## Etsushi Kumagai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9443203/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                       | IF         | CITATIONS      |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|----------------|
| 1  | The effects of increased temperature on crop growth and yield of soybean grown in a temperature gradient chamber. Field Crops Research, 2013, 154, 74-81.                                                                                     | 2.3        | 77             |
| 2  | Correlation of Chlorophyll Meter Readings with Gas exchange and Chlorophyll Fluorescence in Flag<br>Leaves of Rice ( <i>Oryza sativa</i> L.) Plants. Plant Production Science, 2009, 12, 50-53.                                               | 0.9        | 60             |
| 3  | Genotypic differences in soybean yield responses to increasing temperature in a cool climate are related to maturity group. Agricultural and Forest Meteorology, 2014, 198-199, 265-272.                                                      | 1.9        | 51             |
| 4  | Ammonia emission from rice leaves in relation to photorespiration and genotypic differences in glutamine synthetase activity. Annals of Botany, 2011, 108, 1381-1386.                                                                         | 1.4        | 49             |
| 5  | Genomeâ€wide association mapping for phenotypic plasticity in rice. Plant, Cell and Environment, 2017, 40, 1565-1575.                                                                                                                         | 2.8        | 45             |
| 6  | Quantifying highâ€temperature stress on soybean canopy photosynthesis: The unique role of<br>sunâ€induced chlorophyll fluorescence. Global Change Biology, 2021, 27, 2403-2415.                                                               | 4.2        | 36             |
| 7  | The response of soybean seed growth characteristics to increased temperature under near-field conditions in a temperature gradient chamber. Field Crops Research, 2012, 131, 26-31.                                                           | 2.3        | 35             |
| 8  | Phenotypic plasticity conditions the response of soybean seed yield to elevated atmospheric CO2 concentration. Plant Physiology, 2015, 169, pp.00980.2015.                                                                                    | 2.3        | 32             |
| 9  | Characteristics of Gas Exchange and Chlorophyll Fluorescence during Senescence of Flag Leaf in<br>Different Rice ( <i>Oryza sativa</i> L) Cultivars Grown under Nitrogen-Deficient Condition. Plant<br>Production Science, 2009, 12, 285-292. | 0.9        | 26             |
| 10 | Dorsoventral asymmetry of photosynthesis and photoinhibition in flag leaves of two rice cultivars that differ in nitrogen response and leaf angle. Physiologia Plantarum, 2014, 151, 533-543.                                                 | 2.6        | 26             |
| 11 | Soybean (Glycine max (L.) Merr.) Yield Reduction due to Late Sowing as a Function of Radiation<br>Interception and Use in a Cool Region of Northern Japan. Agronomy, 2020, 10, 66.                                                            | 1.3        | 24             |
| 12 | Genetic Variations in Dry Matter Production, Nitrogen Uptake, and Nitrogen Use Efficiency in the AA<br>Genome <i>Oryza</i> Species Grown under Different Nitrogen Conditions. Plant Production Science,<br>2013, 16, 107-116.                 | 0.9        | 21             |
| 13 | Predicting biochemical acclimation of leaf photosynthesis in soybean under inâ€field canopy warming using hyperspectral reflectance. Plant, Cell and Environment, 2022, 45, 80-94.                                                            | 2.8        | 19             |
| 14 | Effect of nitrogen-deficiency on midday photoinhibition in flag leaves of different rice (Oryza sativa) Tj ETQq0 0 (                                                                                                                          | ) rgBT /Ov | erlock 10 Tf 5 |
| 15 | Planting geometry as a preâ€screening technique for identifying <scp>CO<sub>2</sub></scp> responsive rice genotypes: a case study of panicle number. Physiologia Plantarum, 2014, 152, 520-528.                                               | 2.6        | 16             |
| 16 | Comparison of Susceptibility to Photoinhibition and Energy Partitioning of Absorbed Light in Photosystem II in Flag Leaves of Two Rice (Oryza sativaL.) Cultivars that Differ in Their Responses to                                           | 0.9        | 14             |

|    | Nitrogen-Deficiency. Plant Production Science, 2010, 13, 11-20.                                                                                                                                                             |     |    |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----|
| 17 | Finlay–Wilkinson's regression coefficient as a preâ€screening criterion for yield responsiveness to<br>elevated atmospheric <scp>CO<sub>2</sub></scp> concentration in crops. Physiologia Plantarum,<br>2016, 158, 312-317. | 2.6 | 13 |
| 18 | Effects of elevated CO2 concentration on growth and photosynthesis of Chinese yam under different temperature regimes. Plant Production Science, 2017, 20, 227-236.                                                         | 0.9 | 13 |

Етѕиѕні Кимадаі

| #  | Article                                                                                                                                                                                                                          | IF                   | CITATIONS             |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-----------------------|
| 19 | Effects of elevated CO <sub>2</sub> concentration on bulbil germination and early seedling growth in Chinese yam under different air temperatures. Plant Production Science, 2017, 20, 313-322.                                  | 0.9                  | 13                    |
| 20 | Effect of early sowing on growth and yield of determinate and indeterminate soybean ( <i>Glycine) Tj ETQqO<br/>18-28.</i>                                                                                                        | 0 0 rgBT /Ove<br>0.8 | erlock 10 Tf 50<br>12 |
| 21 | Leaf Photosynthesis and Its Genetic Improvement from the Perspective of Energy Flow and CO <sub>2</sub> Diffusion. Plant Production Science, 2014, 17, 111-123.                                                                  | 0.9                  | 11                    |
| 22 | Modeling of Phenological Development Stages and Impact of Elevated Air Temperature on the<br>Phenological Development of Soybean Cultivars in Japan. Japanese Journal of Crop Science, 2015, 84,<br>408-417.                     | 0.1                  | 10                    |
| 23 | Conversion of soil particle size distribution and texture classification from ISSS system to FAO/USDA system in Japanese paddy soils. Soil Science and Plant Nutrition, 2020, 66, 407-414.                                       | 0.8                  | 10                    |
| 24 | High-throughput characterization, correlation, and mapping of leaf photosynthetic and functional traits in the soybean ( <i>Glycine max</i> ) nested association mapping population. Genetics, 2022, , .                         | 1.2                  | 8                     |
| 25 | Effects of elevated CO2 concentration and temperature on seed production and nitrogen concentration in soybean (Glycine max (L.) Merr.). J Agricultural Meteorology, 2012, 68, 1-13.                                             | 0.8                  | 7                     |
| 26 | Effects of elevated atmospheric CO2 concentration on morphology of leaf blades in Chinese yam.<br>Plant Production Science, 2018, 21, 311-321.                                                                                   | 0.9                  | 7                     |
| 27 | Experimental open-field day-length-extension method and estimation of the effective light period using solar altitude. J Agricultural Meteorology, 2011, 67, 307-312.                                                            | 0.8                  | 6                     |
| 28 | Ammonia Emission from Leaves of Different Rice ( <i>Oryza sativa</i> L.) Cultivars. Plant Production<br>Science, 2011, 14, 249-253.                                                                                              | 0.9                  | 5                     |
| 29 | Probabilistic Risk Assessment of the Rice Cropping Schedule for Central Hokkaido, Japan. Journal of<br>Applied Meteorology and Climatology, 2012, 51, 1253-1264.                                                                 | 0.6                  | 5                     |
| 30 | Is the yield change due to warming affected by photoperiod sensitivity? Effects of the soybean E4<br>locus. Food and Energy Security, 2020, 9, e186.                                                                             | 2.0                  | 5                     |
| 31 | Agronomic responses of soybean cultivars to narrow intra-row spacing in a cool region of northern<br>Japan. Plant Production Science, 2021, 24, 29-40.                                                                           | 0.9                  | 5                     |
| 32 | Assessment of paddy rice heading date under projected climate change conditions for Hokkaido region<br>based on the field experiment. J Agricultural Meteorology, 2011, 67, 275-284.                                             | 0.8                  | 5                     |
| 33 | Dry matter partitioning to leaves differentiates African and Asian rice genotypes exposed to elevated CO <sub>2</sub> . Journal of Agronomy and Crop Science, 2021, 207, 120-127.                                                | 1.7                  | 2                     |
| 34 | Relationship between Soybean Yield and Drought in Long-term Continuous Performance Test at<br>Tohoku Agricultural Research Center, NARO. Japanese Journal of Crop Science, 2018, 87, 233-241.                                    | 0.1                  | 2                     |
| 35 | A strong negative trade-off between seed number and 100-seed weight stalls genetic yield gains in<br>northern Japanese soybean cultivars in comparison with Midwestern US cultivars. Field Crops<br>Research, 2022, 283, 108539. | 2.3                  | 2                     |
| 36 | Effects of elevated atmospheric CO2 concentration on growth and photosynthesis in eddo at two different air temperatures. Plant Production Science, 2021, 24, 363-373.                                                           | 0.9                  | 1                     |

| #  | Article                                                                                                                                                                        | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Interactive Effects of Soil Salinity and Temperature on Vegetative Growth of Rice after Flooded by TSUNAMI 11 March 2011. Japanese Journal of Crop Science, 2012, 81, 441-448. | 0.1 | Ο         |