
Michael J Tarr

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9443037/publications.pdf Version: 2024-02-01

MICHAEL TADD

#	Article	IF	CITATIONS
1	Activation of the middle fusiform 'face area' increases with expertise in recognizing novel objects. Nature Neuroscience, 1999, 2, 568-573.	7.1	1,049
2	Becoming a "Greeble―Expert: Exploring Mechanisms for Face Recognition. Vision Research, 1997, 37, 1673-1682.	0.7	891
3	Mental rotation and orientation-dependence in shape recognition. Cognitive Psychology, 1989, 21, 233-282.	0.9	794
4	The Fusiform "Face Area―is Part of a Network that Processes Faces at the Individual Level. Journal of Cognitive Neuroscience, 2000, 12, 495-504.	1.1	775
5	Rotating objects to recognize them: A case study on the role of viewpoint dependency in the recognition of three-dimensional objects. Psychonomic Bulletin and Review, 1995, 2, 55-82.	1.4	430
6	Unraveling mechanisms for expert object recognition: Bridging brain activity and behavior Journal of Experimental Psychology: Human Perception and Performance, 2002, 28, 431-446.	0.7	346
7	Training â€~greeble' experts: a framework for studying expert object recognition processes. Vision Research, 1998, 38, 2401-2428.	0.7	328
8	Is human object recognition better described by geon structural descriptions or by multiple views? Comment on Biederman and Gerhardstein (1993) Journal of Experimental Psychology: Human Perception and Performance, 1995, 21, 1494-1505.	0.7	322
9	Can Face Recognition Really be Dissociated from Object Recognition?. Journal of Cognitive Neuroscience, 1999, 11, 349-370.	1.1	290
10	Beyond faces and modularity: the power of an expertise framework. Trends in Cognitive Sciences, 2006, 10, 159-166.	4.0	287
11	Three-dimensional object recognition is viewpoint dependent. Nature Neuroscience, 1998, 1, 275-277.	7.1	254
12	Unraveling mechanisms for expert object recognition: Bridging brain activity and behavior Journal of Experimental Psychology: Human Perception and Performance, 2002, 28, 431-446.	0.7	205
13	When does Human Object Recognition use a Viewer-Centered Reference Frame?. Psychological Science, 1990, 1, 253-256.	1.8	196
14	BOLD Activity during Mental Rotation and Viewpoint-Dependent Object Recognition. Neuron, 2002, 34, 161-171.	3.8	180
15	To What Extent Do Unique Parts Influence Recognition Across Changes in Viewpoint?. Psychological Science, 1997, 8, 282-289.	1.8	147
16	Visual expertise with nonface objects leads to competition with the early perceptual processing of faces in the human occipitotemporal cortex. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 14521-14526.	3.3	138
17	Explicating the Face Perception Network with White Matter Connectivity. PLoS ONE, 2013, 8, e61611.	1.1	124
18	Testing conditions for viewpoint invariance in object recognition Journal of Experimental Psychology: Human Perception and Performance, 1997, 23, 1511-1521.	0.7	90

MICHAEL J TARR

#	Article	IF	CITATIONS
19	Perceptual Expertise Effects Are Not All or None: Spatially Limited Perceptual Expertise for Faces in a Case of Prosopagnosia. Journal of Cognitive Neuroscience, 2006, 18, 48-63.	1.1	90
20	Recognizing disguised faces. Visual Cognition, 2012, 20, 143-169.	0.9	84
21	BOLD5000, a public fMRI dataset while viewing 5000 visual images. Scientific Data, 2019, 6, 49.	2.4	82
22	Why the visual recognition system might encode the effects of illumination. Vision Research, 1998, 38, 2259-2275.	0.7	76
23	Behavioral Change and Its Neural Correlates in Visual Agnosia After Expertise Training. Journal of Cognitive Neuroscience, 2005, 17, 554-568.	1.1	61
24	Visual Object Recognition: Do We (Finally) Know More Now Than We Did?. Annual Review of Vision Science, 2016, 2, 377-396.	2.3	57
25	Do viewpoint-dependent mechanisms generalize across members of a class?. Cognition, 1998, 67, 73-110.	1.1	55
26	Very high density EEG elucidates spatiotemporal aspects of early visual processing. Scientific Reports, 2017, 7, 16248.	1.6	48
27	What defines a view?. Vision Research, 2001, 41, 1981-2004.	0.7	45
28	Does acquisition of Greeble expertise in prosopagnosia rule out a domain-general deficit?. Neuropsychologia, 2012, 50, 289-304.	0.7	42
29	Associative Processing Is Inherent in Scene Perception. PLoS ONE, 2015, 10, e0128840.	1.1	34
30	Comparing visual representations across human fMRI and computational vision. Journal of Vision, 2013, 13, 25-25.	0.1	28
31	Recognizing Silhouettes and Shaded Images across Depth Rotation. Perception, 1999, 28, 1197-1215.	0.5	25
32	Visual learning of statistical relations among nonadjacent features: Evidence for structural encoding. Visual Cognition, 2011, 19, 469-482.	0.9	23
33	Perception Isn't So Simple. Psychological Science, 2013, 24, 1069-1070.	1.8	23
34	Differing views on views: comments on Biederman and Bar (1999). Vision Research, 2000, 40, 3895-3899.	0.7	22
35	Exploring spatiotemporal neural dynamics of the human visual cortex. Human Brain Mapping, 2019, 40, 4213-4238.	1.9	10
36	Awake, Offline Processing during Associative Learning. PLoS ONE, 2016, 11, e0127522.	1.1	9

MICHAEL J TARR

#	Article	IF	CITATIONS
37	The concurrent encoding of viewpoint-invariant and viewpoint-dependent information in visual object recognition. Visual Cognition, 2017, 25, 100-121.	0.9	7
38	Exploration of complex visual feature spaces for object perception. Frontiers in Computational Neuroscience, 2014, 8, 106.	1.2	6
39	Applying artificial vision models to human scene understanding. Frontiers in Computational Neuroscience, 2015, 9, 8.	1.2	5
40	The relative contributions of visual and semantic information in the neural representation of object categories. Brain and Behavior, 2019, 9, e01373.	1.0	5
41	A method for real-time visual stimulus selection in the study of cortical object perception. NeuroImage, 2016, 133, 529-548.	2.1	3
42	From perception to cognition. Behavioral and Brain Sciences, 1993, 16, 251-252.	0.4	2
43	Exploring the spatio-temporal neural basis of face learning. Journal of Vision, 2017, 17, 1.	0.1	2
44	Visual Perception II: High-Level Vision. , 0, , 48-70.		2
45	Learning intermediate features of affordances with a convolutional neural network. Journal of Vision, 2018, 18, 1267.	0.1	1
46	Scaling Up Neural Datasets: A public fMRI dataset of 5000 scenes. Journal of Vision, 2018, 18, 732.	0.1	1
47	IS A PICTURE REALLY WORTH A THOUSAND WORDS?. Computational Intelligence, 1993, 9, 356-359.	2.1	0
48	The Mind's Eye: <i>Principles of Mental Imagery</i> . Ronald A. Finke. Mit Press, Cambridge, MA, 1990. x, 179 pp., illus. \$19.95; <i>Mental Imagery</i> . On the Limits of Cognitive Science. Mark Rollins. Yale University Press, New Haven, CT, 1989. xx, 170 pp. \$21.50 Science, 1990, 249, 685-685.	6.0	0