
Amit Biswas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9444010/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Design of magnesium oxide nanoparticle incorporated carboxy methyl cellulose/poly vinyl alcohol composite film with novel composition for skin tissue engineering. Materials Technology, 2022, 37, 706-716.	3.0	18
2	Antibacterial activity and biocompatibility of curcumin/TiO ₂ nanotube array system on Ti6Al4V bone implants. Materials Technology, 2021, 36, 221-232.	3.0	12
3	MgO enables enhanced bioactivity and antimicrobial activity of nano bioglass for bone tissue engineering application. Materials Technology, 2019, 34, 818-826.	3.0	19
4	Silk fibroin coated TiO2 nanotubes for improved osteogenic property of Ti6Al4V bone implants. Materials Science and Engineering C, 2019, 105, 109982.	7.3	34
5	Interaction of osteoblast -TiO2 nanotubes in vitro: The combinatorial effect of surface topography and other physico-chemical factors governs the cell fate. Applied Surface Science, 2018, 449, 152-165.	6.1	31
6	Enhanced chondrogenesis of mesenchymal stem cells over silk fibroin/chitosan hondroitin sulfate three dimensional scaffold in dynamic culture condition. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2018, 106, 2576-2587.	3.4	23
7	<i>In vitro</i> cartilage construct generation from silk fibroin―chitosan porous scaffold and umbilical cord blood derived human mesenchymal stem cells in dynamic culture condition. Journal of Biomedical Materials Research - Part A, 2018, 106, 397-407.	4.0	32
8	Chondrogenic differentiation of mesenchymal stem cells on silk fibroin:chitosan–glucosamine scaffold in dynamic culture. Regenerative Medicine, 2018, 13, 545-558.	1.7	18
9	Development of a novel glucosamine/silk fibroin–chitosan blend porous scaffold for cartilage tissue engineering applications. Iranian Polymer Journal (English Edition), 2017, 26, 11-19.	2.4	19
10	Preparation and Characterization of HAp Coated Chitosanâ€Alginate PEC Porous Scaffold for Bone Tissue Engineering. Macromolecular Symposia, 2017, 376, 1600205.	0.7	11
11	Optimization and evaluation of silk fibroin-chitosan freeze-dried porous scaffolds for cartilage tissue engineering application. Journal of Biomaterials Science, Polymer Edition, 2016, 27, 657-674.	3.5	58
12	Enhanced osteogenic potential of human mesenchymal stem cells on electrospun nanofibrous scaffolds prepared from eriâ€ŧasar silk fibroin. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2015, 103, 971-982.	3.4	18
13	Development of novel electrospun nanofibrous scaffold from P. ricini and A. mylitta silk fibroin blend with improved surface and biological properties. Materials Science and Engineering C, 2015, 48, 521-532.	7.3	39
14	Directing osteogenesis of stem cells with hydroxyapatite precipitated electrospun eri–tasar silk fibroin nanofibrous scaffold. Journal of Biomaterials Science, Polymer Edition, 2014, 25, 1440-1457.	3.5	19
15	Degradation Mechanism and Control of Blended Eri and Tasar Silk Nanofiber. Applied Biochemistry and Biotechnology, 2014, 174, 2403-2412.	2.9	6
16	Evaluation of electrochemical properties of thermally oxidised Ti–6Al–4V for bioimplant application. Surface Engineering, 2009, 25, 141-145.	2.2	18
17	Surface characterization and mechanical property evaluation of thermally oxidized Ti-6Al-4V. Materials Characterization, 2009, 60, 513-518.	4.4	70
18	Diode Laser Assisted Surface Nitriding of Ti-6Al-4V: Properties of the Nitrided Surface. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2009, 40, 3031-3037.	2.2	30

Amit Biswas

#	Article	IF	CITATIONS
19	Studies on thermal oxidation of Mg-alloy (AZ91) for improving corrosion and wear resistance. Surface and Coatings Technology, 2008, 202, 3638-3642.	4.8	38
20	Chemical oxidation of Ti–6Al–4V for improved wear and corrosion resistance. Surface Engineering, 2008, 24, 442-446.	2.2	12
21	LASER ASSISTED SURFACE MODIFICATION OF Ti –6 Al –4 V FOR BIOIMPLANT APPLICATION. Surface Review and Letters, 2007, 14, 531-534.	1.1	7
22	SURFACE OXIDATION OF Ti -6 Al -4 V FOR BIO-IMPLANT APPLICATION. Surface Review and Letters, 2007, 14, 597-600.	1.1	1