
Selva Cavus

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9444204/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Use of Poly(dodecyl methacrylate-co–N-isopropylacrylamide) Gel for the Separation of Limonene + Linalool Mixture. Journal of Polymer Research, 2022, 29, 1.	2.4	0
2	Palladium (II) complexes with thione and thioalkylated thiosemicarbazones: Electrochemical, antimicrobial and thermogravimetric investigations. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2020, 237, 118358.	3.9	12
3	Liquidâ~'Liquid Extraction of Linalool from Methyl Eugenol with 1-Ethyl-3-methylimidazolium Hydrogen Sulfate [EMIM][HSO4] Ionic Liquid. Open Chemistry, 2019, 17, 564-570.	1.9	3

Swelling behaviors of poly(dodecyl methacrylate-co-methyl eugenol) and poly(dodecyl) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 622 Td (methacrylate-co-methyl eugenol) and poly(dodecyl) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 622 Td (methacrylate-co-methyl eugenol) and poly(dodecyl) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 622 Td (methacrylate-co-methyl eugenol) and poly(dodecyl) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 622 Td (methacrylate-co-methyl eugenol) and poly(dodecyl) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 622 Td (methacrylate-co-methyl eugenol) and poly(dodecyl) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 622 Td (methacrylate-co-methyl eugenol) and poly(dodecyl) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 622 Td (methacrylate-co-methyl eugenol) and poly(dodecyl) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 622 Td (methacrylate-co-methyl eugenol) and poly(dodecyl) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 622 Td (methacrylate-co-methyl eugenol) and poly(dodecyl) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 622 Td (methacrylate-co-methyl eugenol) and poly(dodecyl) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 622 Td (methacrylate-co-methyl eugenol) and poly(dodecyl) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 622 Td (methacrylate-co-methyl eugenol) and poly(dodecyl) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 622 Td (methacrylate-co-methyl eugenol) and poly(dodecyl) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 622 Td (methacrylate-co-methyl eugenol) and poly(dodecyl) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 622 Td (methacrylate-co-methyl eugenol) and poly(dodecyl) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 622 Td (methacrylate-co-methyl eugenol) and poly(dodecyl) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 622 Td (methacrylate-co-methyl eugenol) and poly(dodecyl) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 622 Td (methacrylate-co-methyl eugenol) and poly(dodecyl) and 10 rgBT /Overlock 10 Tf 50 622 Td (methacrylate-co-methyl eugenol) and 10 rgBT /Overlock 10 Tf 50 622 Td (methacrylate-co-methacrylate-co-methyl eugenol) and 10 rgBT /Overlock 10 rgBT /Overlock 10 rgBT /Overlock 10 rgBT /Overlock 10 rgBT /Overlock

5	Sorption of Pb (II) from battery industry wastewater using a weak acid cation exchange resin. Chemical Engineering Research and Design, 2017, 107, 498-507.	5.6	31
6	Lead removal from battery wastewater using synthesized poly(ethyleneglycol) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 5 74, 2605-2624.	50 547 To 3.3	l (dimethac 9
7	Poly(ethylene glycol)/poly(2-acrylamido-2-methyl-1-propane sulfonic acid) gel electrolytes: a detailed investigation of their conductivity and characterization. Ionics, 2016, 22, 1059-1073.	2.4	4
8	Synthesis and characterization of gel beads based on ethyleneglycol dimethacrylate and 2-acrylamido-2-methyl-1-propane sulfonic acid: Removal of Fe(II), Cu(II), Zn(II), and Ni(II) from metal finishing wastewater. Chemical Engineering Research and Design, 2016, 103, 227-236.	5.6	17
9	Swelling of N-vinylcaprolactam–dodecyl methacrylate gel in {heptane + toluene} mixtures. Chemical Papers, 2015, 69, .	2.2	3
10	Solvent dependent swelling behaviour of poly(N-vinylcaprolactam) and poly(N-vinylcaprolactam-co-itaconic acid) gels and determination of solubility parameters. Chemical Papers, 2015, 69, .	2.2	11
11	Study of the Removal of Pb(II) Using a Weak Acidic Cation Resin: Kinetics, Thermodynamics, Equilibrium, and Breakthrough Curves. Industrial & Engineering Chemistry Research, 2013, 52, 9227-9238.	3.7	29
12	Synthesis and Characterization of Novel Poly(<i>N</i> -vinylcaprolactam- <i>co</i> -itaconic Acid) Gels and Analysis of pH and Temperature Sensitivity. Industrial & Engineering Chemistry Research, 2012, 51, 1218-1226.	3.7	40
13	Poly(methacrylamideâ€ <i>co</i> â€2â€acrylamidoâ€2â€methylâ€1â€propanesulfonic acid) hydrogels: Investigation pH―and temperatureâ€dependent swelling characteristics and their characterization. Journal of Polymer Science, Part B: Polymer Physics, 2010, 48, 2497-2508.	on of 2.1	29
14	The preparation and characterization of poly(acrylic acidâ€coâ€methacrylamide) gel and its use in the nonâ€competitive heavy metal removal. Polymers for Advanced Technologies, 2009, 20, 165-172.	3.2	43
15	Noncompetitive Removal of Heavy Metal Ions from Aqueous Solutions by Poly[2-(acrylamido)-2-methyl-1-propanesulfonic acid- <i>co</i> -itaconic acid] Hydrogel. Industrial & Engineering Chemistry Research, 2009, 48, 2652-2658.	3.7	95
16	Competitive heavy metal removal by poly(2â€acrylamidoâ€2â€methylâ€1â€propane sulfonic acidâ€ <i>co</i> â€it	açonic) T	EJQq000

17	Synthesis and swelling behavior of pH- and temperature-sensitive poly[2-(dimethylamino)ethyl methacrylate-co-2-acrylamido-2-methylpropane-1-sulfonic acid] hydrogels. Polymer Bulletin, 2007, 58, 235-242.	3.3	14
18	Influence of monofunctional reactants on the physical properties of dimer acid-based polyamides. Polymers for Advanced Technologies, 2006, 17, 30-36.	3.2	25

#	Article	IF	CITATIONS
19	Synthesis and swelling behavior of poly(2-dimethylaminoethyl methacrylate-co-N-hydroxymethyl) Tj ETQq1 1 0.78	4314 rgBT	/Overlock 1 14
20	The competitive heavy metal removal by hydroxyethyl cellulose-g-poly(acrylic acid) copolymer and its sodium salt: The effect of copper content on the adsorption capacity. Polymer Bulletin, 2006, 57, 445-456.	3.3	46
21	Removal of Cu(II), Ni(II) and Zn(II) from aqueous solutions using poly(2-acrylamido-2-methyl-1-propanesulfonic acid) gel: sorption kinetics and characterization. , 0, 133, 348-358.		2