
Le Cong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9443872/publications.pdf Version: 2024-02-01

LECONC

#	Article	IF	CITATIONS
1	Multiplex Genome Engineering Using CRISPR/Cas Systems. Science, 2013, 339, 819-823.	6.0	12,725
2	In vivo genome editing using Staphylococcus aureus Cas9. Nature, 2015, 520, 186-191.	13.7	2,237
3	MAGeCK enables robust identification of essential genes from genome-scale CRISPR/Cas9 knockout screens. Genome Biology, 2014, 15, 554.	3.8	1,614
4	In vivo gene editing in dystrophic mouse muscle and muscle stem cells. Science, 2016, 351, 407-411.	6.0	889
5	Optical control of mammalian endogenous transcription and epigenetic states. Nature, 2013, 500, 472-476.	13.7	733
6	Efficient construction of sequence-specific TAL effectors for modulating mammalian transcription. Nature Biotechnology, 2011, 29, 149-153.	9.4	708
7	A transcription activator-like effector toolbox for genome engineering. Nature Protocols, 2012, 7, 171-192.	5.5	568
8	Sequence determinants of improved CRISPR sgRNA design. Genome Research, 2015, 25, 1147-1157.	2.4	514
9	Crystal Structure of Staphylococcus aureus Cas9. Cell, 2015, 162, 1113-1126.	13.5	357
10	A Distinct Gene Module for Dysfunction Uncoupled from Activation in Tumor-Infiltrating T Cells. Cell, 2016, 166, 1500-1511.e9.	13.5	315
11	Comprehensive interrogation of natural TALE DNA-binding modules and transcriptional repressor domains. Nature Communications, 2012, 3, 968.	5.8	291
12	Genome Engineering Using CRISPR-Cas9 System. Methods in Molecular Biology, 2015, 1239, 197-217.	0.4	262
13	Genome-scale promoter engineering by coselection MAGE. Nature Methods, 2012, 9, 591-593.	9.0	207
14	Conventional type I dendritic cells maintain a reservoir of proliferative tumor-antigen specific TCF-1+ CD8+ TÂcells in tumor-draining lymph nodes. Immunity, 2021, 54, 2338-2353.e6.	6.6	111
15	Adeno-associated viral vector-mediated immune responses: Understanding barriers to gene delivery. , 2020, 207, 107453.		108
16	Efficient Generation of Transcriptomic Profiles by Random Composite Measurements. Cell, 2017, 171, 1424-1436.e18.	13.5	95
17	RBPJ Controls Development of Pathogenic Th17 Cells by Regulating IL-23 Receptor Expression. Cell Reports, 2016, 16, 392-404.	2.9	87
18	Global microRNA depletion suppresses tumor angiogenesis. Genes and Development, 2014, 28, 1054-1067.	2.7	66

LE CONG

#	Article	IF	CITATIONS
19	IL-33 Signaling Alters Regulatory T Cell Diversity in Support of Tumor Development. Cell Reports, 2019, 29, 2998-3008.e8.	2.9	53
20	Crystal Structures of Two Coronavirus ADP-Ribose-1″-Monophosphatases and Their Complexes with ADP-Ribose: a Systematic Structural Analysis of the Viral ADRP Domain. Journal of Virology, 2009, 83, 1083-1092.	1.5	52
21	A Functional Taxonomy of Tumor Suppression in Oncogenic KRAS–Driven Lung Cancer. Cancer Discovery, 2021, 11, 1754-1773.	7.7	35
22	Combined Computational–Experimental Approach to Explore the Molecular Mechanism of SaCas9 with a Broadened DNA Targeting Range. Journal of the American Chemical Society, 2019, 141, 6545-6552.	6.6	31
23	dCas9-based gene editing for cleavage-free genomic knock-in of long sequences. Nature Cell Biology, 2022, 24, 268-278.	4.6	24
24	Microbial single-strand annealing proteins enable CRISPR gene-editing tools with improved knock-in efficiencies and reduced off-target effects. Nucleic Acids Research, 2021, 49, e36-e36.	6.5	17
25	Deciphering pathogenicity of variants of uncertain significance with CRISPR-edited iPSCs. Trends in Genetics, 2021, 37, 1109-1123.	2.9	14
26	Definitive localization of intracellular proteins: Novel approach using CRISPR-Cas9 genome editing, with glucose 6-phosphate dehydrogenase as a model. Analytical Biochemistry, 2016, 494, 55-67.	1.1	7
27	CRISPR: Groundbreaking technology for RNA-guided genome engineering. Analytical Biochemistry, 2017, 532, 87-89.	1.1	3
28	CRISPR-Cas12a System With Synergistic Phage Recombination Proteins for Multiplex Precision Editing in Human Cells. Frontiers in Cell and Developmental Biology, 0, 9, .	1.8	3
29	Purification, crystallization and preliminary crystallographic analysis of avian infectious bronchitis virus nsp3 ADRP domain. Acta Crystallographica Section F: Structural Biology Communications, 2008, 64, 802-804.	0.7	1
30	Abstract A10: A distinct gene module for T cell dysfunction uncoupled from T cell activation and controlled by metallothioneins. , 2017, , .		1
31	CRISPR/Cas9 Gene Targeting. Stem Cells and Development, 2019, 28, 709-709.	1.1	0
32	A CRISPR Landing for Genome Rewriting at Locus-Scale. CRISPR Journal, 2021, 4, 163-166.	1.4	0
33	Editorial: CRISPR and alternative approaches. Biotechnology Journal, 2022, 17, .	1.8	Ο