics 2012, Charge carrier mobility, photovoltaic, and electroluminescent properties of anthracene-based conjugated polymers bearing randomly distributed side chains. Journal of Polymer Science Part A, 2012, 50, 3425-3436 Ultra-thin anodic alumina capacitor films for plastic electronics. Physica Status Solidi (A) Applications		23
401 400 399	Supramolecular Chemistry for Organic Photovoltaics 2012, Charge carrier mobility, photovoltaic, and electroluminescent properties of anthracene-based conjugated polymers bearing randomly distributed side chains. Journal of Polymer Science Part A, 2012, 50, 3425-3436 Ultra-thin anodic alumina capacitor films for plastic electronics. Physica Status Solidi (A) Applications and Materials Science, 2012, 209, 813-818 Ultrathin and lightweight organic solar cells with high flexibility. Nature Communications, 2012, 3, 770 Material structure-composite morphology-photovoltaic performance relationship for organic bulk heterojunction solar cells. Chemical Communications, 2012, 48, 9477-9	1.6	1 23 50
401 400 399 398	Supramolecular Chemistry, 2012, 22, 23030 Supramolecular Chemistry for Organic Photovoltaics 2012, Charge carrier mobility, photovoltaic, and electroluminescent properties of anthracene-based conjugated polymers bearing randomly distributed side chains. Journal of Polymer Science Part A, 2012, 50, 3425-3436 Ultra-thin anodic alumina capacitor films for plastic electronics. Physica Status Solidi (A) Applications and Materials Science, 2012, 209, 813-818 Ultrathin and lightweight organic solar cells with high flexibility. Nature Communications, 2012, 3, 770 Material structure-composite morphology-photovoltaic performance relationship for organic bulk	1.6	1 23 50 1234
401 400 399 398 397	Supramolecular Chemistry, 2012, 22, 23030 Supramolecular Chemistry for Organic Photovoltaics 2012, Charge carrier mobility, photovoltaic, and electroluminescent properties of anthracene-based conjugated polymers bearing randomly distributed side chains. Journal of Polymer Science Part A, 2012, 50, 3425-3436 Ultra-thin anodic alumina capacitor films for plastic electronics. Physica Status Solidi (A) Applications and Materials Science, 2012, 209, 813-818 Ultrathin and lightweight organic solar cells with high flexibility. Nature Communications, 2012, 3, 770 Material structure-composite morphology-photovoltaic performance relationship for organic bulk heterojunction solar cells. Chemical Communications, 2012, 48, 9477-9 Electric field dependence of charge-carrier hopping transport at large carrier concentrations in disordered organic solids: Meyer-Neldel and Gill energies. Journal of Physics: Conference Series,	1.6 17.4 5.8	1 23 50 1234

393	Photo-Fries-based photosensitive polymeric interlayers for patterned organic devices. <i>Applied Physics A: Materials Science and Processing</i> , 2012 , 107, 985-993	2.6	6
392	Electrical properties of pSi/[6,6] phenyl-C61 butyric acid methyl ester/Al hybrid heterojunctions: Experimental and theoretical evaluation of diode operation. <i>Journal of Applied Physics</i> , 2012 , 112, 1145	0 8 5	5
391	Photovoltaic performance of PPE-PPV copolymers: effect of the fullerene component. <i>Journal of Materials Chemistry</i> , 2011 , 21, 2356-2361		30
390	Mobility and photovoltaic performance studies on polymer blends: effects of side chains volume fraction. <i>Journal of Materials Chemistry</i> , 2011 , 21, 2594-2600		40
389	Exotic materials for bio-organic electronics. <i>Journal of Materials Chemistry</i> , 2011 , 21, 1350-1361		148
388	Natural and nature-inspired semiconductors for organic electronics 2011 ,		26
387	Alkoxy-substituted poly(arylene-ethynylene)-alt-poly(arylene-vinylene)s: synthesis, electroluminescence and photovoltaic applications. <i>Journal of Materials Chemistry</i> , 2011 , 21, 1338-1349)	29
386	High mobility, low voltage operating C(60) based n-type organic field effect transistors. <i>Synthetic Metals</i> , 2011 , 161-66, 2058-2062	3.6	40
385	Electric field and grain size dependence of Meyer-Neldel energy in C(60) films. <i>Synthetic Metals</i> , 2011 , 161, 1987-1990	3.6	7
384	[70]fullerene-based materials for organic solar cells. <i>ChemSusChem</i> , 2011 , 4, 119-24	8.3	48
383	Electrochromic and electroluminescent devices based on a novel branched quasi-dendric fluorene-carbazole-2,5-bis(2-thienyl)-1H-pyrrole system. <i>Journal of Materials Chemistry</i> , 2011 , 21, 2684		50
382	Ambipolar organic field effect transistors and inverters with the natural material Tyrian Purple. <i>AIP Advances</i> , 2011 , 1, 042132	1.5	65
381	Comparative study of bulk and interface transport in disordered fullerene films. <i>Physica Status Solidi (B): Basic Research</i> , 2011 , 248, 2656-2659	1.3	9
380	In Situ Spectroelectrochemical Study of Positively and Negatively Charged States in a Donor/Acceptor EDOT/Benzotriazole-Based Polymer. <i>Macromolecular Chemistry and Physics</i> , 2011 , 212, 2459-2466	2.6	4
379	Anodized aluminum oxide thin films for room-temperature-processed, flexible, low-voltage organic non-volatile memory elements with excellent charge retention. <i>Advanced Materials</i> , 2011 , 23, 4892-6	24	91
378	Electric field dependent activation energy of electron transport in fullerene diodes and field effect transistors: Gill law. <i>Applied Physics Letters</i> , 2011 , 98, 092114	3.4	33
377	Meyer Neldel rule for charge carrier transport in fullerene devices: A comparative study. <i>Organic Electronics</i> , 2011 , 12, 161-168	3.5	39
376	Water soluble poly(1-vinyl-1,2,4-triazole) as novel dielectric layer for organic field effect transistors. <i>Organic Electronics</i> , 2011 , 12, 497-503	3.5	23

(2010-2011)

375	Luminescence and spectroscopic studies of organometallic rhodium and rhenium multichromophore systems carrying polypyridyl acceptor sites and phenylethynyl antenna subunits. <i>Journal of Organometallic Chemistry</i> , 2011 , 696, 2252-2258	2.3	16
374	Influence of processing additives to nano-morphology and efficiency of bulk-heterojunction solar cells: A comparative review. <i>Solar Energy</i> , 2011 , 85, 1226-1237	6.8	114
373	Doping of organic semiconductors induced by lithium fluoride/aluminum electrodes studied by electron spin resonance and infrared reflection-absorption spectroscopy. <i>Applied Physics Letters</i> , 2011 , 99, 043305	3.4	24
372	Photovoltaic textile structure using polyaniline/carbon nanotube composite materials. <i>Journal of the Textile Institute</i> , 2011 , 102, 857-862	1.5	23
371	Effect of source-drain electric field on the MeyerNeldel energy in organic field effect transistors. <i>Applied Physics Letters</i> , 2011 , 98, 223301	3.4	18
370	Fullerene sensitized silicon for near to mid infrared light detection. <i>Materials Research Society Symposia Proceedings</i> , 2010 , 1247, 1		
369	Effect of Film Morphology on Charge Transport in C60-based Organic Field Effect Transistors. <i>Materials Research Society Symposia Proceedings</i> , 2010 , 1270, 1		2
368	Dependence of MeyerNeldel energy on energetic disorder in organic field effect transistors. <i>Applied Physics Letters</i> , 2010 , 96, 213306	3.4	40
367	Organic electrochemical light emitting field effect transistors. <i>Applied Physics Letters</i> , 2010 , 97, 033302	3.4	20
366	Interfaces and traps in pentacene field-effect transistor. <i>Journal of Applied Physics</i> , 2010 , 108, 113703	2.5	38
365	Processable Multipurpose Conjugated Polymer for Electrochromic and Photovoltaic Applications. <i>Chemistry of Materials</i> , 2010 , 22, 2978-2987	9.6	141
364	A green neutral state donor\(\text{\text{\text{Copolymer}}} \) copolymer for organic solar cells. \(\text{\text{\text{Polymer Chemistry}}} \) 2010 , 1, 1245	54.9	10
363	Photo-induced charge separation process in (PCBM-C120O)/(M3EH-PPV) blend solid film studied by means of X and K-bands ESR at 77 and 120 K. <i>Synthetic Metals</i> , 2010 , 160, 485-489	3.6	11
362	Investigation of new PPV-type polymeric materials containing fluorene and thiophene units and their application in organic solar cells. <i>Synthetic Metals</i> , 2010 , 160, 1654-1661	3.6	22
361	The effects of CdSe incorporation into bulk heterojunction solar cells. <i>Journal of Materials Chemistry</i> , 2010 , 20, 4845		88
360	Improvement in carrier mobility and photovoltaic performance through random distribution of segments of linear and branched side chains. <i>Journal of Materials Chemistry</i> , 2010 , 20, 9726		41
359	Temperature dependence of the charge carrier mobility in disordered organic semiconductors at large carrier concentrations. <i>Physical Review B</i> , 2010 , 81,	3.3	102
358	Anthracene Based Conjugated Polymers: Correlation between Estacking Ability, Photophysical Properties, Charge Carrier Mobility, and Photovoltaic Performance. <i>Macromolecules</i> , 2010 , 43, 1261-126	. 5	110

357	Donor Icceptor complex formation in evaporated small molecular organic photovoltaic cells. <i>Solar Energy Materials and Solar Cells</i> , 2010 , 94, 803-811	6.4	15
356	Development of energy generating photovoltaic textile structures for smart applications. <i>Fibers and Polymers</i> , 2010 , 11, 378-383	2	22
355	Charge Carrier Lifetime and Recombination in Bulk Heterojunction Solar Cells. <i>IEEE Journal of Selected Topics in Quantum Electronics</i> , 2010 , 16, 1746-1758	3.8	67
354	Effect of 2-D Delocalization on Charge Transport and Recombination in Bulk-Heterojunction Solar Cells. <i>IEEE Journal of Selected Topics in Quantum Electronics</i> , 2010 , 16, 1738-1745	3.8	16
353	Self-assembly of thiophene- and furan-appended methanofullerenes with poly(3-hexylthiophene) in organic solar cells. <i>ChemSusChem</i> , 2010 , 3, 356-66	8.3	30
352	Biocompatible and Biodegradable Materials for Organic Field-Effect Transistors. <i>Advanced Functional Materials</i> , 2010 , 20, 4069-4076	15.6	317
351	Fluorene-Carbazole Dendrimers: Synthesis, Thermal, Photophysical and Electroluminescent Device Properties. <i>Advanced Functional Materials</i> , 2010 , 20, 4152-4161	15.6	62
350	Fullerene sensitized silicon for near- to mid-infrared light detection. Advanced Materials, 2010, 22, 647-	5 0 4	19
349	Spectroelectrochemical and Photovoltaic Characterization of a Solution-Processable n-and-p Type Dopable Pyrrole-Bearing Conjugated Polymer. <i>Macromolecular Chemistry and Physics</i> , 2010 , 211, 2602-2	2610	17
348	Photovoltaic properties of polymer based organic solar cells adapted for non-transparent substrates. <i>Renewable Energy</i> , 2010 , 35, 2301-2306	8.1	23
347	The role of the dielectric interface in organic transistors: A combined device and photoemission study. <i>Organic Electronics</i> , 2010 , 11, 207-211	3.5	18
346	Environmentally sustainable organic field effect transistors. <i>Organic Electronics</i> , 2010 , 11, 1974-1990	3.5	106
345	Chiral (S)-5-octyloxy-2-[{4-(2-methylbuthoxy)-phenylimino}-methyl]-phenol liquid crystalline compound as additive into polymer solar cells. <i>Solar Energy Materials and Solar Cells</i> , 2010 , 94, 1089-109	96.4	41
344	Electrochromic device and bulk heterojunction solar cell applications of poly 4,7-bis(2,3-dihydrothieno[3,4-b][1,4]dioxin-5-yl)-2-dodecyl-2H-benzo[1,2,3]triazole (PBEBT). <i>Solar Energy Materials and Solar Cells</i> , 2010 , 94, 1797-1802	6.4	28
343	Quaterthiophene-based multipods as promising materials for solution-processible organic solar cells and field effect transistors. <i>Solar Energy Materials and Solar Cells</i> , 2010 , 94, 2064-2072	6.4	18
342	Fullerene sensitized silicon for near- to mid-infrared light detection. <i>Physica Status Solidi (B): Basic Research</i> , 2010 , 247, 3043-3046	1.3	5
341	Material Solubility-Photovoltaic Performance Relationship in the Design of Novel Fullerene Derivatives for Bulk Heterojunction Solar Cells. <i>Advanced Functional Materials</i> , 2009 , 19, 779-788	15.6	329
340	Monitoring the Channel Formation in Organic Field-Effect Transistors via Photoinduced Charge Transfer. <i>Advanced Functional Materials</i> , 2009 , 19, 789-795	15.6	30

(2008-2009)

339	Light- and Touch-Point Localization using Flexible Large Area Organic Photodiodes and Elastomer Waveguides. <i>Advanced Materials</i> , 2009 , 21, 3510-3514	24	24	
338	Organic solar cells with semitransparent metal back contacts for power window applications. <i>ChemSusChem</i> , 2009 , 2, 309-13	8.3	56	
337	Current versus gate voltage hysteresis in organic field effect transistors. <i>Monatshefte Fil Chemie</i> , 2009 , 140, 735-750	1.4	231	
330	Meyer Neldel rule in fullerene field-effect transistors. <i>Applied Physics A: Materials Science and Processing</i> , 2009 , 97, 521-526	2.6	20	
335	Negative capacitance and its photo-inhibition in organic bulk heterojunction devices. <i>Organic Electronics</i> , 2009 , 10, 115-118	3.5	48	
334	Small-molecule vacuum processed melamine-C60, organic field-effect transistors. <i>Organic</i> Electronics, 2009 , 10, 408-415	3.5	18	
333	Development of novel processable electron accepting conjugated polymers containing fluoranthene units in the main chain. <i>Polymer</i> , 2009 , 50, 5007-5015	3.9	18	
332	A flexible textile structure based on polymeric photovoltaics using transparent cathode. <i>Synthetic Metals</i> , 2009 , 159, 2043-2048	3.6	75	
33	Bio-Organic Optoelectronic Devices Using DNA. <i>Advances in Polymer Science</i> , 2009 , 73-112	1.3	23	
330	Trannulenes: a new class of photoactive materials for organic photovoltaic devices. <i>Journal of Materials Chemistry</i> , 2009 , 19, 7738		15	
329	Electrical response of highly ordered organic thin film metal-insulator-semiconductor devices. Journal of Applied Physics, 2009 , 106, 114505	2.5	27	
32	In situ FTIR spectroelectrochemical characterization of n- and p-dopable phenyl-substituted polythiophenes. <i>Physical Chemistry Chemical Physics</i> , 2009 , 11, 6283-8	3.6	5	
32	Bio-organic field effect transistors based on crosslinked deoxyribonucleic acid (DNA) gate dielectric. <i>Applied Physics Letters</i> , 2009 , 95, 263304	3.4	93	
320	Rubrene Thin Film Characteristics on Mica. <i>Springer Proceedings in Physics</i> , 2009 , 43-47	0.2		
32	Photovoltaic characterization of hybrid solar cells using surface modified TiO(2) nanoparticles and poly(3-hexyl)thiophene. <i>Nanotechnology</i> , 2008 , 19, 424009	3.4	44	
32.	Halbleitende Polymere als Funktionswerkstoffe filgedruckte Optoelektronik INeue 4 Milichkeiten und Besonderheiten (Semiconducting Polymers for Printed Opto Electronics II Opportunities and Special Features). <i>IT - Information Technology</i> , 2008 , 50, 149-157	0.4		
32	Energy Transfer from CdSe/ZnS Nanocrystals to Zinc-Phthalocyanine for Advanced Photon Harvesting in Organic Photovoltaics 2008 , 16-20			
32:	Luminescent Tags on Fullerenes: Eu3+ Complexes with Pendant Fullerenes. <i>Advanced Functional</i> Materials, 2008 , 18, 2808-2814	15.6	10	

321	Mobile Ionic Impurities in Poly(vinyl alcohol) Gate Dielectric: Possible Source of the Hysteresis in Organic Field-Effect Transistors. <i>Advanced Materials</i> , 2008 , 20, 1018-1022	24	89
320	Temperature Tuning of Nonlinear Exciton Processes in Self-Assembled Oligophenyl Nanofibers under Laser Action. <i>Advanced Materials</i> , 2008 , 20, 3017-3021	24	20
319	Vacuum-Processed Polyaniline 160 Organic Field Effect Transistors. Advanced Materials, 2008, 20, 3887	-3892	52
318	Substituting the postproduction treatment for bulk-heterojunction solar cells using chemical additives. <i>Organic Electronics</i> , 2008 , 9, 775-782	3.5	88
317	IVII Nanocrystal polymer solar cells. <i>Journal of Photochemistry and Photobiology A: Chemistry</i> , 2008 , 195, 39-46	4.7	49
316	Photovoltaic and photophysical properties of a novel bis-3-hexylthiophene substituted quinoxaline derivative. <i>Solar Energy Materials and Solar Cells</i> , 2008 , 92, 1162-1169	6.4	28
315	Synthesis of poly(2,5-Thienylene Vinylene) and its derivatives: Low band gap materials for photovoltaics. <i>Thin Solid Films</i> , 2008 , 516, 3978-3988	2.2	60
314	Hybrid solar cells. <i>Inorganica Chimica Acta</i> , 2008 , 361, 581-588	2.7	241
313	Effect of Styryl Side Groups on the Photophysical Properties and Hole Mobility of PPE P PV Systems. <i>Macromolecules</i> , 2007 , 40, 7786-7794	5.5	29
312	Negative capacitance in organic semiconductor devices: Bipolar injection and charge recombination mechanism. <i>Applied Physics Letters</i> , 2007 , 91, 012112	3.4	106
311	Correlation of crystalline and structural properties of C60 thin films grown at various temperature with charge carrier mobility. <i>Applied Physics Letters</i> , 2007 , 90, 213512	3.4	65
310	Photoelectrochemical cells based on emeraldine base form of polyaniline. <i>Journal of the Brazilian Chemical Society</i> , 2007 , 18, 1189-1193	1.5	8
309	Effects of Annealing on the Nanomorphology and Performance of Poly(alkylthiophene):Fullerene Bulk-Heterojunction Solar Cells. <i>Advanced Functional Materials</i> , 2007 , 17, 1071-1078	15.6	345
308	Optical Gain Performance of Epitaxially Grown para-Sexiphenyl Films. <i>Advanced Materials</i> , 2007 , 19, 225	5 <u>2-</u> 225	6616
307	A self-rechargeable and flexible polymer solar battery. <i>Solar Energy</i> , 2007 , 81, 947-957	6.8	91
306	Hybrid solar cells using PbS nanoparticles. <i>Solar Energy Materials and Solar Cells</i> , 2007 , 91, 420-423	6.4	171
305	Advanced photon-harvesting concepts for low-energy gap organic solar cells. <i>Solar Energy Materials and Solar Cells</i> , 2007 , 91, 986-995	6.4	79
304	Quasi-solid-state dye-sensitized solar cells with cyanoacrylate as electrolyte matrix. <i>Solar Energy Materials and Solar Cells</i> , 2007 , 91, 1081-1086	6.4	49

303	Hybrid solar cells based on CuInS2 and organic bufferBensitizer layers. <i>Thin Solid Films</i> , 2007 , 515, 5759	-527.62	5
302	Organic field-effect transistors and memory elements using deoxyribonucleic acid (DNA) gate dielectric. <i>Organic Electronics</i> , 2007 , 8, 648-654	3.5	99
301	Characterization of highly crystalline C60 thin films and their field-effect mobility. <i>Physica Status Solidi (B): Basic Research</i> , 2007 , 244, 3845-3848	1.3	5
300	Combined effects of conjugation pattern and alkoxy side chains on the photovoltaic properties of thiophene-containing PPE-PPVs. <i>Journal of Polymer Science Part A</i> , 2007 , 45, 1619-1631	2.5	33
299	A review of charge transport and recombination in polymer/fullerene organic solar cells. <i>Progress in Photovoltaics: Research and Applications</i> , 2007 , 15, 677-696	6.8	461
298	Conjugated polymer-based organic solar cells. <i>Chemical Reviews</i> , 2007 , 107, 1324-38	68.1	5523
297	Bio-organic field effect transistors 2007 , 6646, 117		3
296	Enhancing photon harvesting in organic solar cells with luminescent concentrators. <i>Applied Physics Letters</i> , 2007 , 90, 181126	3.4	33
295	Photovoltaic enhancement of organic solar cells by a bridged donor-acceptor block copolymer approach. <i>Applied Physics Letters</i> , 2007 , 90, 043117	3.4	83
294	Polymor Solar Colle 2007, 1,90		
294	Polymer Solar Cells 2007 , 1-86		25
293	Supramolecular Association of Pyrrolidinofullerenes Bearing Chelating Pyridyl Groups and Zinc Phthalocyanine for Organic Solar Cells. <i>Chemistry of Materials</i> , 2007 , 19, 5363-5372	9.6	2556
	Supramolecular Association of Pyrrolidinofullerenes Bearing Chelating Pyridyl Groups and Zinc	9.6	
293	Supramolecular Association of Pyrrolidinofullerenes Bearing Chelating Pyridyl Groups and Zinc Phthalocyanine for Organic Solar Cells. <i>Chemistry of Materials</i> , 2007 , 19, 5363-5372 Fluorene functionalised sexithiophenesütilising intramolecular charge transfer to extend the	9.6	56
293	Supramolecular Association of Pyrrolidinofullerenes Bearing Chelating Pyridyl Groups and Zinc Phthalocyanine for Organic Solar Cells. <i>Chemistry of Materials</i> , 2007 , 19, 5363-5372 Fluorene functionalised sexithiophenes Itilising intramolecular charge transfer to extend the photocurrent spectrum in organic solar cells. <i>Journal of Materials Chemistry</i> , 2007 , 17, 1055-1062 Efficiency limiting morphological factors of MDMO-PPV:PCBM plastic solar cells. <i>Thin Solid Films</i> ,		56 28
293 292 291	Supramolecular Association of Pyrrolidinofullerenes Bearing Chelating Pyridyl Groups and Zinc Phthalocyanine for Organic Solar Cells. <i>Chemistry of Materials</i> , 2007 , 19, 5363-5372 Fluorene functionalised sexithiophenesŪtilising intramolecular charge transfer to extend the photocurrent spectrum in organic solar cells. <i>Journal of Materials Chemistry</i> , 2007 , 17, 1055-1062 Efficiency limiting morphological factors of MDMO-PPV:PCBM plastic solar cells. <i>Thin Solid Films</i> , 2006 , 511-512, 587-592 Photophysical, electrochemical and photovoltaic properties of thiophene-containing	2.2	56 28 135
293 292 291 290	Supramolecular Association of Pyrrolidinofullerenes Bearing Chelating Pyridyl Groups and Zinc Phthalocyanine for Organic Solar Cells. <i>Chemistry of Materials</i> , 2007 , 19, 5363-5372 Fluorene functionalised sexithiophenes Itilising intramolecular charge transfer to extend the photocurrent spectrum in organic solar cells. <i>Journal of Materials Chemistry</i> , 2007 , 17, 1055-1062 Efficiency limiting morphological factors of MDMO-PPV:PCBM plastic solar cells. <i>Thin Solid Films</i> , 2006 , 511-512, 587-592 Photophysical, electrochemical and photovoltaic properties of thiophene-containing arylene-ethynylene/arylene-vinylene polymers. <i>Thin Solid Films</i> , 2006 , 511-512, 486-488	2.2	56 28 135 19
293 292 291 290 289	Supramolecular Association of Pyrrolidinofullerenes Bearing Chelating Pyridyl Groups and Zinc Phthalocyanine for Organic Solar Cells. <i>Chemistry of Materials</i> , 2007 , 19, 5363-5372 Fluorene functionalised sexithiophenes Dtilising intramolecular charge transfer to extend the photocurrent spectrum in organic solar cells. <i>Journal of Materials Chemistry</i> , 2007 , 17, 1055-1062 Efficiency limiting morphological factors of MDMO-PPV:PCBM plastic solar cells. <i>Thin Solid Films</i> , 2006 , 511-512, 587-592 Photophysical, electrochemical and photovoltaic properties of thiophene-containing arylene-ethynylene/arylene-vinylene polymers. <i>Thin Solid Films</i> , 2006 , 511-512, 486-488 A new encapsulation solution for flexible organic solar cells. <i>Thin Solid Films</i> , 2006 , 511-512, 349-353 Hybrid Solar Cells Using HgTe Nanocrystals and Nanoporous TiO2 Electrodes. <i>Advanced Functional</i>	2.2	56 28 135 19

285	Flexible encapsulation for organic solar cells 2006 , 6197, 258		10
284	Low-bandgap poly(thienylene vinylene) for organic solar cells: photophysics and photovoltaic performance 2006 , 6192, 309		1
283	Switching in C60-fullerene based field effect transistors. <i>Applied Physics Letters</i> , 2006 , 88, 263516	3.4	10
282	High performance n-channel organic field-effect transistors and ring oscillators based on C60 fullerene films. <i>Applied Physics Letters</i> , 2006 , 89, 213504	3.4	222
281	Charge-carrier transport and recombination in thin insulating films studied via extraction of injected plasma. <i>Physical Review B</i> , 2006 , 74,	3.3	39
280	Internal electric field in organic-semiconductor-based photovoltaic devices. <i>Applied Physics Letters</i> , 2006 , 89, 223519	3.4	12
279	Coherent random lasing in the deep blue from self-assembled organic nanofibers. <i>Journal of Applied Physics</i> , 2006 , 99, 034305	2.5	38
278	Organic inverter circuits employing ambipolar pentacene field-effect transistors. <i>Applied Physics Letters</i> , 2006 , 89, 033512	3.4	88
277	Comparative studies on solar cell structures using zinc phthalocyanine and fullerenes 2006 , 6192, 348		3
276	Unexpected electromechanical actuation in conjugated polymer based diodes. <i>Journal of Materials Chemistry</i> , 2006 , 16, 1789-1793		5
275	Bio-organic-semiconductor-field-effect-transistor based on deoxyribonucleic acid gate dielectric. Journal of Applied Physics, 2006 , 100, 024514	2.5	108
274	Spectroelectrochemistry of poly(ethylenedithiathiophene)the sulfur analogue of poly(ethylenedioxythiophene). <i>Journal of Physical Chemistry B</i> , 2006 , 110, 2662-7	3.4	24
273	Incorporation of fused tetrathiafulvalenes (TTFs) into polythiophene architectures: varying the electroactive dominance of the TTF species in hybrid systems. <i>Journal of Physical Chemistry B</i> , 2006 , 110, 3140-52	3.4	54
272	PROGRESS IN PLASTIC ELECTRONICS DEVICES. Annual Review of Materials Research, 2006 , 36, 199-230	12.8	209
271	Photoinduced charge and energy transfer involving fullerene derivatives. <i>Photochemical and Photobiological Sciences</i> , 2006 , 5, 1122-31	4.2	130
270	Long-lived photoinduced charges in donor-acceptor anthraquinone-substituted thiophene copolymers. <i>Journal of Physical Chemistry B</i> , 2006 , 110, 5351-8	3.4	24
269	DNA: new class of polymer 2006 ,		6
268	Photoinduced electron transfer in a new Bis(C60)-phthalocyanine triad. <i>Organic Letters</i> , 2006 , 8, 5187-9	06.2	63

(2006-2006)

267	Enhanced spectral coverage in tandem organic solar cells. <i>Applied Physics Letters</i> , 2006 , 89, 073502	3.4	146
266	Morphology of polymer/fullerene bulk heterojunction solar cells. <i>Journal of Materials Chemistry</i> , 2006 , 16, 45-61		1277
265	Molecular scale organized poly(MDMO-p-phenylene vinylene)fleteropolyacid composites. <i>Synthetic Metals</i> , 2006 , 156, 843-847	3.6	1
264	Side chain effects on photoinduced absorption and photovoltaic performance of low bandgap thienylene vinylene and phenylene vinylene copolymers. <i>EPJ Applied Physics</i> , 2006 , 36, 219-223	1.1	2
263	The effect of intermediate layers on the internal electric field in organic semiconductor devices 2006 ,		1
262	Electrical characteristics of metal-insulator-semiconductor diodes and transistors with space charge electret insulators: towards nonvolatile organic memories. <i>IEEE Transactions on Dielectrics and Electrical Insulation</i> , 2006 , 13, 1082-1086	2.3	1
261	From evaporation to solution processed organic tandem solar cells 2006 , 6197, 96		3
260	Donor-acceptor heterojunction solar cells based on perylene dimide and perylene bisbenzimidazole. <i>EPJ Applied Physics</i> , 2006 , 36, 225-229	1.1	22
259	Electrical transport properties of hot wall epitaxially grown para -sexiphenyl nano-needles. <i>Physica Status Solidi (B): Basic Research</i> , 2006 , 243, 3329-3332	1.3	13
258	Conjugated polymer photovoltaic devices and materials. <i>Comptes Rendus Chimie</i> , 2006 , 9, 568-577	2.7	71
257	Photoresponse of organic field-effect transistors based on conjugated polymer/fullerene blends. <i>Organic Electronics</i> , 2006 , 7, 188-194	3.5	125
256	Charge carrier mobility and lifetime versus composition of conjugated polymer/fullerene bulk-heterojunction solar cells. <i>Organic Electronics</i> , 2006 , 7, 229-234	3.5	150
255	Soluble derivatives of perylene and naphthalene diimide for n-channel organic field-effect transistors. <i>Organic Electronics</i> , 2006 , 7, 480-489	3.5	104
254	Precursor route poly(thienylene vinylene) for organic solar cells: Photophysics and photovoltaic performance. <i>Solar Energy Materials and Solar Cells</i> , 2006 , 90, 2815-2828	6.4	42
253	Photovoltaic activity of a PolyProDOT derivative in a bulk heterojunction solar cell. <i>Solar Energy Materials and Solar Cells</i> , 2006 , 90, 3531-3546	6.4	16
252	Effect of annealing of poly(3-hexylthiophene)/fullerene bulk heterojunction composites on structural and optical properties. <i>Thin Solid Films</i> , 2006 , 496, 679-682	2.2	152
251	Recombination of photogenerated and injected charge carriers in Econjugated polymer/fullerene blends. <i>Thin Solid Films</i> , 2006 , 511-512, 224-227	2.2	38
250	New donor-acceptor materials based on random polynorbornenes bearing pendant phthalocyanine and fullerene units. <i>Chemistry - an Asian Journal</i> , 2006 , 1, 148-54	4.5	58

249	Organic solar cells with carbon nanotube network electrodes. <i>Applied Physics Letters</i> , 2006 , 88, 233506	3.4	864
248	Spontaneous rearrangement of para-sexiphenyl crystallites into nano-fibers. <i>Applied Physics A: Materials Science and Processing</i> , 2006 , 82, 665-669	2.6	43
247	Charge Transport and Recombination in Bulk-Heterojunction Solar Cells 2006,		6
246	Time-dependent mobility and recombination of the photoinduced charge carriers in conjugated polymer/fullerene bulk heterojunction solar cells. <i>Physical Review B</i> , 2005 , 72,	3.3	180
245	Bimolecular recombination coefficient as a sensitive testing parameter for low-mobility solar-cell materials. <i>Physical Review Letters</i> , 2005 , 94, 176806	7.4	273
244	Synthesis and properties of end-capped sexithiophenes incorporating the ethylene dithiothiophene unit. <i>Journal of Materials Chemistry</i> , 2005 , 15, 1446		24
243	Extended Photocurrent Spectrum of a Low Band Gap Polymer in a Bulk Heterojunction Solar Cell. <i>Chemistry of Materials</i> , 2005 , 17, 4031-4033	9.6	184
242	Plastic Solar Cells Based on Novel PPE-PPV-Copolymers. <i>Molecular Crystals and Liquid Crystals</i> , 2005 , 426, 255-263	0.5	18
241	Stabilization of the nanomorphology of polymerfullerene Bulk heterojunctionIblends using a novel polymerizable fullerene derivative. <i>Journal of Materials Chemistry</i> , 2005 , 15, 5158		206
240	Resonant Raman scattering dispersion in poly(dithieno[3,4-b:3?,4-d]-thiophene): 2Ag spectroscopy. <i>Synthetic Metals</i> , 2005 , 150, 251-253	3.6	1
239	Vibrational spectroscopic study of a push-pull substituted fluorinated poly(p-phenylenevinylene) copolymer. <i>Synthetic Metals</i> , 2005 , 152, 149-152	3.6	6
238	Novel Regiospecific MDMO-PPV Polymers with Improved Charge Transport Properties for Bulk Heterojunction Solar Cells. <i>Synthetic Metals</i> , 2005 , 153, 81-84	3.6	15
237	Nano-Crystalline Fullerene Phases in Polymer/Fullerene Bulk-Heterojunction Solar Cells: A Transmission Electron Microscopy Study. <i>Synthetic Metals</i> , 2005 , 152, 117-120	3.6	34
236	Kelvin probe force microscopy study on conjugated polymer/fullerene bulk heterojunction organic solar cells. <i>Nano Letters</i> , 2005 , 5, 269-74	11.5	263
235	Flexible, conjugated polymer-fullerene-based bulk-heterojunction solar cells: Basics, encapsulation, and integration. <i>Journal of Materials Research</i> , 2005 , 20, 3224-3233	2.5	147
234	Low-threshold blue lasing in epitaxially grown para-sexiphenyl nanofibers. <i>Journal of Luminescence</i> , 2005 , 112, 321-324	3.8	20
233	Morphology and growth kinetics of organic thin films deposited by hot wall epitaxy on KCl substrates. <i>Journal of Crystal Growth</i> , 2005 , 275, e2037-e2042	1.6	19
232	Design, synthesis and photovoltaic properties of [60]fullerene based molecular materials. <i>Materials Science and Engineering C</i> , 2005 , 25, 835-842	8.3	21

(2005-2005)

231	High-mobility n-channel organic field-effect transistors based on epitaxially grown C60 films. <i>Organic Electronics</i> , 2005 , 6, 105-110	3.5	124
230	Characterization of N, N?-bis-2-(1-hydoxy-4-methylpentyl)-3, 4, 9, 10-perylene bis (dicarboximide) sensitized nanocrystalline TiO2 solar cells with polythiophene hole conductors. <i>Solar Energy Materials and Solar Cells</i> , 2005 , 88, 11-21	6.4	72
229	Flexible Conjugated Polymer-Based Plastic Solar Cells: From Basics to Applications. <i>Proceedings of the IEEE</i> , 2005 , 93, 1429-1439	14.3	126
228	Complexation of pyrrolidinofullerenes and zinc-phthalocyanine in a bilayer organic solar cell structure. <i>Applied Physics Letters</i> , 2005 , 87, 244102	3.4	60
227	Charge transport and recombination in bulk heterojunction solar cells studied by the photoinduced charge extraction in linearly increasing voltage technique. <i>Applied Physics Letters</i> , 2005 , 86, 112104	3.4	169
226	Charge carrier mobility in regioregular poly(3-hexylthiophene) probed by transient conductivity techniques: A comparative study. <i>Physical Review B</i> , 2005 , 71,	3.3	230
225	High-Performance Ambipolar Pentacene Organic Field-Effect Transistors on Poly(vinyl alcohol) Organic Gate Dielectric. <i>Advanced Materials</i> , 2005 , 17, 2315-2320	24	203
224	Side Chain Influence on Electrochemical and Photovoltaic Properties of Yne-Containing Poly(phenylene vinylene)s. <i>Macromolecular Rapid Communications</i> , 2005 , 26, 1389-1394	4.8	67
223	Thiophene-containing poly(arylene\text{Bthynylene})-alt-poly(arylene\text{\text{linylene}})s: Synthesis, characterisation and optical properties. <i>Polymer</i> , 2005 , 46, 9585-9595	3.9	29
222	Organic thin films grown by hot wall epitaxy on inorganic substrates. <i>Physica Status Solidi (B): Basic Research</i> , 2005 , 242, 1877-1882	1.3	4
221	Kelvin Probe Force Microscopy Study of Conjugated Polymer/Fullerene Organic Solar Cells. <i>Japanese Journal of Applied Physics</i> , 2005 , 44, 5370-5373	1.4	44
220	Photoinduced Electron Transfer in Solid C60 Donor/Acceptor Complexes Studied by Light-Induced Electron-Spin Resonance. <i>Molecular Crystals and Liquid Crystals</i> , 2005 , 427, 3/[315]-21/[333]	0.5	11
219	Polymer-Fullerene Bulk Heterojunction Solar Cells. MRS Bulletin, 2005, 30, 33-36	3.2	158
218	Piezoelectric polymers. <i>Materials Research Society Symposia Proceedings</i> , 2005 , 889, 1		
217	Correlation between morphology and ambipolar transport in organic field-effect transistors. <i>Journal of Applied Physics</i> , 2005 , 97, 114508	2.5	37
216	Fabrication and characterization of solution-processed methanofullerene-based organic field-effect transistors. <i>Journal of Applied Physics</i> , 2005 , 97, 083714	2.5	128
215	Double injection as a technique to study charge carrier transport and recombination in bulk-heterojunction solar cells. <i>Applied Physics Letters</i> , 2005 , 87, 222110	3.4	43
214	Unusual electromechanical effects in organic semiconductor Schottky contacts: Between piezoelectricity and electrostriction. <i>Applied Physics Letters</i> , 2005 , 87, 163501	3.4	46

213	Electromechanical strain in conjugated polymer diodes under forward and reverse bias. <i>Applied Physics Letters</i> , 2005 , 86, 193507	3.4	6
212	Ultrafast dynamics of charge carrier photogeneration and geminate recombination in conjugated polymer:fullerene solar cells. <i>Physical Review B</i> , 2005 , 72,	3.3	111
211	Photoresponse Of Organic Field-Effect Transistors Based On Soluble Semiconductors And Dielectrics. <i>Materials Research Society Symposia Proceedings</i> , 2005 , 871, 1		
210	Anomalous charge transport behavior of Fullerene based diodes. <i>Applied Physics Letters</i> , 2004 , 84, 1570)- <u>3.5</u> 72	21
209	Random laser action in self-organized para-sexiphenyl nanofibers grown by hot-wall epitaxy. <i>Applied Physics Letters</i> , 2004 , 84, 4454-4456	3.4	90
208	Hybrid solar cells based on inorganic nanoclusters and conjugated polymers. <i>Thin Solid Films</i> , 2004 , 451-452, 612-618	2.2	71
207	Investigation of excited states in polymer/fullerene solar cells by means of photoinduced reflection-/absorption spectroscopy. <i>Thin Solid Films</i> , 2004 , 451-452, 60-63	2.2	14
206	A systematic study of the anisotropic optical properties of thin poly(3-octylthiophene)-films in dependence on growth parameters. <i>Thin Solid Films</i> , 2004 , 451-452, 69-73	2.2	31
205	Modeling of optical absorption in conjugated polymer/fullerene bulk-heterojunction plastic solar cells. <i>Thin Solid Films</i> , 2004 , 451-452, 589-592	2.2	77
204	Organic p-i-n solar cells. Applied Physics A: Materials Science and Processing, 2004, 79, 1-14	2.6	291
203	Morphology effects in nanocrystalline CuInSe2-conjugated polymer hybrid systems. <i>Applied Physics A: Materials Science and Processing</i> , 2004 , 79, 59-64	2.6	39
202	Plastic photovoltaic devices. <i>Materials Today</i> , 2004 , 7, 36-40	21.8	89
201	Nanoscale Morphology of Conjugated Polymer/Fullerene-Based Bulk- Heterojunction Solar Cells. <i>Advanced Functional Materials</i> , 2004 , 14, 1005-1011	15.6	672
200	Aggregate States and Energetic Disorder in Highly Ordered Nanostructures of para-Sexiphenyl Grown by Hot Wall Epitaxy. <i>Advanced Functional Materials</i> , 2004 , 14, 970-978	15.6	22
199	Patterns of efficiency and degradation of composite polymer solar cells. <i>Solar Energy Materials and Solar Cells</i> , 2004 , 83, 247-262	6.4	108
198	Morphology and growth kinetics of organic thin films deposited by hot wall epitaxy. <i>Organic Electronics</i> , 2004 , 5, 23-27	3.5	27
197	Negative electric field dependence of charge carrier drift mobility in conjugated, semiconducting polymers. <i>Chemical Physics Letters</i> , 2004 , 389, 438-442	2.5	130
196	Even parity states in small band gap Etonjugated polymers: polydithienothiophenes. <i>Chemical Physics Letters</i> , 2004 , 394, 132-136	2.5	7

195	Photovoltaic action of conjugated polymer/fullerene bulk heterojunction solar cells using novel PPE-PPV copolymers. <i>Journal of Materials Chemistry</i> , 2004 , 14, 3462-3467		109
194	Novel Regiospecific MDMO B PV Copolymer with Improved Charge Transport for Bulk Heterojunction Solar Cells. <i>Journal of Physical Chemistry B</i> , 2004 , 108, 5235-5242	3.4	81
193	Nonvolatile organic field-effect transistor memory element with a polymeric gate electret. <i>Applied Physics Letters</i> , 2004 , 85, 5409-5411	3.4	192
192	Low bandgap polymers for photon harvesting in bulk heterojunction solar cells. <i>Journal of Materials Chemistry</i> , 2004 , 14, 1077		631
191	Anomalous photoinduced absorption of conjugated polymer/fullerene mixtures at low temperatures and high frequencies. <i>Synthetic Metals</i> , 2004 , 141, 109-112	3.6	6
190	Anisotropic optical properties of thin poly(3-octylthiophene)-films as a function of preparation conditions. <i>Synthetic Metals</i> , 2004 , 143, 113-117	3.6	36
189	Organic solar cells: An overview. <i>Journal of Materials Research</i> , 2004 , 19, 1924-1945	2.5	2012
188	Core/shell nanomaterials in photovoltaics. <i>International Journal of Photoenergy</i> , 2003 , 5, 199-208	2.1	50
187	A Soluble Donor Acceptor Double-Cable Polymer: Polythiophene with Pendant Fullerenes. <i>Monatshefte Fil Chemie</i> , 2003 , 134, 519-527	1.4	22
186	Effects of Postproduction Treatment on Plastic Solar Cells. Advanced Functional Materials, 2003, 13, 85	5- 8:8 5.6	1792
186 185	Effects of Postproduction Treatment on Plastic Solar Cells. <i>Advanced Functional Materials</i> , 2003 , 13, 85 Hybrid Solar Cells Based on Nanoparticles of CulnS2 in Organic Matrices. <i>Advanced Functional Materials</i> , 2003 , 13, 165-171	5-885.6 15.6	1792 246
	Hybrid Solar Cells Based on Nanoparticles of CuInS2 in Organic Matrices. Advanced Functional		
185	Hybrid Solar Cells Based on Nanoparticles of CuInS2 in Organic Matrices. <i>Advanced Functional Materials</i> , 2003 , 13, 165-171 Modeling the optical absorption within conjugated polymer/fullerene-based bulk-heterojunction	15.6	246
185 184	Hybrid Solar Cells Based on Nanoparticles of CuInS2 in Organic Matrices. <i>Advanced Functional Materials</i> , 2003 , 13, 165-171 Modeling the optical absorption within conjugated polymer/fullerene-based bulk-heterojunction organic solar cells. <i>Solar Energy Materials and Solar Cells</i> , 2003 , 80, 105-113 Convenient synthesis and polymerization of 5,6-disubstituted dithiophthalides toward soluble poly(isothianaphthene): An initial spectroscopic characterization of the resulting low-band-gap	15.6 6.4	246 156
185 184 183	Hybrid Solar Cells Based on Nanoparticles of CuInS2 in Organic Matrices. <i>Advanced Functional Materials</i> , 2003 , 13, 165-171 Modeling the optical absorption within conjugated polymer/fullerene-based bulk-heterojunction organic solar cells. <i>Solar Energy Materials and Solar Cells</i> , 2003 , 80, 105-113 Convenient synthesis and polymerization of 5,6-disubstituted dithiophthalides toward soluble poly(isothianaphthene): An initial spectroscopic characterization of the resulting low-band-gap polymers. <i>Journal of Polymer Science Part A</i> , 2003 , 41, 1034-1045 Molecular alignments in sexiphenyl thin films epitaxially grown on muscovite. <i>Thin Solid Films</i> , 2003 ,	15.6 6.4 2.5	24615634
185 184 183	Hybrid Solar Cells Based on Nanoparticles of CuInS2 in Organic Matrices. <i>Advanced Functional Materials</i> , 2003 , 13, 165-171 Modeling the optical absorption within conjugated polymer/fullerene-based bulk-heterojunction organic solar cells. <i>Solar Energy Materials and Solar Cells</i> , 2003 , 80, 105-113 Convenient synthesis and polymerization of 5,6-disubstituted dithiophthalides toward soluble poly(isothianaphthene): An initial spectroscopic characterization of the resulting low-band-gap polymers. <i>Journal of Polymer Science Part A</i> , 2003 , 41, 1034-1045 Molecular alignments in sexiphenyl thin films epitaxially grown on muscovite. <i>Thin Solid Films</i> , 2003 , 443, 108-114	15.6 6.4 2.5	2461563453
185 184 183 182	Hybrid Solar Cells Based on Nanoparticles of CuInS2 in Organic Matrices. <i>Advanced Functional Materials</i> , 2003 , 13, 165-171 Modeling the optical absorption within conjugated polymer/fullerene-based bulk-heterojunction organic solar cells. <i>Solar Energy Materials and Solar Cells</i> , 2003 , 80, 105-113 Convenient synthesis and polymerization of 5,6-disubstituted dithiophthalides toward soluble poly(isothianaphthene): An initial spectroscopic characterization of the resulting low-band-gap polymers. <i>Journal of Polymer Science Part A</i> , 2003 , 41, 1034-1045 Molecular alignments in sexiphenyl thin films epitaxially grown on muscovite. <i>Thin Solid Films</i> , 2003 , 443, 108-114 Time domain investigation of the intrachain vibrational dynamics of a prototypical light-emitting conjugated polymer. <i>Physical Review Letters</i> , 2003 , 90, 047402 Optical- and photocurrent-detected magnetic resonance studies on conjugated polymer/fullerene	15.6 6.4 2.5 2.2	246156345351

177	Ultrafast spectroscopy of polaron pairs in polymer solar cells. Synthetic Metals, 2003, 137, 1475-1476	3.6	3
176	Charge recombination dynamics in a polymer/fullerene bulk heterojunction studied by transient absorption spectroscopy. <i>Synthetic Metals</i> , 2003 , 137, 1505-1506	3.6	4
175	A Fulleropyrrolidine-phthalocyanine dyad for photovoltaic applications. Synthetic Metals, 2003, 137, 14	193:449	92 ₂₄
174	Hot wall epitaxial growth of highly ordered organic epilayers. Synthetic Metals, 2003, 138, 9-13	3.6	20
173	Poly(5,6-dithiooctylisothianaphtene), a new low band gap polymer: spectroscopy and solar cell construction. <i>Synthetic Metals</i> , 2003 , 138, 249-253	3.6	20
172	Oriented organic semiconductor thin films. <i>Synthetic Metals</i> , 2003 , 138, 59-63	3.6	14
171	Tuning of the photoinduced charge transfer process in donor acceptor double-cable copolymers. <i>Synthetic Metals</i> , 2003 , 139, 731-733	3.6	9
170	Photo- and thermally stimulated luminescence in highly ordered films of para-sexiphenyl grown by Hot-Wall Epitaxy. <i>Synthetic Metals</i> , 2003 , 139, 937-940	3.6	8
169	Optoelectronic devices based on para-sexiphenyl films grown by Hot Wall Epitaxy. <i>Synthetic Metals</i> , 2003 , 139, 573-576	3.6	8
168	Excited state spectroscopy in polymer fullerene photovoltaic devices under operation conditions. <i>Synthetic Metals</i> , 2003 , 139, 577-580	3.6	8
167	Spectral signatures of positive and negative charged states in doped and photoexcited low band-gap polydithienothiophenes. <i>Synthetic Metals</i> , 2003 , 139, 747-750	3.6	10
166	Charge Recombination in Conjugated Polymer/Fullerene Blended Films Studied by Transient Absorption Spectroscopy. <i>Journal of Physical Chemistry B</i> , 2003 , 107, 1567-1573	3.4	190
165	Influence of the solvent on the crystal structure of PCBM and the efficiency of MDMO-PPV:PCBM 'plastic' solar cells. <i>Chemical Communications</i> , 2003 , 2116-8	5.8	311
164	Long-lived photoinduced charge separation for solar cell applications in phthalocyaninefulleropyrrolidine dyad thin films. <i>Journal of Materials Chemistry</i> , 2003 , 13, 700-704		199
163	A comparison between state-of-the-art gilchland Bulphinyllsynthesised MDMO-PPV/PCBM bulk hetero-junction solar cells. <i>Thin Solid Films</i> , 2002 , 403-404, 247-251	2.2	67
162	Solid-state organic/inorganic hybrid solar cells based on conjugated polymers and dye-sensitized TiO2 electrodes. <i>Thin Solid Films</i> , 2002 , 403-404, 271-274	2.2	78
161	Photo-induced electron transfer from a dithieno thiophene-based polymer to TiO2. <i>Thin Solid Films</i> , 2002 , 403-404, 52-56	2.2	46
160	The influence of materials work function on the open circuit voltage of plastic solar cells. <i>Thin Solid Films</i> , 2002 , 403-404, 368-372	2.2	133

159	Highly ordered anisotropic nano-needles in para-sexiphenyl films. Thin Solid Films, 2002, 403-404, 444-4	448 2	16
158	Sensitization of low bandgap polymer bulk heterojunction solar cells. <i>Thin Solid Films</i> , 2002 , 403-404, 373-379	2.2	71
157	Influence of the anodic work function on the performance of organic solar cells. <i>ChemPhysChem</i> , 2002 , 3, 795-9	3.2	165
156	A Low-Bandgap Semiconducting Polymer for Photovoltaic Devices and Infrared Emitting Diodes. <i>Advanced Functional Materials</i> , 2002 , 12, 709-712	15.6	483
155	Dependence of field-effect hole mobility of PPV-based polymer films on the spin-casting solvent. <i>Organic Electronics</i> , 2002 , 3, 105-110	3.5	86
154	Structural relationship between epitaxially grown para-sexiphenyl and mica (001) substrates. Journal of Crystal Growth, 2002 , 237-239, 2076-2081	1.6	36
153	Organic rare earth complexes in polymer matrices and light emitting diodes. <i>Molecular Crystals and Liquid Crystals</i> , 2002 , 385, 101-111	0.5	13
152	Molecular engineering of C60-based conjugated oligomer ensembles: modulating the competition between photoinduced energy and electron transfer processes. <i>Journal of Organic Chemistry</i> , 2002 , 67, 1141-52	4.2	94
151	Infrared spectroscopic investigations of organic polymeric photovoltaic systems 2002,		2
150	Positive and Negative Charge Carriers in Doped or Photoexcited Polydithienothiophenes: A Comparative Study Using Raman, Infrared, and Electron Spin Resonance Spectroscopy. <i>Journal of Physical Chemistry B</i> , 2002 , 106, 3583-3591	3.4	45
149	Double-cable polymers for fullerene based organic optoelectronic applications. <i>Journal of Materials Chemistry</i> , 2002 , 12, 1931-1943		229
148	Effect of LiF/metal electrodes on the performance of plastic solar cells. <i>Applied Physics Letters</i> , 2002 , 80, 1288-1290	3.4	805
147	Transient optical studies of charge recombination dynamics in a polymer/fullerene composite at room temperature. <i>Applied Physics Letters</i> , 2002 , 81, 3001-3003	3.4	179
146	Synthesis and electropolymerisation of 3?,4?-bis(alkylsulfanyl)terthiophenes and the significance of the fused dithiin ring in 2,5-dithienyl-3,4-ethylenedithiothiophene (DT-EDTT). <i>Journal of Materials Chemistry</i> , 2002 , 12, 500-510		35
145	Electrochemical and Photophysical Properties of a Novel Polythiophene with Pendant Fulleropyrrolidine Moieties: Toward Double Cable Polymers for Optoelectronic Devices. <i>Journal of Physical Chemistry B</i> , 2002 , 106, 70-76	3.4	72
144	Photovoltaic properties of nanocrystalline cuins 2 /methanofullerene solar cells. <i>Molecular Crystals and Liquid Crystals</i> , 2002 , 385, 129-136	0.5	13
143	Highly aligned organic semiconductor thin films grown by hot wall epitaxy. <i>Molecular Crystals and Liquid Crystals</i> , 2002 , 385, 61-70	0.5	8
142	Polymer solar cells and infrared light emitting diodes: Dual function low bandgap polymer. <i>Molecular Crystals and Liquid Crystals</i> , 2002 , 385, 93-100	0.5	18

141	Polarized doping-induced infrared absorption in highly oriented conjugated polymers. <i>Chemical Physics Letters</i> , 2001 , 335, 23-26	2.5	14
140	Tracing photoinduced electron transfer process in conjugated polymer/fullerene bulk heterojunctions in real time. <i>Chemical Physics Letters</i> , 2001 , 340, 232-236	2.5	516
139	An in situ spectrochemical study of the reduction of thin fullerene films. <i>Journal of Electroanalytical Chemistry</i> , 2001 , 511, 13-19	4.1	25
138	Influence of disorder on the photoinduced excitations in phenyl substituted polythiophenes. <i>Journal of Chemical Physics</i> , 2001 , 115, 7235-7244	3.9	29
137	Heteroepitaxial growth of self-assembled highly ordered para-sexiphenyl films: A crystallographic study. <i>Physical Review B</i> , 2001 , 64,	3.3	58
136	2.5% efficient organic plastic solar cells. <i>Applied Physics Letters</i> , 2001 , 78, 841-843	3.4	2306
135	Temperature and irradiance effect on the photovoltaic parameters of a fullerene/conjugated-polymer solar cell 2001 ,		4
134	Photoactive Blends of Poly(para-phenylenevinylene) (PPV) with Methanofullerenes from a Novel Precursor: Photophysics and Device Performance. <i>Journal of Physical Chemistry B</i> , 2001 , 105, 1528-1536	5 ^{3.4}	41
133	The interplay of efficiency and morphology in photovoltaic devices based on interpenetrating networks of conjugated polymers with fullerenes. <i>Synthetic Metals</i> , 2001 , 118, 1-9	3.6	124
132	High oriented epitaxial oligomer/fullerene structures grown by hot wall epitaxy. <i>Synthetic Metals</i> , 2001 , 116, 235-239	3.6	10
131	Multiple reduction states with different conductivities of polybenzimidazobenzophenanthroline (BBL) studied with infrared spectroelectrochemistry. <i>Synthetic Metals</i> , 2001 , 116, 241-245	3.6	8
130	Photoexcited spectroscopy and in situ electrochemical spectroscopy in conjugated polymers: a comparative study. <i>Synthetic Metals</i> , 2001 , 116, 115-121	3.6	18
129	Ultrafast charge transfer in conjugated polymer-fullerene composites. Synthetic Metals, 2001, 119, 637-	-638	32
128	Self-assembled growth of highly oriented para- sexiphenyl thin films. <i>Synthetic Metals</i> , 2001 , 121, 1379-	133&0	20
127	Photoinduced electron transfer in solid C60 donor/acceptor complexes. <i>Synthetic Metals</i> , 2001 , 121, 1127-1128	3.6	15
126	Spectroscopy on polymer-fullerene composites and photovoltaic cells. Synthetic Metals, 2001, 121, 1529	9 ₃ 1⁄532	9
125	Solid state dye-sensitized TiO2 solar cells with poly(3-octylthiophene) as hole transport layer. <i>Synthetic Metals</i> , 2001 , 121, 1549-1550	3.6	51
124	Er3+- emission from organic complexes embedded in thin polymer films. <i>Synthetic Metals</i> , 2001 , 121, 1511-1512	3.6	9

(2000-2001)

123	Organic photovoltaic devices produced from conjugated polymer / methanofullerene bulk heterojunctions. <i>Synthetic Metals</i> , 2001 , 121, 1517-1520	3.6	61
122	In situ UV-VIS-NIR and Raman spectroelectrochemical studies of the conjugated ladder polymer polybenzimidazobenzophenanthroline (BBL). <i>Synthetic Metals</i> , 2001 , 119, 319-320	3.6	8
121	Sensitization of photoconductive polyimides for photovoltaic applications. <i>Synthetic Metals</i> , 2001 , 121, 1609-1610	3.6	18
120	Electropolymerization and spectroscopic properties of a novel double-cable polythiophene with pendant fullerenes for photovoltaic applications. <i>Synthetic Metals</i> , 2001 , 121, 1555-1556	3.6	21
119	Low band-gap polymeric photovoltaic devices. <i>Synthetic Metals</i> , 2001 , 121, 1583-1584	3.6	75
118	Degradation of bulk heterojunction solar cells operated in an inert gas atmosphere: a systematic study. <i>Synthetic Metals</i> , 2001 , 121, 1605-1606	3.6	69
117	Hybrid solar cells based on dye-sensitized nanoporous TiO2 electrodes and conjugated polymers as hole transport materials. <i>Synthetic Metals</i> , 2001 , 125, 279-287	3.6	148
116	Electrical admittance studies of polymer photovoltaic cells. Synthetic Metals, 2001, 124, 103-105	3.6	19
115	Low-temperature recombination kinetics of photoexcited persistent charge carriers in conjugated polymer/fullerene composite films. <i>Physical Review B</i> , 2001 , 64,	3.3	48
114	Temperature dependence for the photovoltaic device parameters of polymer-fullerene solar cells under operating conditions. <i>Journal of Applied Physics</i> , 2001 , 90, 5343-5350	2.5	161
113	Photoinduced Electron Transfer in DonorAcceptor Double-Cable Polymers: Polythiophene Bearing Tetracyanoanthraquinodimethane Moieties. <i>Journal of Physical Chemistry A</i> , 2001 , 105, 4172-41	1 76 8	33
112	Photophysical Properties and Optoelectronic Device Applications of a Novel Naphthalene Vinylene Type Conjugated Polymer. <i>Journal of Physical Chemistry B</i> , 2001 , 105, 4099-4104	3.4	35
111	Vibrational Spectroscopy on pDTT3A Low Band Gap Polymer Based on Dithienothiophene. <i>Journal of Physical Chemistry B</i> , 2001 , 105, 46-52	3.4	27
110	Synthesis and Characterization of a Poly(1,3-dithienylisothianaphthene) Derivative for Bulk Heterojunction Photovoltaic Cells. <i>Journal of Physical Chemistry B</i> , 2001 , 105, 11106-11113	3.4	57
109	Toward Controlled Donor\(\textit{Acceptor Interactions in Noncomposite Polymeric Materials: Synthesis and Characterization of a Novel Polythiophene Incorporating \(\textit{Conjugated}\) 1,3-Dithiole-2-ylidenefluorene Units as Strong D\(\textit{A}\) Components. Macromolecules, 2001, 34, 2232-2241	5.5	34
108	Effects of Inserting Highly Polar Salts Between the Cathode and Active Layer of Bulk Heterojunction Photovoltaic Devices. <i>Materials Research Society Symposia Proceedings</i> , 2001 , 665, 1		3
107	Field-effect mobility measurements of conjugated polymer/fullerene photovoltaic blends. <i>AIP Conference Proceedings</i> , 2000 ,	O	9
106	Highly Anisotropically Self-Assembled Structures of para-Sexiphenyl Grown by Hot-Wall Epitaxy. <i>Advanced Materials</i> , 2000 , 12, 629-633	24	166

105	Vibrational signatures of electrochemical p- and n-doping of poly(3,4-ethylenedioxythiophene) films: an in situ attenuated total reflection Fourier transform infrared (ATR-FTIR) study. <i>Journal of Molecular Structure</i> , 2000 , 521, 271-277	3.4	139
104	Polymeric photovoltaic devices. <i>Materials Today</i> , 2000 , 3, 5-8	21.8	13
103	Photoinduced FT-IR spectroscopy and CW-photocurrent measurements of conjugated polymers and fullerenes blended into a conventional polymer matrix. <i>Solar Energy Materials and Solar Cells</i> , 2000 , 61, 19-33	6.4	22
102	Stability and photodegradation mechanisms of conjugated polymer/fullerene plastic solar cells. <i>Solar Energy Materials and Solar Cells</i> , 2000 , 61, 35-42	6.4	223
101	Photoinduced Charge Carriers in a Donor-Acceptor Double-Cable Polythiophene with Covalently Bound Tetracyanoanthraquinodimethane Moieties. <i>Materials Research Society Symposia Proceedings</i> , 2000 , 660, 1		
100	Reflectance anisotropy spectroscopy of oriented films of semiconducting polymers. <i>Journal of Chemical Physics</i> , 2000 , 113, 789-792	3.9	18
99	Synthesis, Photophysical Properties, and Photovoltaic Devices of Oligo(p-phenylene vinylene)-fullerene Dyads?. <i>Journal of Physical Chemistry B</i> , 2000 , 104, 10174-10190	3.4	211
98	A novel polythiophene with pendant fullerenes: toward donor/acceptor double-cable polymers. <i>Chemical Communications</i> , 2000 , 2487-2488	5.8	90
97	Multiple Electrochemical Doping-Induced Insulator-to-Conductor Transitions Observed in the Conjugated Ladder Polymer Polybenzimidazobenzophenanthroline (BBL)#. <i>Journal of Physical Chemistry B</i> , 2000 , 104, 9430-9437	3.4	16
96	Photoinduced Charge Transfer between Tetracyano-Anthraquino-Dimethane Derivatives and Conjugated Polymers for Photovoltaics. <i>Journal of Physical Chemistry A</i> , 2000 , 104, 8315-8322	2.8	33
95	Infrared spectroelectrochemical investigations on the doping of soluble poly(isothianaphthene methine) (PIM). <i>Journal of Chemical Physics</i> , 1999 , 110, 12108-12115	3.9	50
94	Conjugated Polymer-Based Plastic Solar Cells 1999 , 515-560		7
93	The spin signature of charged photoexcitations in carbazolyl substituted polydiacetylene. <i>Journal of Chemical Physics</i> , 1999 , 111, 10354-10361	3.9	7
92	Photovoltaic properties of conjugated polymer/methanofullerene composites embedded in a polystyrene matrix. <i>Journal of Applied Physics</i> , 1999 , 85, 6866-6872	2.5	120
91	Photoinduced charge carriers in conjugated polymerfullerene composites studied with light-induced electron-spin resonance. <i>Physical Review B</i> , 1999 , 59, 8019-8025	3.3	146
90	Polymeric photovoltaic materials. <i>Current Opinion in Solid State and Materials Science</i> , 1999 , 4, 373-378	12	70
89	Realization of large area flexible fullerene Itonjugated polymer photocells: A route to plastic solar cells. <i>Synthetic Metals</i> , 1999 , 102, 861-864	3.6	110
88	Investigations of fullerene thin films with in situ FTIR spectroelectrochemistry. <i>Synthetic Metals</i> , 1999 , 103, 2430-2431	3.6	5

87	Photoexcitations in carbazolyl substituted polydiacetylene (PDA) fullerene composites. <i>Synthetic Metals</i> , 1999 , 101, 298-299	3.6	3
86	Photoinduced ft-ir spectroscopy of conjugated polymer/fullerene composites embedded into conventional host polymer matrices. <i>Synthetic Metals</i> , 1999 , 101, 192-193	3.6	7
85	In situ ftir spectroelectrochemical characterization of poly(3,4-ethylenedioxythiophene) films. <i>Synthetic Metals</i> , 1999 , 101, 66	3.6	63
84	Stability studies and degradation analysis of plastic solar cell materials by FTIR spectroscopy. <i>Synthetic Metals</i> , 1999 , 102, 1002-1003	3.6	50
83	CW-Photocurrent measurements of conjugated polymers and fullerenes blended into a conventional polymer matrix. <i>Synthetic Metals</i> , 1999 , 102, 1285-1286	3.6	8
82	Time resolved photoinduced electron spin resonance studies on conjugated polymer fullerene mixtures in solution. <i>Synthetic Metals</i> , 1999 , 101, 356-357	3.6	4
81	Light-induced ESR studies in conjugated polymer-fullerene composites. <i>Synthetic Metals</i> , 1999 , 102, 1	24 3: 124	4211
80	Fullerene-Oligophenyl bilayers grown by hot wall epitaxy. Synthetic Metals, 1999 , 101, 656-657	3.6	2
79	Infrared Photospectroelectrochemistry of Germanium/Pedot/Electrolyte Interfaces. <i>Materials Research Society Symposia Proceedings</i> , 1999 , 598, 345		
78	Electrochemically- and Photo-Induced IR Absorption of Low Band-Gap Polydithienothiophenes: A Comparative Study. <i>Materials Research Society Symposia Proceedings</i> , 1999 , 598, 349		1
77	In Situ Attenuated Total Reflection FTIR Spectroelectrochemistry Of Polybenzimidazobenzophenanthroline (BBL). <i>Materials Research Society Symposia Proceedings</i> , 1999 , 598, 355		
76	Investigation of photoexcitations of conjugated polymer/fullerene composites embedded in conventional polymers. <i>Journal of Chemical Physics</i> , 1998 , 109, 1185-1195	3.9	42
75	Electrochemically and photoinduced infrared bands in PPV: a comparative study 1997, 3145, 507		2
74	Dynamic Orientation of Conjugated Oligomers in Nematic Liquid Crystalline Matrices. <i>Synthetic Metals</i> , 1997 , 84, 609-610	3.6	3
73	Electrochemically induced IRAV modes of BeCHA-PPV studied with in situ FTIR-ATR Spectroscopy. <i>Synthetic Metals</i> , 1997 , 84, 635-636	3.6	9
72	Infrared photoexcitation spectra of conducting polymer/methanofullerene films. <i>Synthetic Metals</i> , 1997 , 84, 857-858	3.6	2
71	Dynamic orientation of oligothiophenes in nematic liquid crystalline matrices. <i>Synthetic Metals</i> , 1996 , 80, 137-141	3.6	2
70	Subpicosecond photoinduced electron transfer from conjugated polymers to functionalized fullerenes. <i>Journal of Chemical Physics</i> , 1996 , 104, 4267-4273	3.9	153

69	Photoinduced Electron Transfer Between Conjugated Polymers and a Homologous Series of TCNQ Derivatives. <i>Journal De Physique, I</i> , 1996 , 6, 2151-2158		5
68	Polarized photoluminescence of oligothiophenes in nematic liquid crystalline matrices. <i>Advanced Materials</i> , 1996 , 8, 651-654	24	33
67	Absorption-detected magnetic-resonance studies of photoexcitations in conjugated-polymer/C60 composites. <i>Physical Review B</i> , 1996 , 53, 2187-2190	3.3	109
66	Photoinduced absorption and photoinduced reflectance in conducting polymer/methanofullerene films: Nonlinear-optical changes in the complex index of refraction. <i>Physical Review B</i> , 1996 , 54, 10525-	10 3 29	14
65	Spectral and photocarrier dynamics in thin films of pristine and alkali-doped C60. <i>Thin Solid Films</i> , 1995 , 257, 233-243	2.2	28
64	Photoinduced electron transfer from Econjugated polymers onto Buckminsterfullerene, fulleroids, and methanofullerenes. <i>Journal of Chemical Physics</i> , 1995 , 103, 788-793	3.9	58
63	NMR evidence for the metallic nature of highly conducting polyaniline. <i>Physical Review B</i> , 1995 , 51, 154	1313545	5 16
62	Photoinduced electron transfer reactions in mixed films of Econjugated polymers and a homologous series of tetracyano-p-quinodimethane derivatives. <i>Journal of Chemical Physics</i> , 1995 , 103, 8840-8845	3.9	61
61	Triplet-state photoexcitations and triplet-energy transfer in poly(3-alkylthiophene)/C60 solutions. <i>Synthetic Metals</i> , 1995 , 70, 1343-1344	3.6	3
60	Photoinduced absorption spectroscopy of oligothiophene/C60 mixtures in films and solutions. <i>Synthetic Metals</i> , 1995 , 70, 1345-1346	3.6	4
59	Photophysics of semiconducting polymer-C60 composites: A comparative study. <i>Synthetic Metals</i> , 1995 , 70, 1349-1352	3.6	17
58	Large enhancement of the transient and steady-state photoconductivity of conducting polymer/C60 composite films. <i>Synthetic Metals</i> , 1995 , 70, 1353-1356	3.6	8
57	Picosecond transient photoconductivity in a soluble derivative of poly(p-phenylene vinylene). <i>Synthetic Metals</i> , 1995 , 75, 127-131	3.6	18
56	Enhanced nonlinear absorption and optical limiting in semiconducting polymer/methanofullerene charge transfer films. <i>Applied Physics Letters</i> , 1995 , 67, 3850-3852	3.4	88
55	Photoinduced electron transfer processes in oligothiophene/C60 composite films. <i>Journal of Chemical Physics</i> , 1995 , 102, 2628-2635	3.9	52
54	Infrared reflectance of polypyrrole: Thetallwith a gap in the spectrum of charged excitations. <i>Synthetic Metals</i> , 1995 , 68, 287-291	3.6	62
53	Photoinduced electron transfer and long lived charge separation in a donor-bridge-acceptor supramolecular diadleonsisting of ruthenium(II) tris(bipyridine) functionalized C60. <i>Chemical Physics Letters</i> , 1995 , 247, 510-514	2.5	90
52	Magnetic resonance evidence for metallic state in highly conducting polyaniline. <i>Synthetic Metals</i> , 1995 , 69, 243-244	3.6	12

51	Infrared photoexcitation spectroscopy in soluble derivatives of poly(p-phenylenevinylene) and composites with C60. <i>Synthetic Metals</i> , 1995 , 69, 445-446	3.6	6
50	Photoinduced absorption of Econjugated polymers in solution. <i>Synthetic Metals</i> , 1995 , 69, 441-442	3.6	11
49	Role of Buckminsterfullerene, C60, in organic photoelectric devices. <i>Progress in Quantum Electronics</i> , 1995 , 19, 131-159	9.1	109
48	Infrared Photoexcitation Spectroscopy of Conducting Polymer and C60 Composites: Direct Evidence of Photo-Induced Electron Transfer. <i>Molecular Crystals and Liquid Crystals</i> , 1994 , 256, 739-744		3
47	REVERSIBLE, METASTABLE, ULTRAFAST PHOTOINDUCED ELECTRON TRANSFER FROM SEMICONDUCTING POLYMERS TO BUCKMINSTERFULLERENE AND IN THE CORRESPONDING DONOR/ACCEPTOR HETEROJUNCTIONS. International Journal of Modern Physics B, 1994, 08, 237-274	1.1	148
46	Subpicosecond Photoinduced Electron Transfer in Semiconducting Polymer - C60 Composites. <i>Molecular Crystals and Liquid Crystals</i> , 1994 , 256, 733-738		19
45	Reversible, Metastable, Ultrafast Photoinduced Electron Transfer in Conjugated Polymer and Buckminsterfullerene Composites and Heterojunctions. <i>Molecular Crystals and Liquid Crystals</i> , 1994 , 256, 317-326		7
44	Transient Photoconductivity of MEH-PPV and Its Sensitization by C60. <i>Molecular Crystals and Liquid Crystals</i> , 1994 , 256, 745-750		8
43	Electron and energy transfer processes of photoexcited oligothiophenes onto tetracyanoethylene and C60. <i>Journal of Chemical Physics</i> , 1994 , 101, 9519-9527	3.9	69
42	Direct evidence of photoinduced electron transfer in conducting-polymer-C60 composites by infrared photoexcitation spectroscopy. <i>Physical Review B</i> , 1994 , 49, 5781-5784	3.3	87
41	Triplet-state photoexcitations of oligothiophene films and solutions. <i>Journal of Chemical Physics</i> , 1994 , 101, 1787-1798	3.9	136
40	Ultrafast spectroscopic studies of photoinduced electron transfer from semiconducting polymers to C60. <i>Physical Review B</i> , 1994 , 50, 18543-18552	3.3	164
39	Paramagnetic susceptibility of highly conducting polyaniline: Disordered metal with weak electron-electron interactions (Fermi glass). <i>Physical Review B</i> , 1994 , 49, 5988-5992	3.3	101
38	Symmetry-specific electron-phonon coupling for electronic states near the Fermi energy of metallic polyaniline: resonant Raman scattering. <i>Synthetic Metals</i> , 1994 , 62, 107-112	3.6	18
37	Absence of photoinduced electron transfer from the excitonic electron-hole bound state in polydiacetylene conjugated polymers. <i>Physical Review B</i> , 1994 , 50, 12044-12051	3.3	36
36	Photoinduced absorption of conjugated polymer/C60 solutions: Evidence of triplet-state photoexcitations and triplet-energy transfer in poly(3-alkylthiophene). <i>Journal of Chemical Physics</i> , 1994 , 100, 8641-8645	3.9	46
35	Triplet State Photoexcitations in Frozen Solutions of Oligothiophenes. <i>Molecular Crystals and Liquid Crystals</i> , 1994 , 256, 487-492		2
34	Electron Transfer and Energy Transfer Reactions in Photoexcited ENonathiophene/C60 Films and Solutions. <i>Molecular Crystals and Liquid Crystals</i> , 1994 , 256, 921-926		1

33	Semiconducting polymer-buckminsterfullerene heterojunctions: Diodes, photodiodes, and photovoltaic cells. <i>Applied Physics Letters</i> , 1993 , 62, 585-587	3.4	788
32	Spectroscopic characterization of a new, stable and soluble polyacetylene blend. <i>Synthetic Metals</i> , 1993 , 55, 153-158	3.6	1
31	Observation of a photoinduced electron transfer from a conducting polymer (MEHPPV) onto C60. <i>Synthetic Metals</i> , 1993 , 56, 3125-3130	3.6	23
30	Semiconducting polymers (as donors) and buckminsterfullerene (as acceptor): photoinduced electron transfer and heterojunction devices. <i>Synthetic Metals</i> , 1993 , 59, 333-352	3.6	100
29	Surfactant counter-ion induced processability of polyaniline: Photoinduced absorption studies. <i>Synthetic Metals</i> , 1993 , 55, 188-193	3.6	12
28	Photoinduced and electroabsorption spectroscopy of a new, stable and soluble polyacetylene blend. <i>Synthetic Metals</i> , 1993 , 55, 159-164	3.6	3
27	Temperature dependent spectroelectrochemical measurements on end-capped oligothiophenes. <i>Synthetic Metals</i> , 1993 , 57, 4728-4733	3.6	37
26	Spectroscopic studies of a soluble and stable polyacetylene blend. <i>Synthetic Metals</i> , 1993 , 53, 161-174	3.6	44
25	Overhauser shift due to dynamic nuclear polarization on the conduction electron spin resonance in fully doped polythiophene at 1.9 K. <i>Synthetic Metals</i> , 1993 , 55, 624-629	3.6	1
24	Absorption spectroscopy of nonlinear excitations in polyaniline. <i>Journal of Chemical Physics</i> , 1993 , 98, 2664-2669	3.9	27
23	Sensitization of the photoconductivity of conducting polymers by C60: Photoinduced electron transfer. <i>Physical Review B</i> , 1993 , 48, 15425-15433	3.3	206
22	Photoexcitation spectroscopy of conducting-polymer-C60 composites: Photoinduced electron transfer. <i>Physical Review B</i> , 1993 , 47, 13835-13842	3.3	260
21	Photoinduced electron transfer from conducting polymers onto Buckminsterfullerene 1993 , 1852, 297		2
20	Photoexcitation spectroscopy of photoinduced electron transfer in conducting polymer-Buckminsterfullerene composites 1993 , 1852, 316		
19	Ultrafast photoinduced electron transfer in conducting polymerBuckminsterfullerene composites. <i>Chemical Physics Letters</i> , 1993 , 213, 389-394	2.5	149
18	Third generation of conducting polymers: Spectroelectrochemical investigations on viologen functionalized poly (3-alkylthiophenes). <i>Journal of Chemical Physics</i> , 1992 , 96, 7164-7170	3.9	29
17	Structural effects on the spin distribution anomaly of viologens. <i>Molecular Physics</i> , 1992 , 75, 1269-1274	1.7	2
16	On the spin distribution in bridged anthracene-viologen molecules: an electron-nuclear double resonance study. <i>Molecular Physics</i> , 1992 , 75, 1259-1267	1.7	6

LIST OF PUBLICATIONS

15	Photoinduced electron transfer from a conducting polymer to buckminsterfullerene. <i>Science</i> , 1992 , 258, 1474-6	33.3	3657
14	Overhauser shift of the electron spin resonance in the conducting form of polythiophene. <i>Chemical Physics Letters</i> , 1992 , 192, 375-378	2.5	5
13	Evidence for counterion complexation in the conducting state of viologen-functionalized poly (3-alkylthiophenes). <i>Chemical Physics Letters</i> , 1991 , 182, 326-330	2.5	6
12	Optical studies on the intramolecular charge transfer properties of conjugated bridged donor-acceptor supermolecules. <i>Synthetic Metals</i> , 1991 , 42, 2399-2402	3.6	3
11	Motional dynamics in polythiophenes: a solid-state proton NMR study. <i>Journal of the American Chemical Society</i> , 1991 , 113, 8243-8246	16.4	6
10	In situ FTIR studies on the structural mechanism of zwitter - viologen system during electrochemical charge - transfer reactions. <i>Synthetic Metals</i> , 1991 , 43, 2971-2974	3.6	5
9	Synthesis and properties of carboxy-functionalized poly(3-alkylthienylenes). <i>Advanced Materials</i> , 1990 , 2, 490-494	24	48
8	Resonance Raman spectroscopy of the emeraldine insulator-to-metal phase transition. <i>Synthetic Metals</i> , 1990 , 36, 83-93	3.6	36
7	Structural and electronic transitions in polyaniline: A Fourier transform infrared spectroscopic study. <i>Journal of Chemical Physics</i> , 1990 , 92, 4530-4539	3.9	151
6	Plasma reflection of polycrystalline YBa2Cu3O7⊠. <i>Solid State Communications</i> , 1989 , 69, 363-365	1.6	9
5	Evidence for two separate doping mechanisms in the polyaniline system. <i>Physical Review Letters</i> , 1988 , 60, 212-215	7.4	57
4	Optical spectroscopy and resonance Raman scattering of polyaniline during electrochemical oxidation and reduction. <i>Synthetic Metals</i> , 1987 , 21, 157-162	3.6	41
3	spectro-electrochemical studies of polyaniline. <i>Synthetic Metals</i> , 1987 , 18, 353-358	3.6	46
2	Semiconducting Polymer-based Bulk Heterojunction Solar Cells199-214		
1	Polyfullerenes for Organic Photovoltaics171-187		1