Dina M. Fonseca

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9444288/publications.pdf

Version: 2024-02-01

71532 53660 6,814 131 45 76 citations h-index g-index papers 139 139 139 5452 citing authors docs citations times ranked all docs

#	Article	IF	Citations
1	"Bird biting―mosquitoes and human disease: A review of the role of Culex pipiens complex mosquitoes in epidemiology. Infection, Genetics and Evolution, 2011, 11, 1577-1585.	1.0	463
2	Emerging Vectors in the Culex pipiens Complex. Science, 2004, 303, 1535-1538.	6.0	438
3	RAPID ASSAYS FOR IDENTIFICATION OF MEMBERS OF THE CULEX (CULEX) PIPIENS COMPLEX, THEIR HYBRIDS, AND OTHER SIBLING SPECIES (DIPTERA: CULICIDAE). American Journal of Tropical Medicine and Hygiene, 2004, 70, 339-345.	0.6	254
4	Making Mosquito Taxonomy Useful: A Stable Classification of Tribe Aedini that Balances Utility with Current Knowledge of Evolutionary Relationships. PLoS ONE, 2015, 10, e0133602.	1.1	245
5	Global phylogeographic limits of Hawaii's avian malaria. Proceedings of the Royal Society B: Biological Sciences, 2006, 273, 2935-2944.	1.2	218
6	Invasion Biology of <i>Aedes japonicus japonicus</i> (Diptera: Culicidae). Annual Review of Entomology, 2014, 59, 31-49.	5.7	172
7	Management of insecticide resistance in the major Aedes vectors of arboviruses: Advances and challenges. PLoS Neglected Tropical Diseases, 2019, 13, e0007615.	1.3	162
8	Integrated Aedes management for the control of Aedes-borne diseases. PLoS Neglected Tropical Diseases, 2018, 12, e0006845.	1.3	153
9	Multistate Infestation with the Exotic Disease–Vector Tick <i>Haemaphysalis longicornis</i> — United States, August 2017–September 2018. Morbidity and Mortality Weekly Report, 2018, 67, 1310-1313.	9.0	150
10	Insecticide Resistance Status of United States Populations of Aedes albopictus and Mechanisms Involved. PLoS ONE, 2014, 9, e101992.	1.1	148
11	RAPID ASSAY TO IDENTIFY THE TWO GENETIC FORMS OF CULEX (CULEX) PIPIENS L. (DIPTERA: CULICIDAE) AND HYBRID POPULATIONS. American Journal of Tropical Medicine and Hygiene, 2006, 75, 251-255.	0.6	139
12	Areaâ€wide management of <i>Aedes albopictus</i> . Part 2: Gauging the efficacy of traditional integrated pest control measures against urban container mosquitoes. Pest Management Science, 2013, 69, 1351-1361.	1.7	137
13	Larval Mosquito Habitat Utilization and Community Dynamics ofAedes albopictusandAedes japonicus(Diptera: Culicidae). Journal of Medical Entomology, 2012, 49, 813-824.	0.9	129
14	Rapid assays for identification of members of the Culex (Culex) pipiens complex, their hybrids, and other sibling species (Diptera: culicidae). American Journal of Tropical Medicine and Hygiene, 2004, 70, 339-45.	0.6	127
15	Comparative Host Feeding Patterns of the Asian Tiger Mosquito, Aedes albopictus, in Urban and Suburban Northeastern USA and Implications for Disease Transmission. PLoS Neglected Tropical Diseases, 2014, 8, e3037.	1.3	125
16	Aedes (Finlaya) japonicus(Diptera: Culicidae), a Newly Recognized Mosquito in the United States: Analyses of Genetic Variation in the United States and Putative Source Populations. Journal of Medical Entomology, 2001, 38, 135-146.	0.9	112
17	Bottlenecks and multiple introductions: population genetics of the vector of avian malaria in Hawaii. Molecular Ecology, 2000, 9, 1803-1814.	2.0	95
18	Tracing the origin of US brown marmorated stink bugs, Halyomorpha halys. Biological Invasions, 2014, 16, 153-166.	1.2	90

#	Article	IF	Citations
19	Density-Dependent Dispersal of Black Fly Neonates Is Mediated by Flow. Oikos, 1996, 75, 49.	1.2	89
20	Spatial and Temporal Variation in Vector Competence of Culex pipiens and Cx. restuans Mosquitoes for West Nile Virus. American Journal of Tropical Medicine and Hygiene, 2010, 83, 607-613.	0.6	88
21	Genetic Influences on Mosquito Feeding Behavior and the Emergence of Zoonotic Pathogens. American Journal of Tropical Medicine and Hygiene, 2007, 77, 667-671.	0.6	87
22	PATHWAYS OF EXPANSION AND MULTIPLE INTRODUCTIONS ILLUSTRATED BY LARGE GENETIC DIFFERENTIATION AMONG WORLDWIDE POPULATIONS OF THE SOUTHERN HOUSE MOSQUITO. American Journal of Tropical Medicine and Hygiene, 2006, 74, 284-289.	0.6	85
23	Evidence for regular ongoing introductions of mosquito disease vectors into the Galápagos Islands. Proceedings of the Royal Society B: Biological Sciences, 2009, 276, 3769-3775.	1.2	79
24	Bionomics of the Established Exotic Mosquito Species <l>Aedes koreicus</l> in Belgium, Europe. Journal of Medical Entomology, 2012, 49, 1226-1232.	0.9	79
25	Crouching Tiger, Hidden Trouble: Urban Sources of Aedes albopictus (Diptera: Culicidae) Refractory to Source-Reduction. PLoS ONE, 2013, 8, e77999.	1.1	77
26	Altering Fish Embryos with Aquaporin-3: An Essential Step Toward Successful Cryopreservation 1. Biology of Reproduction, 2002, 67, 961-966.	1.2	74
27	Areaâ€wide management of <i>Aedes albopictus</i> : choice of study sites based on geospatial characteristics, socioeconomic factors and mosquito populations. Pest Management Science, 2011, 67, 965-974.	1.7	73
28	Moving eDNA surveys onto land: Strategies for active eDNA aggregation to detect invasive forest insects. Molecular Ecology Resources, 2020, 20, 746-755.	2.2	71
29	A pictorial key to differentiate the recently detected exotic Haemaphysalis longicornis Neumann, 1901 (Acari, Ixodidae) from native congeners in North America. ZooKeys, 2019, 818, 117-128.	0.5	71
30	Evaluating the spatial resolution of an acoustic Doppler velocimeter and the consequences for measuring nearâ€bed flows. Limnology and Oceanography, 1999, 44, 1793-1801.	1.6	62
31	Rapid assay to identify the two genetic forms of Culex (Culex) pipiens L. (Diptera: Culicidae) and hybrid populations. American Journal of Tropical Medicine and Hygiene, 2006, 75, 251-5.	0.6	62
32	Source Reduction Behavior as an Independent Measurement of the Impact of a Public Health Education Campaign in an Integrated Vector Management Program for the Asian Tiger Mosquito. International Journal of Environmental Research and Public Health, 2011, 8, 1358-1367.	1.2	61
33	First glimpse into the origin and spread of the Asian longhorned tick, <i>Haemaphysalis longicornis, </i> in the United States. Zoonoses and Public Health, 2020, 67, 637-650.	0.9	61
34	Effectiveness of Ultra-Low Volume Nighttime Applications of an Adulticide against Diurnal Aedes albopictus, a Critical Vector of Dengue and Chikungunya Viruses. PLoS ONE, 2012, 7, e49181.	1.1	60
35	Global invasion network of the brown marmorated stink bug, Halyomorpha halys. Scientific Reports, 2017, 7, 9866.	1.6	60
36	Quantifying the Impact of Mosquitoes on Quality of Life and Enjoyment of Yard and Porch Activities in New Jersey. PLoS ONE, 2014, 9, e89221.	1.1	60

#	Article	IF	CITATIONS
37	Fine-scale spatial and temporal population genetics of (i) Aedes japonicus (i), a new US mosquito, reveal multiple introductions. Molecular Ecology, 2010, 19, 1559-1572.	2.0	58
38	Population structure of Wolbachia and cytoplasmic introgression in a complex of mosquito species. BMC Evolutionary Biology, 2013, 13, 181.	3.2	57
39	Molecular Phylogenetics of Aedes japonicus, a Disease Vector That Recently Invaded Western Europe, North America, and the Hawaiian Islands. Journal of Medical Entomology, 2010, 47, 527-535.	0.9	55
40	Primary blood-hosts of mosquitoes are influenced by social and ecological conditions in a complex urban landscape. Parasites and Vectors, 2018, 11, 218.	1.0	55
41	Cross-species comparison of microsatellite loci in the Culex pipiens complex and beyond. Molecular Ecology Notes, 2005, 5, 697-700.	1.7	53
42	COLONIZATION HISTORY MASKS HABITAT PREFERENCES IN LOCAL DISTRIBUTIONS OF STREAM INSECTS. Ecology, 2001, 82, 2897-2910.	1.5	52
43	Integrating the Public in Mosquito Management: Active Education by Community Peers Can Lead to Significant Reduction in Peridomestic Container Mosquito Habitats. PLoS ONE, 2014, 9, e108504.	1.1	52
44	Occurrence and transmission efficiencies of Borrelia burgdorferi ospC types in avian and mammalian wildlife. Infection, Genetics and Evolution, 2014, 27, 594-600.	1.0	51
45	The State of the Art of Lethal Oviposition Trap-Based Mass Interventions for Arboviral Control. Insects, 2017, 8, 5.	1.0	49
46	Microsatellite loci from the northern house mosquito (Culex pipiens), a principal vector of West Nile virus in North America. Molecular Ecology Notes, 2003, 4, 20-22.	1.7	47
47	Molecular Phylogenetics of <i>Aedes japonicus</i> , a Disease Vector That Recently Invaded Western Europe, North America, and the Hawaiian Islands. Journal of Medical Entomology, 2010, 47, 527-535.	0.9	47
48	Early detection of invasive exotic insect infestations using eDNA from crop surfaces. Frontiers in Ecology and the Environment, 2018, 16, 265-270.	1.9	46
49	Effects of Biogents Sentinel Trap Field Placement on Capture Rates of Adult Asian Tiger Mosquitoes, Aedes albopictus. PLoS ONE, 2013, 8, e60524.	1.1	46
50	Tracking Insecticide Resistance in Mosquito Vectors of Arboviruses: The Worldwide Insecticide resistance Network (WIN). PLoS Neglected Tropical Diseases, 2016, 10, e0005054.	1.3	43
51	Fluid-mediated dispersal in streams: models of settlement from the drift. Oecologia, 1999, 121, 212.	0.9	42
52	The ubiquity and ancestry of insect doublesex. Scientific Reports, 2015, 5, 13068.	1.6	42
53	Confirmation of Aedes koreicus (Diptera: Culicidae) in Belgium and description of morphological differences between Korean and Belgian specimens validated by molecular identification. Zootaxa, 2012, 3191, 21.	0.2	41
54	The hitchhiker's guide to becoming invasive: exotic mosquitoes spread across a <scp>US</scp> state by human transport not autonomous flight. Molecular Ecology, 2016, 25, 3033-3047.	2.0	41

#	Article	IF	Citations
55	Genetic influences on mosquito feeding behavior and the emergence of zoonotic pathogens. American Journal of Tropical Medicine and Hygiene, 2007, 77, 667-71.	0.6	40
56	Unexpected Patterns of Admixture in German Populations of Aedes japonicus japonicus (Diptera:) Tj ETQq0 0 0	rgBT/Ove	rlock 10 Tf 50
57	Area-Wide Ground Applications of Bacillus thuringiensis var. israelensis for the Control of Aedes albopictus in Residential Neighborhoods: From Optimization to Operation. PLoS ONE, 2014, 9, e110035.	1.1	37
58	Population genetics of the mosquito Culex pipiens pallens reveals sex-linked asymmetric introgression by Culex quinquefasciatus. Infection, Genetics and Evolution, 2009, 9, 1197-1203.	1.0	36
59	Chirosurveillance: The use of native bats to detect invasive agricultural pests. PLoS ONE, 2017, 12, e0173321.	1.1	35
60	Pathways of expansion and multiple introductions illustrated by large genetic differentiation among worldwide populations of the southern house mosquito. American Journal of Tropical Medicine and Hygiene, 2006, 74, 284-9.	0.6	35
61	The hidden world of Asian tiger mosquitoes: immature Aedes albopictus (Skuse) dominate in rainwater corrugated extension spouts. Transactions of the Royal Society of Tropical Medicine and Hygiene, 2014, 108, 699-705.	0.7	33
62	Neighbors help neighbors control urban mosquitoes. Scientific Reports, 2018, 8, 15797.	1.6	33
63	Vector Competence of Argentine Mosquitoes (Diptera: Culicidae) for West Nile virus (Flaviviridae:) Tj ETQq1 1 (0.784314 ı	gBT ₃ /Overlock
64	Unexpected spatiotemporal abundance of infected Culex restuans suggest a greater role as a West Nile virus vector for this native species. Infection, Genetics and Evolution, 2015, 31, 40-47.	1.0	31
65	The importance of being urgent: The impact of surveillance target and scale on mosquito-borne disease control. Epidemics, 2018, 23, 55-63.	1.5	31
66	Microsatellite primers for Culex pipiens quinquefasciatus, the vector of avian malaria in Hawaii. Molecular Ecology, 1998, 7, 1617-9.	2.0	31
67	Evidence that implicit assumptions of  no evolution' of disease vectors in changing environments can be violated on a rapid timescale. Philosophical Transactions of the Royal Society B: Biological Sciences, 2015, 370, 20140136.	1.8	30
68	Autogeny in Culex pipiens Complex Mosquitoes from the San Francisco Bay Area. American Journal of Tropical Medicine and Hygiene, 2012, 87, 719-726.	0.6	28
69	Density-Dependent Oviposition by Female <i>Aedes albopictus</i> (Diptera: Culicidae) Spreads Eggs Among Containers During the Summer but Accumulates Them in the Fall. Journal of Medical Entomology, 2015, 52, 705-712.	0.9	28
70	Fine-scale population genetic structure of a wildlife disease vector: the southern house mosquito on the island of Hawaii. Molecular Ecology, 2006, 15, 3919-3930.	2.0	27
71	Rapid blood meal scoring in anthropophilic Aedes albopictus and application of PCR blocking to avoid pseudogenes. Infection, Genetics and Evolution, 2013, 16, 122-128.	1.0	27
72	Differential Effects of Temperature and Mosquito Genetics Determine Transmissibility of Arboviruses by Aedes aegypti in Argentina. American Journal of Tropical Medicine and Hygiene, 2018, 99, 417-424.	0.6	26

#	Article	IF	CITATIONS
73	Experiences with the Large-Scale Operation of the Biogents Sentinelâ,,¢ Trap. Journal of the American Mosquito Control Association, 2013, 29, 177-180.	0.2	25
74	Child Outdoor Physical Activity is Reduced by Prevalence of the Asian Tiger Mosquito, <i>Aedes albopictus </i> . Journal of the American Mosquito Control Association, 2013, 29, 78-80.	0.2	25
75	Suppressing Aedes albopictus, an Emerging Vector of Dengue and Chikungunya Viruses, by a Novel Combination of a Monomolecular Film and an Insect-Growth Regulator. American Journal of Tropical Medicine and Hygiene, 2010, 82, 831-837.	0.6	23
76	Distribution and genetic structure of Aedes japonicus japonicus populations (Diptera: Culicidae) in Germany. Parasitology Research, 2014, 113, 3201-3210.	0.6	23
77	International workshop on insecticide resistance in vectors of arboviruses, December 2016, Rio de Janeiro, Brazil. Parasites and Vectors, 2017, 10, 278.	1.0	23
78	FINDING NEEDLES IN THE HAYSTACK: SINGLE COPY MICROSATELLITE LOCI FOR AEDES JAPONICUS (DIPTERA:) Tj	ETQq0 0	0 rgBT /Overl
79	Taming a Tiger in the City: Comparison of Motorized Backpack Applications and Source Reduction Against the Asian Tiger Mosquito, <i>Aedes albopictus</i> Journal of the American Mosquito Control Association, 2014, 30, 99-105.	0.2	22
80	Comparison of the Potential for Different Genetic Forms in the <i>Culex pipiens </i> Complex in North America to Transmit Rift Valley Fever Virus ¹ . Journal of the American Mosquito Control Association, 2014, 30, 253-259.	0.2	21
81	Characterization of the doublesex gene within the Culex pipiens complex suggests regulatory plasticity at the base of the mosquito sex determination cascade. BMC Evolutionary Biology, 2015, 15, 108.	3.2	21
82	Realâ€time PCR assay to detect brown marmorated stink bug, <i>Halyomorpha halys</i> (StÃ¥I), in environmental DNA. Pest Management Science, 2016, 72, 1854-1861.	1.7	21
83	Leveraging the Expertise of the New Jersey Mosquito Control Community to Jump Start Standardized Tick Surveillance. Insects, 2019, 10, 219.	1.0	21
84	The distribution of macroinvertebrate communities in two Portuguese rivers. Freshwater Biology, 1989, 22, 297-368.	1.2	19
85	Influences of Host Community Characteristics on Borrelia burgdorferi Infection Prevalence in Blacklegged Ticks. PLoS ONE, 2017, 12, e0167810.	1.1	19
86	Willingness-to-Pay for an Area-Wide Integrated Pest Management Program to Control the Asian Tiger Mosquito in New Jersey. Journal of the American Mosquito Control Association, 2012, 28, 225-236.	0.2	18
87	Isolations of Cache Valley Virus From <1>Aedes albopictus 1 (Diptera: Culicidae) in New Jersey and Evaluation of Its Role as a Regional Arbovirus Vector. Journal of Medical Entomology, 2013, 50, 1310-1314.	0.9	18
88	Remnant populations of the regal fritillary (Speyeria idalia) in Pennsylvania: Local genetic structure in a high gene flow species. Conservation Genetics, 2006, 7, 309-313.	0.8	17
89	Genetic divergence between populations of feral and domestic forms of a mosquito disease vector assessed by transcriptomics. Peerl, 2015, 3, e807.	0.9	17
90	Diverse Host Feeding on Nesting Birds May Limit Early-Season West Nile Virus Amplification. Vector-Borne and Zoonotic Diseases, 2014, 14, 447-453.	0.6	16

#	Article	IF	CITATIONS
91	Historical specimens reveal past relationships and current conservation status of populations in a declining species: the regal fritillary butterfly. Insect Conservation and Diversity, 2013, 6, 234-242.	1.4	15
92	Human movement, cooperation and the effectiveness of coordinated vector control strategies. Journal of the Royal Society Interface, 2017, 14, 20170336.	1.5	15
93	Economic Evaluation of an Area-Wide Integrated Pest Management Program to Control the Asian Tiger Mosquito in New Jersey. PLoS ONE, 2014, 9, e111014.	1.1	15
94	Cryptic introductions and the interpretation of island biodiversity. Molecular Ecology, 2013, 22, 2313-2324.	2.0	14
95	Annotated List of the Hard Ticks (Acari: Ixodida: Ixodidae) of New Jersey. Journal of Medical Entomology, 2019, 56, 589-598.	0.9	14
96	The Enigmatic <i>Culex pipiens</i> (Diptera: Culicidae) Species Complex: Phylogenetic Challenges and Opportunities From a Notoriously Tricky Mosquito Group. Annals of the Entomological Society of America, 2022, 115, 95-104.	1.3	13
97	New Jersey-Wide Survey of Spotted Fever Group Rickettsia (Proteobacteria: Rickettsiaceae) in Dermacentor variabilis and Amblyomma americanum (Acari: Ixodida: Ixodidae). American Journal of Tropical Medicine and Hygiene, 2020, 103, 1009-1016.	0.6	13
98	Analyses of the Northern Distributional Limit of <l>Aedes albopictus</l> (Diptera: Culicidae) With a Simple Thermal Index. Journal of Medical Entomology, 2012, 49, 1233-1243.	0.9	12
99	Contrasting the value of targeted versus area-wide mosquito control scenarios to limit arbovirus transmission with human mobility patterns based on different tropical urban population centers. PLoS Neglected Tropical Diseases, 2019, 13, e0007479.	1.3	12
100	Finding needles in the haystack: single copy microsatellite loci for Aedes japonicus (Diptera:) Tj ETQq0 0 0 rgBT /	Overlock 0.6	10 Tf 50 382
101	Theoretical Potential of Passerine Filariasis to Enhance the Enzootic Transmission of West Nile Virus. Journal of Medical Entomology, 2012, 49, 1430-1441.	0.9	11
102	Ecological limits can obscure expansion history: patterns of genetic diversity in a temperate mosquito in Hawaii. Biological Invasions, 2015, 17, 123-132.	1.2	11
103	Droplet Characterization and Penetration of an Ultra-Low Volume Mosquito Adulticide Spray Targeting the Asian Tiger Mosquito, Aedes albopictus, within Urban and Suburban Environments of Northeastern USA. PLoS ONE, 2016, 11, e0152069.	1.1	11
104	An important confluence for stream ecology. Trends in Ecology and Evolution, 1996, 11, 272-273.	4.2	10
105	One-way sequencing of multiple amplicons from tandem repetitive mitochondrial DNA control region. Mitochondrial DNA, 2011, 22, 155-158.	0.6	10
106	Development of a Degree-Day Model to Predict Egg Hatch of Aedes albopictus. Journal of the American Mosquito Control Association, 2019, 35, 249-257.	0.2	10
107	The effects of forced-egg retention on the blood-feeding behavior and reproductive potential of Culex pipiens (Diptera: Culicidae). Journal of Insect Physiology, 2014, 66, 53-58.	0.9	9
108	Metagenomic analysis of human-biting cat fleas in urban northeastern United States of America reveals an emerging zoonotic pathogen. Scientific Reports, 2020, 10, 15611.	1.6	9

#	Article	IF	Citations
109	Coordination among neighbors improves the efficacy of Zika control despite economic costs. PLoS Neglected Tropical Diseases, 2020, 14, e0007870.	1.3	9
110	Using Bloodmeal Analysis to Assess Disease Risk to Wildlife at the New Northern Limit of a Mosquito Species. EcoHealth, 2018, 15, 543-554.	0.9	8
111	The Arrival of the Northern House Mosquito <i>Culex pipiens</i> (Diptera: Culicidae) on Newfoundland's Avalon Peninsula. Journal of Medical Entomology, 2016, 53, 1364-1369.	0.9	7
112	Cultivation and domestication of highbush blueberry (Vaccinium corymbosum) alters abundance, diversity and virulence of entomopathogenic nematodes. Agriculture, Ecosystems and Environment, 2016, 222, 148-155.	2.5	7
113	(Meta)population dynamics determine effective spatial distributions of mosquitoâ€borne disease control. Ecological Applications, 2019, 29, e01856.	1.8	7
114	Seeking shelter from the storm: responses of benthic stream invertebrates to natural and experimental floods. Freshwater Science, 2015, 34, 897-908.	0.9	6
115	Isolation of polymorphic microsatellite markers from the malaria vector Anopheles marajoara (Diptera: Culicidae). Molecular Ecology Notes, 2005, 5, 65-67.	1.7	5
116	Truckâ€mounted areaâ€wide applications of larvicides and adulticides for extended suppression of adult <i>Aedes albopictus</i> . Pest Management Science, 2019, 75, 1115-1122.	1.7	5
117	The Gulf Coast Tick, <i>Amblyomma maculatum</i> (Ixodida: Ixodidae), and Spotted Fever Group <i>Rickettsia</i> in the Highly Urbanized Northeastern United States. Journal of Medical Entomology, 2022, 59, 1434-1442.	0.9	5
118	Unraveling microbe-mediated interactions between mosquito larvae in a laboratory microcosm. Aquatic Ecology, 2014, 48, 179-189.	0.7	4
119	Influence of invasion history on rapid morphological divergence across island populations of an exotic bird. Ecology and Evolution, 2018, 8, 5291-5302.	0.8	4
120	First Record of <i>Carios kelleyi</i> (Acari: Ixodida: Argasidae) in New Jersey, United States and Implications for Public Health. Journal of Medical Entomology, 2021, 58, 939-942.	0.9	4
121	COLONIZATION HISTORY MASKS HABITAT PREFERENCES IN LOCAL DISTRIBUTIONS OF STREAM INSECTS. , 2001, 82, 2897.		4
122	Insecticide resistance alleles in wetland and residential populations of the West Nile virus vectorCulex pipiensin New Jersey. Pest Management Science, 2016, 72, 481-488.	1.7	3
123	First Report of the Bat Tick <i>Carios kelleyi</i> (Acari: Ixodida: Argasidae) From Vermont, United States. Journal of Medical Entomology, 2022, 59, 784-787.	0.9	3
124	Microsatellite loci for the whiteâ€dotted mosquito (<i>Culex restuans</i>), a principal vector of West Nile virus in North America. Molecular Ecology Resources, 2009, 9, 958-960.	2.2	2
125	Scaleâ€dependent relationships between suspensionâ€feeding stream insects and water velocity in spatially heterogeneous flow environments. Freshwater Biology, 2016, 61, 133-145.	1.2	2
126	Local Adaptation and Hybridization Across the Culex pipiens Complex in the USA. Journal of the American Mosquito Control Association, 2012, 28, 92-92.	0.2	0

#	Article	IF	CITATIONS
127	Ixodes scapularis (Ixodida: Ixodidae) Parasitizing an Unlikely Host: Big Brown Bats, Eptesicus fuscus (Chiroptera: Vespertilionidae), in New York State, USA. Journal of Medical Entomology, 2021, , .	0.9	0
128	Coordination among neighbors improves the efficacy of Zika control despite economic costs. , 2020, 14, e0007870.		0
129	Coordination among neighbors improves the efficacy of Zika control despite economic costs. , 2020, 14, e0007870.		0
130	Coordination among neighbors improves the efficacy of Zika control despite economic costs. , 2020, 14, e0007870.		0
131	Coordination among neighbors improves the efficacy of Zika control despite economic costs. , 2020, 14, e0007870.		0