Waruna D Kulatilaka

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9443382/publications.pdf

Version: 2024-02-01

133 papers 1,872 citations

257450 24 h-index 315739 38 g-index

133 all docs

133
docs citations

times ranked

133

784 citing authors

#	Article	IF	CITATIONS
1	Visible emission of hydrogen flames. Combustion and Flame, 2009, 156, 1234-1241.	5.2	113
2	Gas-phase single-shot thermometry at 1 kHz using fs-CARS spectroscopy. Optics Letters, 2009, 34, 3857.	3.3	94
3	Photolytic-interference-free, femtosecond two-photon fluorescence imaging of atomic hydrogen. Optics Letters, 2012, 37, 3051.	3.3	85
4	The Effects of Turbulent Jet Characteristics on Engine Performance Using a Pre-Chamber Combustor. , 0, , .		67
5	Femtosecond, two-photon-absorption, laser-induced-fluorescence (fs-TALIF) imaging of atomic hydrogen and oxygen in non-equilibrium plasmas. Journal Physics D: Applied Physics, 2017, 50, 015204.	2.8	64
6	Theoretical modeling of single-laser-shot, chirped-probe-pulse femtosecond coherent anti-Stokes Raman scattering thermometry. Applied Physics B: Lasers and Optics, 2011, 104, 699-714.	2.2	62
7	Direct measurement of rotationally resolved H2 Q-branch Raman coherence lifetimes using time-resolved picosecond coherent anti-Stokes Raman scattering. Applied Physics Letters, 2010, 97, 081112.	3.3	56
8	One-dimensional single-shot thermometry in flames using femtosecond-CARS line imaging. Optics Letters, 2011, 36, 4182.	3.3	53
9	Two-color, two-photon laser-induced polarization spectroscopy (LIPS) measurements of atomic hydrogen in near-adiabatic, atmospheric pressure hydrogen/air flames. Combustion and Flame, 2004, 137, 523-537.	5.2	52
10	Electronic-resonance-enhanced coherent anti-Stokes Raman spectroscopy of nitric oxide. Applied Physics Letters, 2003, 83, 1887-1889.	3.3	48
11	Comparison of nanosecond and picosecond excitation for interference-free two-photon laser-induced fluorescence detection of atomic hydrogen in flames. Applied Optics, 2008, 47, 4672.	2.1	46
12	Development of injection-seeded, pulsed optical parametric generator/oscillator systems for high-resolution spectroscopy. Applied Physics B: Lasers and Optics, 2005, 80, 669-680.	2.2	45
13	Femtosecond two-photon LIF imaging of atomic species using a frequency-quadrupled Ti:sapphire laser. Applied Physics B: Lasers and Optics, 2014, 116, 7-13.	2.2	39
14	Interference-free two-photon LIF imaging of atomic hydrogen in flames using picosecond excitation. Proceedings of the Combustion Institute, 2009, 32, 955-962.	3.9	38
15	Photolytic-interference-free, femtosecond, two-photon laser-induced fluorescence imaging of atomic oxygen in flames. Applied Physics B: Lasers and Optics, 2016, 122, 1.	2.2	37
16	Timeâ€resolved femtosecond CARS from 10 to 50 Bar: collisional sensitivity. Journal of Raman Spectroscopy, 2013, 44, 1344-1348.	2.5	35
17	FLEET velocimetry for combustion and flow diagnostics. Applied Optics, 2017, 56, 8632.	1.8	35
18	Analysis of 205-nm photolytic production ofÂatomic hydrogen inÂmethane flames. Applied Physics B: Lasers and Optics, 2009, 97, 227-242.	2.2	32

#	Article	IF	CITATIONS
19	Direct measurements of collisionally broadened Raman linewidths of CO2 <i>S</i> Journal of Chemical Physics, 2013, 138, 024201.	3.0	31
20	Nitric oxide concentration measurements in atmospheric pressure flames using electronic-resonance-enhanced coherent anti-Stokes Raman scattering. Applied Physics B: Lasers and Optics, 2007, 88, 141-150.	2.2	29
21	Pressure, Temperature and Velocity Measurements in Underexpanded Free Jets using Laser-Induced Fluorescence Imaging. AIAA Journal, 2009, 47, 839-849.	2.6	28
22	Effects of quenching on electronic-resonance-enhanced coherent anti-Stokes Raman scattering of nitric oxide. Applied Physics Letters, 2006, 89, 104105.	3.3	27
23	Investigation of optical fibers for coherent anti-Stokes Raman scattering (CARS) spectroscopy in reacting flows. Experiments in Fluids, 2010, 49, 969-984.	2.4	27
24	Spatially and temporally resolved temperature and shock-speed measurements behind a laser-induced blast wave of energetic nanoparticles. Journal of Applied Physics, 2013, 113, 184310.	2.5	27
25	Experimental and modeling study on the effects of dimethyl methylphosphonate (DMMP) addition on H2, CH4, and C2H4 ignition. Combustion and Flame, 2018, 191, 320-334.	5.2	27
26	Laminar flame speeds of DEMP, DMMP, and TEP added to H2- and CH4-air mixtures. Proceedings of the Combustion Institute, 2019, 37, 3775-3781.	3.9	27
27	Detection of acetylene by electronic resonance-enhanced coherent anti-Stokes Raman scattering. Applied Physics B: Lasers and Optics, 2007, 87, 731-737.	2.2	24
28	Quantitative atomic hydrogen measurements in premixed hydrogen tubular flames. Combustion and Flame, 2014, 161, 2924-2932.	5.2	24
29	Measurement of nitric oxide concentrations in flames by using electronic-resonance-enhanced coherent anti-Stokes Raman scattering. Optics Letters, 2006, 31, 3357.	3.3	23
30	Detection of atomic hydrogen in flames using picosecond two-color two-photon-resonant six-wave-mixing spectroscopy. Applied Optics, 2007, 46, 3921.	2.1	23
31	Perturbative theory and modeling of electronic-resonance-enhanced coherent anti-Stokes Raman scattering spectroscopy of nitric oxide. Journal of Chemical Physics, 2008, 128, 174308.	3.0	23
32	Laser-induced fluorescence detection of hydroxyl (OH) radical by femtosecond excitation. Optics Letters, 2011, 36, 1776.	3.3	23
33	Femtosecond two-photon laser-induced fluorescence of krypton for high-speed flow imaging. Optics Letters, 2017, 42, 711.	3.3	21
34	Point and planar ultraviolet excitation/detection of hydroxyl-radical laser-induced fluorescence through long optical fibers. Optics Letters, 2011, 36, 1818.	3.3	20
35	Laser-induced-breakdown-spectroscopy-based detection of metal particles released into the air during combustion of solid propellants. Applied Optics, 2018, 57, 1910.	1.8	20
36	Femtosecond Laser Electronic Excitation Tagging (FLEET) Fundamental Pulse Energy and Spectral Response. , $2014, $, .		19

#	Article	IF	Citations
37	Femtosecond, two-photon laser-induced-fluorescence imaging of atomic oxygen in an atmospheric-pressure plasma jet. Plasma Sources Science and Technology, 2015, 24, 032004.	3.1	19
38	Effects of pressure variations on electronic-resonance-enhanced coherent anti-Stokes Raman scattering of nitric oxide. Optics Communications, 2007, 274, 441-446.	2.1	18
39	Chirped-probe-pulse femtosecond coherent anti-Stokes Raman scattering concentration measurements. Journal of the Optical Society of America B: Optical Physics, 2013, 30, 188.	2.1	18
40	Effects of O2–CO2 polarization beating on femtosecond coherent anti-Stokes Raman scattering (fs-CARS) spectroscopy of O2. Applied Physics B: Lasers and Optics, 2011, 102, 141-147.	2.2	17
41	Minor-species structure of premixed cellular tubular flames. Proceedings of the Combustion Institute, 2015, 35, 1107-1114.	3.9	17
42	Temperature profile measurements in the near-substrate region of low-pressure diamond-forming flames. Combustion and Flame, 2002, 130, 261-276.	5.2	16
43	Gas-phase thermometry using delayed-probe-pulse picosecond coherent anti-Stokes Raman scattering spectra of H_2. Applied Optics, 2011, 50, A38.	2.1	16
44	Effect of H-atom concentration on soot formation in premixed ethylene/air flames. Proceedings of the Combustion Institute, 2019, 37, 1289-1296.	3.9	16
45	Effect of particle morphology on dust cloud dynamics. Powder Technology, 2021, 379, 89-95.	4.2	16
46	Application of high-speed, species-specific chemiluminescence imaging for laminar flame speed and Markstein length measurements in spherically expanding flames. Experimental Thermal and Fluid Science, 2021, 129, 110477.	2.7	15
47	Single-laser-shot femtosecond coherent anti-Stokes Raman scattering thermometry at 1000Hz in unsteady flames. Proceedings of the Combustion Institute, 2011, 33, 839-845.	3.9	14
48	High-speed digital in-line holography for in-situ dust cloud characterization in a minimum ignition energy device. Powder Technology, 2020, 376, 612-621.	4.2	14
49	Investigation of optical fibers for gas-phase, ultraviolet laser-induced-fluorescence (UV-LIF) spectroscopy. Applied Optics, 2012, 51, 4047.	1.8	13
50	Singleâ€shot thermometry using fiberâ€based picosecond coherent antiâ€stokes Raman scattering (CARS) spectroscopy. Journal of Raman Spectroscopy, 2013, 44, 1330-1335.	2.5	13
51	Hydroxyl radical planar imaging in flames using femtosecond laser pulses. Applied Physics B: Lasers and Optics, 2019, 125, 1.	2.2	13
52	Hypervelocity impact response of monolithic UHMWPE and HDPE plates. International Journal of Impact Engineering, 2022, 161, 104081.	5.0	13
53	Development of High-Spectral-Resolution Planar Laser-Induced Fluorescence Imaging Diagnostics for High-Speed Gas Flows. AIAA Journal, 2008, 46, 17-20.	2.6	12
54	CO Imaging in piloted liquid-spray flames using femtosecond two-photon LIF. Proceedings of the Combustion Institute, 2019, 37, 1305-1312.	3.9	11

#	Article	IF	CITATIONS
55	Detailed calculation of hydroxyl (OH) radical two-photon absorption via broadband ultrafast excitation. Journal of the Optical Society of America B: Optical Physics, 2012, 29, 40.	2.1	10
56	Simultaneous measurement of CO and OH in flames using a single broadband, femtosecond laser pulse. Combustion and Flame, 2020, 214, 358-360.	5.2	10
57	Investigation of particle density on dust cloud dynamics in a minimum ignition energy apparatus using digital in-line holography. Powder Technology, 2021, 384, 297-303.	4.2	10
58	Ignition delay time and laminar flame speed measurements of mixtures containing diisopropyl-methylphosphonate (DIMP). Combustion and Flame, 2020, 215, 66-77.	5.2	9
59	Resolving flame thickness using high-speed chemiluminescence imaging of OH* and CH* in spherically expanding methane–air flames. Proceedings of the Combustion Institute, 2021, 38, 2101-2108.	3.9	9
60	Shock-tube studies of Sarin surrogates. Shock Waves, 2019, 29, 441-449.	1.9	8
61	Three-photon-excited laser-induced fluorescence detection of atomic hydrogen in flames. Optics Letters, 2019, 44, 5945.	3.3	8
62	Structure and mixing of a transient flow of helium injected into an established flow of nitrogen: two dimensional measurement and simulation. Experiments in Fluids, 2009, 46, 559-575.	2.4	6
63	Electronic-resonance-enhanced coherent anti-Stokes Raman scattering of nitric oxide: Saturation and Stark effects. Journal of Chemical Physics, 2010, 133, 084310.	3.0	6
64	Investigation of optical fibers for high-repetition-rate, ultraviolet planar laser-induced fluorescence of OH. Applied Optics, 2013, 52, 3108.	1.8	6
65	Optical ray tracing method for simulating beam-steering effects during laser diagnostics in turbulent media. Applied Optics, 2017, 56, E106.	2.1	6
66	Detection of carbon monoxide (CO) in sooting hydrocarbon flames using femtosecond two-photon laser-induced fluorescence (fs-TPLIF). Applied Physics B: Lasers and Optics, 2018, 124, 1.	2.2	6
67	Simultaneous imaging of H and OH in flames using a single broadband femtosecond laser source. Proceedings of the Combustion Institute, 2021, 38, 1813-1821.	3.9	6
68	OH, PAH, and sooting imaging in piloted liquid-spray flames of diesel and diesel surrogate. Combustion and Flame, 2021, 231, 111479.	5.2	6
69	Spectroscopic investigation of high-pressure femtosecond two-photon laser-induced fluorescence of carbon monoxide up to 20  bar. Applied Optics, 2019, 58, C23.	1.8	6
70	Collisionâ€independent detection of molecular twoâ€photon excitation by timeâ€resolved parametric fourâ€wave mixing. Journal of Raman Spectroscopy, 2016, 47, 1124-1129.	2.5	5
71	Ultrashort-pulse laser-induced breakdown spectroscopy for detecting airborne metals during energetic reactions. Applied Optics, 2019, 58, C79.	1.8	5
72	Hydroxyl radical planar laser-induced fluorescence imaging in flames using frequency-tripled femtosecond laser pulses. Optics Letters, 2020, 45, 4690.	3.3	5

#	Article	IF	Citations
73	Piloted Liquid Spray Flames: A Numerical and Experimental Study. Combustion Science and Technology, 2020, 192, 1887-1909.	2.3	4
74	High-Speed Hydroxyl and Methylidyne Chemiluminescence Imaging Diagnostics in Spherically Expanding Flames. AIAA Journal, 0, , 1-9.	2.6	4
75	Femtosecond pump-probe studies of atomic hydrogen superfluorescence in flames. Applied Physics Letters, 2020, 116, 201102.	3.3	4
76	Combustible Dust Cloud Characterization Using Multiple Laser Diagnostic Methods. , 2021, , .		3
77	Laser applications to chemical, security, and environmental analysis: introduction to the feature issue. Applied Optics, 2017, 56, LAC1.	2.1	2
78	High-Speed OH* and CH* Chemiluminescence Imaging and OH Planar Laser-Induced Fluorescence (PLIF) in Spherically Expanding Flames. , 2019, , .		2
79	Highâ€sensitivity impulsive stimulated Raman spectrometer with fast data acquisition. Journal of Raman Spectroscopy, 2021, 52, 664-669.	2.5	2
80	Picosecond Laser-Based Fiber-Coupled CARS Spectroscopy for Gas-Phase Thermometry. , 2010, , .		1
81	Femtosecond TALIF Imaging of Atomic Hydrogen in Pulsed, Non-Equilibrium Plasmas. , 2014, , .		1
82	Shock-Tube Studies of Tri-Ethyl-Phosphate (TEP) Kinetics at High Temperatures., 2017,,.		1
83	Characterization of Emissions from Metalized Energetic Formulations Using Laser-Induced Breakdown Spectroscopy. , 2017, , .		1
84	Spectroscopic Characterization of Reactions Involving Counter-WMD Simulants., 2017,,.		1
85	Ultrashort-Pulse LIBS for Detecting Airborne Metal Particles from Energetic Material Reactions. , 2018, , .		1
86	Structure and Dynamics of Liquid-Fueled Piloted Spray Flames. , 2018, , .		1
87	Laminar Flame Speed Measurements from Chemiluminescence of OH* and CH* in CH4-Air Flames. , 2019, , .		1
88	Fs-TALIF imaging of atomic species in non-equilibrium plasmas at moderate pressures. , 2014, , .		1
89	Laser Imaging of Transient Mixing in Simulated Rocket Chambers. , 2006, , .		0
90	Electronic-Resonance-Enhanced (ERE) Coherent Anti- Stokes Raman Scattering (CARS) Detection of Minor Species in Reacting Flows., 2007,,.		0

#	Article	IF	CITATIONS
91	Laser Imaging of Transient Injection and Mixing in a Simulated Rocket Chamber., 2007,,.		O
92	Development of High-Spectral-Resolution Planar Laser-Induced Fluorescence Imaging Diagnostics for High-Speed Gas Flow. , 2008, , .		0
93	Temperature Measurements in Flames at 1000 Hz Using Femtosecond Coherent Anti-Stokes Raman Spectroscopy., 2010,,.		0
94	Electronic-Resonance-Enhanced Coherent Anti-Stokes Raman Scattering of Nitric Oxide: Non-Perturbative Time- Dependent Modeling. , 2010, , .		0
95	Concentration Measurements in CO/N2 and Ar/N2 Gas Mixtures using Femtosecond Coherent Anti-Stokes Raman Scattering. , 2011, , .		0
96	High-Bandwidth, Spatially Resolved Thermometry in Reacting Flows Using Femtosecond-CARS Line Imaging. , 2011, , .		0
97	Advances in Fiber-Based Picosecond Coherent Anti-Stokes Raman Scattering Thermometry in Reacting Flows., 2011,,.		0
98	High-speed imaging of OH radicals in flames using fiber-coupled UV-PLIF., 2012,,.		0
99	Development of an All-Fiber-Coupled, Pulsed, Ultraviolet Laser-Induced-Fluorescence (UV-LIF) Detection System for OH Radicals in Practical Combustion Devices., 2012,,.		0
100	Advances in Single-Laser-Shot Femtosecond Coherent Anti-Stokes Raman Scattering Concentration and Temperature Measurements. , 2012, , .		0
101	Fiber-Coupled High-Speed OH-PLIF Imaging in Turbulent Flames. , 2012, , .		0
102	High-Data-Rate One-Dimensional Thermometry Using Femtosecond CARS. , 2012, , .		0
103	Multi-Photon Fluorescence Imaging of Flame Species Using Femtosecond Excitation., 2012, , .		0
104	Noninvasive Ultrafast Imaging Diagnostics in Low-Temperature Plasmas. , 2014, , .		0
105	An Optical Ray Tracing Method for Analyzing Beam-Steering Effects During Laser Diagnostics in Turbulent Media., 2016,,.		0
106	Laminar Flame Speeds of Dilute Triethyl Phosphate in H 2- and CH 4-Air Mixtures. , 2017, , .		0
107	Mixture Fraction Imaging Using Femtosecond TPLIF of Krypton., 2017, , .		0
108	Two-photon-absorption line strengths for nitric oxide: Comparison of theory and sub-Doppler, laser-induced fluorescence measurements. Journal of Chemical Physics, 2017, 146, 124311.	3.0	0

#	Article	IF	CITATIONS
109	Spatially Resolved Atomic Hydrogen Concentration Measurements in Sooting Hydrocarbon Flames Using Femtosecond Two-Photon LIF., 2017,,.		0
110	Investigation of Soot Formation Near Flame-Wall Interaction Region in Rich Ethylene/Air Flames. , 2018, , .		0
111	Investigation of Multi-Photon Excitation Schemes for Detecting Atomic Hydrogen in Flames. , 2018, , .		O
112	Investigation of Flow-Flame Interactions in Kerosene Piloted Liquid-Spray Flames Using Simultaneous OH and PAH PLIF., 2020,,.		0
113	High-Speed OH PLIF Imaging in Flames Using Third Harmonic of an Amplified Femtosecond Laser., 2021,,.		0
114	Investigation of Two-Color Laser-Induced Fluorescence (TC-LIF) and Two-Color Six-Wave Mixing Spectroscopy (TC-SWM) for Detection of Atomic Hydrogen. , 2006, , .		0
115	Interference-Free Laser-Induced Fluorescence Imaging of Atomic Hydrogen in Flames. , 2008, , .		0
116	Effects of Molecular Interference on Femtosecond-CARS Spectroscopy., 2010,,.		0
117	Chirped-Probe-Pulse Femtosecond Coherent Anti-Stokes Raman Scattering for Single-Laser-Pulse Flame Temperature Measurements. , 2010, , .		0
118	Theory of Chirped-Probe Pulse Single-Shot Femtosecond Coherent Anti-Stokes Raman Scattering Thermometry in Flames at $1000\mathrm{Hz}$., 2010 ,,.		0
119	Kilohertz-Rate, One-Dimensional Thermometry in Reacting Flows Using Femtosecond-CARS Line lmaging. , $2011,\ldots$		0
120	Space- and Time-Resolved Temperature Measurement Behind a Blast Wave Produced by Laser Ignition of Energetic Nanomaterials. , 2012, , .		0
121	Kilohertz-Rate Femtosecond-Multi-Photon-Excited Fluorescence Imaging of Atomic Species in Gas-Phase Reacting Flows. , 2012, , .		0
122	Advances in Fiber-Coupled Laser Diagnostics for Practical Combustion Measurements. , 2012, , .		0
123	Interference-Free, High-Repetition-Rate Imaging of Atomic-Hydrogen in Flames Using Femtosecond, Two-Photon-Excited, Laser-Induced Fluorescence (fs-TPLIF)., 2012,,.		0
124	An Efficient Frequency-Quadrupling Scheme for Generating Femtosecond UV Radiation Near 200 nm., 2013,,.		0
125	Minor Species Measurements in Premixed Cellular Tubular Flames. , 2014, , .		O
126	Two-Photon Laser Induced Fluorescence of Krypton Using Femtosecond Pulses. , 2017, , .		0

#	Article	IF	Citations
127	Investigation of Femtosecond Two-Photon LIF of CO at Elevated Pressures. , 2018, , .		O
128	Two- and Three-Photon LIF Detection of Atomic Hydrogen Using Femtosecond Laser Pulses., 2018,,.		0
129	Chemical Species Imaging in Flames Using Frequency-Tripled Tunable Amplified Femtosecond Laser Pulses. , 2020, , .		0
130	Femtosecond Pure Rotational Chirped-Probe-Pulse CARS for singleshot thermometry in flames. , 2020, , .		0
131	Emission Spectra of Hydrocarbon Flames Doped with Phosphorus-Containing Compounds. , 2022, , .		0
132	Emission Spectra of Hydrocarbon Flames Doped with Phosphorus-Containing Compounds. Journal of Thermophysics and Heat Transfer, 0, , 1-9.	1.6	0
133	Study of Impulsive Stimulated Raman Scattering Effects Using the Femtosecond Pump–Probe Z-Scan Technique. Applied Sciences (Switzerland), 2021, 11, 11667.	2.5	0