Giuseppe Paglia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9443303/publications.pdf Version: 2024-02-01

CHISEDDE PACHA

#	Article	IF	CITATIONS
1	Ion mobility mass spectrometry in the omics era: Challenges and opportunities for metabolomics and lipidomics. Mass Spectrometry Reviews, 2022, 41, 722-765.	2.8	87
2	A High-Throughput HILIC-MS-Based Metabolomic Assay for the Analysis of Polar Metabolites. Methods in Molecular Biology, 2022, 2396, 137-159.	0.4	4
3	Therapeutic induction of energy metabolism reduces neural tissue damage and increases microglia activation in severe spinal cord injury. Pharmacological Research, 2022, 178, 106149.	3.1	17
4	Whole Exome Sequencing Enhanced Imputation Identifies 85 Metabolite Associations in the Alpine CHRIS Cohort. Metabolites, 2022, 12, 604.	1.3	6
5	Metabolic Signature of Arrhythmogenic Cardiomyopathy. Metabolites, 2021, 11, 195.	1.3	5
6	Longitudinal Assessment of Chlorpyrifos Exposure in Farmers and Residents of an Italian Alpine Region. Exposure and Health, 2021, 13, 651-659.	2.8	3
7	Lipidomic Typing of Colorectal Cancer Tissue Containing Tumour-Infiltrating Lymphocytes by MALDI Mass Spectrometry Imaging. Metabolites, 2021, 11, 599.	1.3	13
8	Antigen Retrieval and Its Effect on the MALDI-MSI of Lipids in Formalin-Fixed Paraffin-Embedded Tissue. Journal of the American Society for Mass Spectrometry, 2020, 31, 1619-1624.	1.2	22
9	Lipidomics, Atrial Conduction, and Body Mass Index. Circulation Genomic and Precision Medicine, 2019, 12, e002384.	1.6	9
10	Traveling Wave Ion Mobility Mass Spectrometry: Metabolomics Applications. Methods in Molecular Biology, 2019, 1978, 39-53.	0.4	4
11	Metabolic reprogramming of Salmonella infected macrophages and its modulation by iron availability and the mTOR pathway. Microbial Cell, 2019, 6, 531-543.	1.4	13
12	Ion mobility-derived collision cross section database: Application to mycotoxin analysis. Analytica Chimica Acta, 2018, 1014, 50-57.	2.6	61
13	Metabolic Signature of Dietary Iron Overload in a Mouse Model. Cells, 2018, 7, 264.	1.8	31
14	Influence of collection tubes during quantitative targeted metabolomics studies in human blood samples. Clinica Chimica Acta, 2018, 486, 320-328.	0.5	44
15	Unbiased Lipidomics and Metabolomics of Human Brain Samples. Methods in Molecular Biology, 2018, 1750, 255-269.	0.4	13
16	Systems analysis of metabolism in platelet concentrates during storage in platelet additive solution. Biochemical Journal, 2018, 475, 2225-2240.	1.7	20
17	Evaluation of Seasonal Variability of Toxic and Essential Elements in Urine Analyzed by Inductively Coupled Plasma Mass Spectrometry. Exposure and Health, 2017, 9, 79-88.	2.8	11
18	Ion-Mobility Mass Spectrometry for Lipidomics Applications. Neuromethods, 2017, , 61-79.	0.2	5

GIUSEPPE PAGLIA

#	Article	IF	CITATIONS
19	Metabolomics comparison of red cells stored in four additive solutions reveals differences in citrate anticoagulant permeability and metabolism. Vox Sanguinis, 2017, 112, 326-335.	0.7	46
20	Elucidating dynamic metabolic physiology through network integration of quantitative time-course metabolomics. Scientific Reports, 2017, 7, 46249.	1.6	121
21	Metabolomics and lipidomics using traveling-wave ion mobility mass spectrometry. Nature Protocols, 2017, 12, 797-813.	5.5	205
22	Dietary iron loading negatively affects liver mitochondrial function. Metallomics, 2017, 9, 1634-1644.	1.0	47
23	Quantitative time-course metabolomics in human red blood cells reveal the temperature dependence of human metabolic networks. Journal of Biological Chemistry, 2017, 292, 19556-19564.	1.6	45
24	Mannose and fructose metabolism in red blood cells during cold storage in SAGM. Transfusion, 2017, 57, 2665-2676.	0.8	14
25	Pre-analytic evaluation of volumetric absorptive microsampling and integration in a mass spectrometry-based metabolomics workflow. Analytical and Bioanalytical Chemistry, 2017, 409, 6263-6276.	1.9	44
26	Metabolic Profiling as a Screening Tool for Cytotoxic Compounds: Identification of 3-Alkyl Pyridine Alkaloids from Sponges Collected at a Shallow Water Hydrothermal Vent Site North of Iceland. Marine Drugs, 2017, 15, 52.	2.2	13
27	Recent Advances and Future Challenges in Modified Mycotoxin Analysis: Why HRMS Has Become a Key Instrument in Food Contaminant Research. Toxins, 2016, 8, 361.	1.5	56
28	Identified metabolic signature for assessing red blood cell unit quality is associated with endothelial damage markers and clinical outcomes. Transfusion, 2016, 56, 852-862.	0.8	105
29	A Consensus Genome-scale Reconstruction of Chinese Hamster Ovary Cell Metabolism. Cell Systems, 2016, 3, 434-443.e8.	2.9	205
30	A simple coculture system shows mutualism between anaerobic faecalibacteria and epithelial Caco-2 cells. Scientific Reports, 2016, 5, 17906.	1.6	57
31	Distinctive Pattern of Serum Elements During the Progression of Alzheimer's Disease. Scientific Reports, 2016, 6, 22769.	1.6	67
32	Environmental monitoring of the area surrounding oil wells in Val d'Agri (Italy): element accumulation in bovine and ovine organs. Environmental Monitoring and Assessment, 2016, 188, 338.	1.3	17
33	Biomarkers defining the metabolic age of red blood cells during cold storage. Blood, 2016, 128, e43-e50.	0.6	115
34	Characterization, chemometric evaluation, and human health-related aspects of essential and toxic elements in Italian honey samples by inductively coupled plasma mass spectrometry. Environmental Science and Pollution Research, 2016, 23, 25374-25384.	2.7	16
35	Metabolic fate of adenine in red blood cells during storage in SAGM solution. Transfusion, 2016, 56, 2538-2547.	0.8	39
36	Unbiased Metabolomic Investigation of Alzheimer's Disease Brain Points to Dysregulation of Mitochondrial Aspartate Metabolism. Journal of Proteome Research, 2016, 15, 608-618.	1.8	107

GIUSEPPE PAGLIA

#	Article	IF	CITATIONS
37	Metabolic Analysis of Red Blood Cells Stored at High Temperature. Blood, 2016, 128, 3848-3848.	0.6	0
38	Ion Mobility-Derived Collision Cross Section As an Additional Measure for Lipid Fingerprinting and Identification. Analytical Chemistry, 2015, 87, 1137-1144.	3.2	245
39	Multidimensional Analytical Approach Based on UHPLC-UV-Ion Mobility-MS for the Screening of Natural Pigments. Analytical Chemistry, 2015, 87, 2593-2599.	3.2	50
40	Metabolomic analysis of platelets during storage: a comparison between apheresis―and buffy coat–derived platelet concentrates. Transfusion, 2015, 55, 301-313.	0.8	54
41	Applications of ion-mobility mass spectrometry for lipid analysis. Analytical and Bioanalytical Chemistry, 2015, 407, 4995-5007.	1.9	158
42	Prediction of intracellular metabolic states from extracellular metabolomic data. Metabolomics, 2015, 11, 603-619.	1.4	66
43	Biochemical Characterization of Human Gluconokinase and the Proposed Metabolic Impact of Gluconic Acid as Determined by Constraint Based Metabolic Network Analysis. PLoS ONE, 2014, 9, e98760.	1.1	28
44	Effects of abiotic stressors on lutein production in the green microalga Dunaliella salina. Microbial Cell Factories, 2014, 13, 3.	1.9	78
45	Ion Mobility Derived Collision Cross Sections to Support Metabolomics Applications. Analytical Chemistry, 2014, 86, 3985-3993.	3.2	279
46	Functional Metabolic Map of Faecalibacterium prausnitzii, a Beneficial Human Gut Microbe. Journal of Bacteriology, 2014, 196, 3289-3302.	1.0	173
47	Comprehensive metabolomic study of platelets reveals the expression of discrete metabolic phenotypes during storage. Transfusion, 2014, 54, 2911-2923.	0.8	61
48	Enhancement of carotenoid biosynthesis in the green microalga Dunaliella salina with light-emitting diodes and adaptive laboratory evolution. Applied Microbiology and Biotechnology, 2013, 97, 2395-2403.	1.7	227
49	Inferring the metabolism of human orphan metabolites from their metabolic network context affirms human gluconokinase activity. Biochemical Journal, 2013, 449, 427-435.	1.7	21
50	UPLC-UV-MSE analysis for quantification and identification of major carotenoid and chlorophyll species in algae. Analytical and Bioanalytical Chemistry, 2012, 404, 3145-3154.	1.9	67
51	Systems biology of stored blood cells: Can it help to extend the expiration date?. Journal of Proteomics, 2012, 76, 163-167.	1.2	17
52	Intracellular metabolite profiling of platelets: Evaluation of extraction processes and chromatographic strategies. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2012, 898, 111-120.	1.2	42
53	Monitoring metabolites consumption and secretion in cultured cells using ultra-performance liquid chromatography quadrupole–time of flight mass spectrometry (UPLC–Q–ToF-MS). Analytical and Bioanalytical Chemistry, 2012, 402, 1183-1198.	1.9	74
54	Profiling of acylcarnitines and sterols from dried blood or plasma spot by atmospheric pressure thermal desorption chemical ionization (APTDCI) tandem mass spectrometry. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2011, 1811, 669-679.	1.2	13

GIUSEPPE PAGLIA

#	Article	IF	CITATIONS
55	Orotic acid quantification in dried blood spots and biological fluids by hydrophilic interaction liquid chromatography tandem mass spectrometry. Journal of Separation Science, 2010, 33, 966-973.	1.3	21
56	A powerful couple in the future of clinical biochemistry: <i>in situ</i> analysis of dried blood spots by ambient mass spectrometry. Bioanalysis, 2010, 2, 1883-1891.	0.6	26
57	Desorption Electrospray Ionization Mass Spectrometry Analysis of Lipids after Two-Dimensional High-Performance Thin-Layer Chromatography Partial Separation. Analytical Chemistry, 2010, 82, 1744-1750.	3.2	80
58	Direct analysis of sterols from dried plasma/blood spots by an atmospheric pressure thermal desorption chemical ionization mass spectrometry (APTDCI-MS) method for a rapid screening of Smith–Lemli–Opitz syndrome. Analyst, The, 2010, 135, 789.	1.7	30
59	Forensic applications of ambient ionization mass spectrometry. Analytical and Bioanalytical Chemistry, 2009, 394, 1995-2008.	1.9	164
60	Precursor ion scan profiles of acylcarnitines by atmospheric pressure thermal desorption chemical ionization tandem mass spectrometry. Rapid Communications in Mass Spectrometry, 2008, 22, 3809-3815.	0.7	13
61	Evaluation of mobile phase, ion pairing, and temperature influence on an HILICâ€MS/MS method for <scp>L</scp> â€arginine and its dimethylated derivatives detection. Journal of Separation Science, 2008, 31, 2424-2429.	1.3	27
62	Determination of dimethylarginine levels in rats using HILICâ€MS/MS: An <i>in vivo</i> microdialysis study. Journal of Separation Science, 2008, 31, 2511-2515.	1.3	11
63	Development and validation of a fast quantitative method for plasma dimethylarginines analysis using liquid chromatography–tandem mass spectrometry. Clinical Biochemistry, 2008, 41, 1391-1395.	0.8	34
64	The accuracy of oxcarbazepine (OXC) quantification by a liquid chromatography/tandem mass spectrometry method is influenced by the ion source fragmentation of its metabolite trans-diol-carbazepine (DHD). Rapid Communications in Mass Spectrometry, 2007, 21, 269-272.	0.7	8
65	Neutral loss analysis of amino acids by desorption electrospray ionization using an unmodified tandem quadrupole mass spectrometer. Rapid Communications in Mass Spectrometry, 2007, 21, 3777-3784.	0.7	25
66	Development and validation of a LC/MS/MS method for simultaneous quantification of oxcarbazepine and its main metabolites in human serum. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2007, 860, 153-159.	1.2	41
67	High Intensity Concentric-Eccentric Exercise Under Hypoxia Changes the Blood Metabolome of Trained Athletes. Frontiers in Physiology, 0, 13, .	1.3	3