
Yasuhiro Ishimaru

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9442900/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Rice plants take up iron as an Fe3+-phytosiderophore and as Fe2+. Plant Journal, 2006, 45, 335-346.	5.7	703
2	The OsHMA2 transporter is involved in rootâ€ŧoâ€shoot translocation of Zn and Cd in rice. Plant, Cell and Environment, 2012, 35, 1948-1957.	5.7	496
3	The OsNRAMP1 iron transporter is involved in Cd accumulation in rice. Journal of Experimental Botany, 2011, 62, 4843-4850.	4.8	493
4	Characterizing the role of rice NRAMP5 in Manganese, Iron and Cadmium Transport. Scientific Reports, 2012, 2, 286.	3.3	424
5	Iron deficiency enhances cadmium uptake and translocation mediated by the Fe2+transporters OsIRT1 and OsIRT2 in rice. Soil Science and Plant Nutrition, 2006, 52, 464-469.	1.9	408
6	Ion-beam irradiation, gene identification, and marker-assisted breeding in the development of low-cadmium rice. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 19166-19171.	7.1	408
7	Rice metal-nicotianamine transporter, OsYSL2, is required for the long-distance transport of iron and manganese. Plant Journal, 2010, 62, 379-390.	5.7	395
8	OsZIP4, a novel zinc-regulated zinc transporter in rice. Journal of Experimental Botany, 2005, 56, 3207-3214.	4.8	350
9	AtSWEET13 and AtSWEET14 regulate gibberellin-mediated physiological processes. Nature Communications, 2016, 7, 13245.	12.8	229
10	Overexpression of the Barley Nicotianamine Synthase Gene HvNAS1 Increases Iron and Zinc Concentrations in Rice Grains. Rice, 2009, 2, 155-166.	4.0	207
11	Iron biofortification in rice by the introduction of multiple genes involved in iron nutrition. Scientific Reports, 2012, 2, 543.	3.3	194
12	The role of heavy-metal ATPases, HMAs, in zinc and cadmium transport in rice. Plant Signaling and Behavior, 2012, 7, 1605-1607.	2.4	187
13	OsYSL18 is a rice iron(III)–deoxymugineic acid transporter specifically expressed in reproductive organs and phloem of lamina joints. Plant Molecular Biology, 2009, 70, 681-692.	3.9	171
14	Overexpression of the OsZIP4 zinc transporter confers disarrangement of zinc distribution in rice plants. Journal of Experimental Botany, 2007, 58, 2909-2915.	4.8	157
15	A Rice Phenolic Efflux Transporter Is Essential for Solubilizing Precipitated Apoplasmic Iron in the Plant Stele. Journal of Biological Chemistry, 2011, 286, 24649-24655.	3.4	156
16	Mutational reconstructed ferric chelate reductase confers enhanced tolerance in rice to iron deficiency in calcareous soil. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 7373-7378.	7.1	151
17	The jasmonate-responsive GTR1 transporter is required for gibberellin-mediated stamen development in Arabidopsis. Nature Communications, 2015, 6, 6095.	12.8	151
18	Zn Uptake and Translocation in Rice Plants. Rice, 2011, 4, 21-27.	4.0	146

Yasuhiro Ishimaru

#	Article	IF	CITATIONS
19	The rice mitochondrial iron transporter is essential for plant growth. Nature Communications, 2011, 2, 322.	12.8	145
20	Role of the iron transporter OsNRAMP1 in cadmium uptake and accumulation in rice. Plant Signaling and Behavior, 2011, 6, 1813-1816.	2.4	141
21	OsYSL16 plays a role in the allocation of iron. Plant Molecular Biology, 2012, 79, 583-594.	3.9	127
22	Molecular mechanisms of zinc uptake and translocation in rice. Plant and Soil, 2012, 361, 189-201.	3.7	124
23	Iron Uptake and Loading into Rice Grains. Rice, 2010, 3, 122-130.	4.0	116
24	Elevated Levels of CYP94 Family Gene Expression Alleviate the Jasmonate Response and Enhance Salt Tolerance in Rice. Plant and Cell Physiology, 2015, 56, 779-789.	3.1	110
25	Low cadmium (LCD), a novel gene related to cadmium tolerance and accumulation in rice. Journal of Experimental Botany, 2011, 62, 5727-5734.	4.8	104
26	In vivo analysis of metal distribution and expression of metal transporters in rice seed during germination process by microarray and X-ray Fluorescence Imaging of Fe, Zn, Mn, and Cu. Plant and Soil, 2009, 325, 39-51.	3.7	103
27	Iron-biofortification in rice by the introduction of three barley genes participated in mugineic acid biosynthesis with soybean ferritin gene. Frontiers in Plant Science, 2013, 4, 132.	3.6	101
28	The knockdown of OsVIT2 and MIT affects iron localization in rice seed. Rice, 2013, 6, 31.	4.0	86
29	Rice phenolics efflux transporter 2 (PEZ2) plays an important role in solubilizing apoplasmic iron. Soil Science and Plant Nutrition, 2011, 57, 803-812.	1.9	85
30	OsNRAMP5, a major player for constitutive iron and manganese uptake in rice. Plant Signaling and Behavior, 2012, 7, 763-766.	2.4	82
31	From Laboratory to Field: OsNRAMP5-Knockdown Rice Is a Promising Candidate for Cd Phytoremediation in Paddy Fields. PLoS ONE, 2014, 9, e98816.	2.5	70
32	The expression of iron homeostasis-related genes during rice germination. Plant Molecular Biology, 2007, 64, 35-47.	3.9	62
33	Jasmonate signaling is activated in the very early stages of iron deficiency responses in rice roots. Plant Molecular Biology, 2016, 91, 533-547.	3.9	62
34	Rice-Specific Mitochondrial Iron-Regulated Gene (MIR) Plays an Important Role in Iron Homeostasis. Molecular Plant, 2009, 2, 1059-1066.	8.3	49
35	Jasmonic Acid Inhibits Auxin-Induced Lateral Rooting Independently of the CORONATINE INSENSITIVE1 Receptor. Plant Physiology, 2018, 177, 1704-1716.	4.8	48
36	A rationally designed JAZ subtype-selective agonist of jasmonate perception. Nature Communications, 2018, 9, 3654.	12.8	47

Yasuhiro Ishimaru

#	Article	IF	CITATIONS
37	Exploiting new tools for iron bio-fortification of rice. Biotechnology Advances, 2013, 31, 1624-1633.	11.7	46
38	Identification and characterization of the major mitochondrial Fe transporter in rice. Plant Signaling and Behavior, 2011, 6, 1591-1593.	2.4	40
39	Iron deficiency regulated OsOPT7 is essential for iron homeostasis in rice. Plant Molecular Biology, 2015, 88, 165-176.	3.9	39
40	Genetically engineered rice containing larger amounts of nicotianamine to enhance the antihypertensive effect. Plant Biotechnology Journal, 2009, 7, 87-95.	8.3	38
41	Knocking down mitochondrial iron transporter (MIT) reprograms primary and secondary metabolism in rice plants. Journal of Experimental Botany, 2016, 67, 1357-1368.	4.8	36
42	GTR1 is a jasmonic acid and jasmonoyl- <scp>l</scp> -isoleucine transporter in <i>Arabidopsis thaliana</i> . Bioscience, Biotechnology and Biochemistry, 2017, 81, 249-255.	1.3	31
43	A new transgenic rice line exhibiting enhanced ferric iron reduction and phytosiderophore production confers tolerance to low iron availability in calcareous soil. PLoS ONE, 2017, 12, e0173441.	2.5	26
44	The role of rice phenolics efflux transporter in solubilizing apoplasmic iron. Plant Signaling and Behavior, 2011, 6, 1624-1626.	2.4	24
45	lon Channels Regulate Nyctinastic Leaf Opening in Samanea saman. Current Biology, 2018, 28, 2230-2238.e7.	3.9	23
46	Noncanonical Function of a Small-Molecular Virulence Factor Coronatine against Plant Immunity: An <i>In Vivo</i> Raman Imaging Approach. ACS Central Science, 2017, 3, 462-472.	11.3	20
47	Synthesis of nicotianamine and deoxymugineic acid is regulated by OsIRO2 in Zn excess rice plants. Soil Science and Plant Nutrition, 2008, 54, 417-423.	1.9	15
48	Dual function of coronatine as a bacterial virulence factor against plants: possible COI1–JAZ-independent role. RSC Advances, 2016, 6, 19404-19412.	3.6	15
49	Plant nyctinasty – who will decode the â€~Rosetta Stone'?. New Phytologist, 2019, 223, 107-112.	7.3	15
50	Hybrid stereoisomers of a compact molecular probe based on a jasmonic acid glucoside: Syntheses and biological evaluations. Bioorganic and Medicinal Chemistry, 2012, 20, 5832-5843.	3.0	9
51	Functional importance of the sugar moiety of jasmonic acid glucoside for bioactivity and target affinity. Organic and Biomolecular Chemistry, 2015, 13, 55-58.	2.8	8
52	Dimerization of GTR1 regulates their plasma membrane localization. Plant Signaling and Behavior, 2017, 12, e1334749.	2.4	6
53	The alkyne-tag Raman imaging of coronatine, a plant pathogen virulence factor, in Commelina communis and its possible mode of action. Organic and Biomolecular Chemistry, 2018, 16, 3348-3352.	2.8	6
54	Protein ligand-tethered synthetic calcium indicator for localization control and spatiotemporal calcium imaging in plant cells. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 9-14.	2.2	5

#	Article	IF	CITATIONS
55	Green Tea Catechins, (â^')â€Catechin Gallate, and (â^')â€Gallocatechin Gallate are Potent Inhibitors ofÂABAâ€induced Stomatal Closure. Advanced Science, 2022, 9, e2201403.	11.2	4
56	12-Hydroxyjasmonic acid glucoside causes leaf-folding of Samanea saman through ROS accumulation. Scientific Reports, 2022, 12, 7232.	3.3	3
57	Challenges and opportunities to regulate mineral transport in rice. Bioscience, Biotechnology and Biochemistry, 2021, , .	1.3	1