
Wenfeng Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9444286/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Enhanced breakdown strength and restrained dielectric loss of polypropylene/maleic anhydride grafted polypropylene/coreâ€shell <scp>ZrO₂</scp> @ <scp>SiO₂</scp> nanocomposites. Polymer Composites, 2022, 43, 2175-2183.	4.6	12
2	A unified model for conductivity, electric breakdown, energy storage, and discharge efficiency of linear polymer dielectrics. Journal Physics D: Applied Physics, 2022, 55, 285501.	2.8	6
3	Simultaneously enhanced electrical stability and nonlinearity in ZnO varistor ceramics: Role of Si-stabilized Î-Bi2O3 phase. Journal of the European Ceramic Society, 2021, 41, 2641-2647.	5.7	18
4	Enhanced breakdown strength of multilayer polypropylene film with structured interface. Journal Physics D: Applied Physics, 2021, 54, 345503.	2.8	8
5	Effects of the Er2O3 doping on the microstructure and electrical properties of ZnO–Bi2O3 based varistor ceramics. Ceramics International, 2021, 47, 32349-32356.	4.8	12
6	Evolution of dielectric relaxation under elevated electric field of polypropylene-based films. Journal Physics D: Applied Physics, 2020, 53, 445502.	2.8	8
7	Enhanced voltage gradient and energy absorption capability in ZnO varistor ceramics by using nano-sized ZnO powders. Journal of Alloys and Compounds, 2020, 828, 154252.	5.5	42
8	Influences of Bi-axial Orientation on the Crystallization and DC Breakdown Properties of Polypropylene Films. Lecture Notes in Electrical Engineering, 2020, , 91-98.	0.4	2
9	Improved Compatibility and DC Breakdown Strength of Polypropylene/Maleic Anhydride Grafted Polypropylene/Nano-ZrO2 Ternary System. Lecture Notes in Electrical Engineering, 2020, , 74-81.	0.4	0
10	Improved Breakdown Strength and Energy Storage Properties of Core-shell SiO ₂ @ZrO ₂ /maleic anhydridegrafted polypropylene/polypropylene Ternary Composites. , 2020, , .		1
11	Enhanced energy storage properties of polypropylene/maleic anhydrideâ€grafted polypropylene/nanoâ€ZrO ₂ ternary system. Journal of Applied Polymer Science, 2019, 136, 48211.	2.6	21
12	Online degradation of biaxial-orientated polypropylene film from HVDC filter capacitors. IEEE Transactions on Dielectrics and Electrical Insulation, 2019, 26, 26-33.	2.9	25
13	Enhanced energy storage property in glass-added Ba(Zr0.2Ti0.8)O3-0.15(Ba0.7Ca0.3)TiO3 ceramics and the charge relaxation. Ceramics International, 2019, 45, 11388-11394.	4.8	19
14	Prospective of (BaCa)(ZrTi)O3 Lead-free Piezoelectric Ceramics. Crystals, 2019, 9, 179.	2.2	24
15	Polypropylene nanocomposite for power equipment: a review. IET Nanodielectrics, 2018, 1, 92-103.	4.1	41
16	Review of electrical properties for polypropylene based nanocomposite. Composites Communications, 2018, 10, 221-225.	6.3	49
17	Characterization of Polypropylene Modified by Blending Elastomer and Nano-Silica. Materials, 2018, 11, 1321.	2.9	37
18	Correlation between morphology and electrical breakdown strength of the polypropylene/maleic anhydride grafted polypropylene/nanoâ€ZrO ₂ ternary system. Journal of Applied Polymer Science, 2018, 135, 46842.	2.6	11

WENFENG LIU

#	Article	IF	CITATIONS
19	Large electrostrain with good temperature stability in sodium niobate based ceramics. RSC Advances, 2017, 7, 2550-2554.	3.6	9
20	Zinc interstitial as a universal microscopic origin for the electrical degradation of ZnO-based varistors under the combined DC and temperature condition. Journal of the European Ceramic Society, 2017, 37, 3535-3540.	5.7	29
21	Enhanced Energy Storage using Ba(Zr _{0.2} Ti _{0.8})O ₃ –0.15(Ba _{0.7} Ca _{0.3})TiO <sub) Ceramics with BaO–SrO–TiO₂–Al₂O₃–SiO₂–BaF₂</sub) 	3.8	7
22	Addition. Energy rechnology, 2017, 5, 1925-1928. Local structural behavior of PbZr0.5Ti0.5O3 during electric field application via <i>in situ</i> pair distribution function study. Journal of Applied Physics, 2017, 122, .	2.5	13
23	Composition design and electrical properties of (K0.48Na0.52)NbO3-xLiSbO3}-y{(Bi0.5Na0.5)(Zr1-Sn)O3} ceramics. Materials and Design, 2017, 136, 119-126.	7.0	8
24	Mechanism of aging effect in hybrid-doped BaTiO ₃ ceramics: electronegativity and ionic radius. RSC Advances, 2016, 6, 109030-109035.	3.6	8
25	Design optimization of power capacitor major insulation based on partial discharge performance. , 2016, , .		2
26	Triple-point-type morphotropic phase boundary based large piezoelectric Pb-free material—Ba(Ti0.8Hf0.2)O3-(Ba0.7Ca0.3)TiO3. Applied Physics Letters, 2012, 100, .	3.3	175
27	Large Piezoelectric Effect in Pb-Free Ceramics. Physical Review Letters, 2009, 103, 257602.	7.8	2,242
28	Ferroelectric aging effect in hybrid-doped BaTiO3 ceramics and the associated large recoverable electrostrain. Applied Physics Letters, 2006, 89, 172908.	3.3	101