Shutao Xu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9442382/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Nanosize-Enhanced Lifetime of SAPO-34 Catalysts in Methanol-to-Olefin Reactions. Journal of Physical Chemistry C, 2013, 117, 8214-8222.	1.5	224
2	Photocatalytic Cleavage of C–C Bond in Lignin Models under Visible Light on Mesoporous Graphitic Carbon Nitride through π–π Stacking Interaction. ACS Catalysis, 2018, 8, 4761-4771.	5.5	205
3	Facile synthesis of morphology and size-controlled zirconium metal–organic framework UiO-66: the role of hydrofluoric acid in crystallization. CrystEngComm, 2015, 17, 6434-6440.	1.3	200
4	Direct Observation of Cyclic Carbenium Ions and Their Role in the Catalytic Cycle of the Methanolâ€ŧoâ€Olefin Reaction over Chabazite Zeolites. Angewandte Chemie - International Edition, 2013, 52, 11564-11568.	7.2	193
5	Observation of Heptamethylbenzenium Cation over SAPO-Type Molecular Sieve DNL-6 under Real MTO Conversion Conditions. Journal of the American Chemical Society, 2012, 134, 836-839.	6.6	173
6	A Schiff base modified gold catalyst for green and efficient H ₂ production from formic acid. Energy and Environmental Science, 2015, 8, 3204-3207.	15.6	166
7	Dual template-directed synthesis of SAPO-34 nanosheet assemblies with improved stability in the methanol to olefins reaction. Journal of Materials Chemistry A, 2015, 3, 5608-5616.	5.2	160
8	Acid-Promoter-Free Ethylene Methoxycarbonylation over Ru-Clusters/Ceria: The Catalysis of Interfacial Lewis Acid–Base Pair. Journal of the American Chemical Society, 2018, 140, 4172-4181.	6.6	157
9	Hydrogenolysis of Glycerol to 1,3â€propanediol under Low Hydrogen Pressure over WO _{<i>x</i>} â€Supported Single/Pseudoâ€Single Atom Pt Catalyst. ChemSusChem, 2016, 9, 784-790.	3.6	140
10	In situsolid-state NMR for heterogeneous catalysis: a joint experimental and theoretical approach. Chemical Society Reviews, 2012, 41, 192-210.	18.7	136
11	Cavity Controls the Selectivity: Insights of Confinement Effects on MTO Reaction. ACS Catalysis, 2015, 5, 661-665.	5.5	131
12	Carbon doping of hexagonal boron nitride porous materials toward CO ₂ capture. Journal of Materials Chemistry A, 2018, 6, 1832-1839.	5.2	131
13	Direct Mechanism of the First Carbon–Carbon Bond Formation in the Methanolâ€ŧoâ€Hydrocarbons Process. Angewandte Chemie - International Edition, 2017, 56, 9039-9043.	7.2	128
14	Spatial confinement effects of cage-type SAPO molecular sieves on product distribution and coke formation in methanol-to-olefin reaction. Catalysis Communications, 2014, 46, 36-40.	1.6	116
15	Polystyrene sulphonic acid resins with enhanced acid strength via macromolecular self-assembly within confined nanospace. Nature Communications, 2014, 5, 3170.	5.8	114
16	Origin and Structural Characteristics of Tri-coordinated Extra-framework Aluminum Species in Dealuminated Zeolites. Journal of the American Chemical Society, 2018, 140, 10764-10774.	6.6	113
17	Pentacoordinated Al ³⁺ ‣tabilized Active Pd Structures on Al ₂ O ₃ oated Palladium Catalysts for Methane Combustion. Angewandte Chemie - International Edition, 2019, 58, 12043-12048.	7.2	109
18	A top-down approach to prepare silicoaluminophosphate molecular sieve nanocrystals with improved catalytic activity. Chemical Communications, 2014, 50, 1845.	2.2	101

Shutao Xu

#	Article	IF	CITATIONS
19	A low-temperature approach to synthesize low-silica SAPO-34 nanocrystals and their application in the methanol-to-olefins (MTO) reaction. Catalysis Science and Technology, 2016, 6, 7569-7578.	2.1	89
20	Interconnected Hierarchical ZSM-5 with Tunable Acidity Prepared by a Dealumination–Realumination Process: A Superior MTP Catalyst. ACS Applied Materials & Interfaces, 2017, 9, 26096-26106.	4.0	84
21	Synthesis of mesoporous ZSM-5 catalysts using different mesogenous templates and their application in methanol conversion for enhanced catalyst lifespan. RSC Advances, 2014, 4, 21479-21491.	1.7	81
22	Promotion effect of Fe in mordenite zeolite on carbonylation of dimethyl ether to methyl acetate. Catalysis Science and Technology, 2015, 5, 1961-1968.	2.1	81
23	Ultrafast Semiâ€Solid Processing of Highly Durable ZIFâ€8 Membranes for Propylene/Propane Separation. Angewandte Chemie - International Edition, 2020, 59, 21909-21914.	7.2	75
24	Direct Observation of the Mesopores in ZSM-5 Zeolites with Hierarchical Porous Structures by Laser-Hyperpolarized ¹²⁹ Xe NMR. Journal of Physical Chemistry C, 2008, 112, 15375-15381.	1.5	74
25	A novel solvothermal approach to synthesize SAPO molecular sieves using organic amines as the solvent and template. Journal of Materials Chemistry, 2012, 22, 6568.	6.7	72
26	Elucidating the olefin formation mechanism in the methanol to olefin reaction over AlPO-18 and SAPO-18. Catalysis Science and Technology, 2014, 4, 3268.	2.1	71
27	Molecular elucidating of an unusual growth mechanism for polycyclic aromatic hydrocarbons in confined space. Nature Communications, 2020, 11, 1079.	5.8	70
28	Decorated Traditional Zeolites with Subunits of Metal–Organic Frameworks for CH ₄ /N ₂ Separation. Angewandte Chemie - International Edition, 2019, 58, 10241-10244.	7.2	69
29	Insight into the deactivation mode of methanol-to-olefins conversion over SAPO-34: Coke, diffusion, and acidic site accessibility. Journal of Catalysis, 2018, 367, 306-314.	3.1	67
30	Generation of diamondoid hydrocarbons as confined compounds in SAPO-34 catalyst in the conversion of methanol. Chemical Communications, 2012, 48, 3082.	2.2	62
31	Electrolyte Solvation Manipulation Enables Unprecedented Roomâ€Temperature Calciumâ€Metal Batteries. Angewandte Chemie - International Edition, 2020, 59, 12689-12693.	7.2	61
32	Molecular Routes of Dynamic Autocatalysis for Methanol-to-Hydrocarbons Reaction. Journal of the American Chemical Society, 2021, 143, 12038-12052.	6.6	60
33	Methanol to Olefins Reaction over Cavity-type Zeolite: Cavity Controls the Critical Intermediates and Product Selectivity. ACS Catalysis, 2018, 8, 10950-10963.	5.5	59
34	Creation of hollow SAPO-34 single crystals via alkaline or acid etching. Chemical Communications, 2016, 52, 5718-5721.	2.2	58
35	Methanol to Olefins Reaction Route Based on Methylcyclopentadienes as Critical Intermediates. ACS Catalysis, 2019, 9, 7373-7379.	5.5	58
36	Direct quantification of surface barriers for mass transfer in nanoporous crystalline materials. Communications Chemistry, 2019, 2, .	2.0	58

SHUTAO XU

#	Article	IF	CITATIONS
37	Methanol to hydrocarbons reaction over Hβ zeolites studied by high resolution solid-state NMR spectroscopy: Carbenium ions formation and reaction mechanism. Journal of Catalysis, 2016, 335, 47-57.	3.1	57
38	tert-Butyl hydroperoxide (TBHP)-mediated oxidative self-coupling of amines to imines over a α-MnO ₂ catalyst. Green Chemistry, 2014, 16, 2523-2527.	4.6	56
39	Facile preparation of nanocrystal-assembled hierarchical mordenite zeolites with remarkable catalytic performance. Chinese Journal of Catalysis, 2015, 36, 1910-1919.	6.9	55
40	Evolution of C–C Bond Formation in the Methanol-to-Olefins Process: From Direct Coupling to Autocatalysis. ACS Catalysis, 2018, 8, 7356-7361.	5.5	54
41	Aminothermal synthesis of CHA-type SAPO molecular sieves and their catalytic performance in methanol to olefins (MTO) reaction. Journal of Materials Chemistry A, 2013, 1, 14206.	5.2	49
42	Increasing the selectivity to ethylene in the MTO reaction by enhancing diffusion limitation in the shell layer of SAPO-34 catalyst. Chemical Communications, 2018, 54, 3146-3149.	2.2	49
43	Enhanced In situ Continuous-Flow MAS NMR for Reaction Kinetics in the Nanocages. Journal of the American Chemical Society, 2009, 131, 13722-13727.	6.6	48
44	Changing the balance of the MTO reaction dual-cycle mechanism: Reactions over ZSM-5 with varying contact times. Chinese Journal of Catalysis, 2016, 37, 1413-1422.	6.9	46
45	Synthesis of SAPO-34 nanoaggregates with the assistance of an inexpensive three-in-one non-surfactant organosilane. Chemical Communications, 2017, 53, 4985-4988.	2.2	45
46	Cavity-controlled diffusion in 8-membered ring molecular sieve catalysts for shape selective strategy. Journal of Catalysis, 2019, 377, 51-62.	3.1	45
47	A Bottomâ€Up Strategy for the Synthesis of Highly Siliceous Faujasiteâ€Type Zeolite. Advanced Materials, 2020, 32, e2000272.	11.1	45
48	Advances in Catalysis for Methanol-to-Olefins Conversion. Advances in Catalysis, 2017, , 37-122.	0.1	39
49	Fast detection and structural identification of carbocations on zeolites by dynamic nuclear polarization enhanced solid-state NMR. Chemical Science, 2018, 9, 8184-8193.	3.7	38
50	Synthesis of DNLâ€6 with a High Concentration of Si (4 Al) Environments and its Application in CO ₂ Separation. ChemSusChem, 2013, 6, 911-918.	3.6	36
51	In situ growth and assembly of microporous aluminophosphate nanosheets into ordered architectures at low temperature and their enhanced catalytic performance. Journal of Materials Chemistry A, 2015, 3, 7741-7749.	5.2	33
52	Investigation of methanol conversion over high-Si beta zeolites and the reaction mechanism of their high propene selectivity. Catalysis Science and Technology, 2017, 7, 5882-5892.	2.1	33
53	Direct Cu ²⁺ ion-exchanged into as-synthesized SAPO-34 and its catalytic application in the selective catalytic reduction of NO with NH ₃ . RSC Advances, 2016, 6, 12544-12552.	1.7	32
54	High Propylene Selectivity in Methanol Conversion over a Small-Pore SAPO Molecular Sieve with Ultra-Small Cage. ACS Catalysis, 2020, 10, 3741-3749.	5.5	32

Shutao Xu

#	Article	IF	CITATIONS
55	Investigation of the Crystallization Process of SAPO-35 and Si Distribution in the Crystals. Journal of Physical Chemistry C, 2013, 117, 4048-4056.	1.5	31
56	Hydrothermal synthesis of high silica zeolite Y using tetraethylammonium hydroxide as a structure-directing agent. Chemical Communications, 2016, 52, 12765-12768.	2.2	31
57	Generating Assembled MFI Nanocrystals with Reduced <i>b</i> â€Axis through Structureâ€Directing Agent Exchange Induced Recrystallization. Angewandte Chemie - International Edition, 2021, 60, 13959-13968.	7.2	31
58	Azide-functionalized hollow silica nanospheres for removal of antibiotics. Journal of Colloid and Interface Science, 2015, 444, 38-41.	5.0	30
59	A reconstruction strategy to synthesize mesoporous SAPO molecular sieve single crystals with high MTO catalytic activity. Chemical Communications, 2016, 52, 6463-6466.	2.2	30
60	Methanol conversion on ZSM-22, ZSM-35 and ZSM-5 zeolites: effects of 10-membered ring zeolite structures on methylcyclopentenyl cations and dual cycle mechanism. RSC Advances, 2016, 6, 95855-95864.	1.7	30
61	Methylcyclopentenyl Cations Linking Initial Stage and Highly Efficient Stage in Methanol-to-Hydrocarbon Process. ACS Catalysis, 2020, 10, 4510-4516.	5.5	30
62	SAPO-34 templated by dipropylamine and diisopropylamine: synthesis and catalytic performance in the methanol to olefin (MTO) reaction. New Journal of Chemistry, 2016, 40, 4236-4244.	1.4	29
63	Direct Mechanism of the First Carbon–Carbon Bond Formation in the Methanolâ€ŧoâ€Hydrocarbons Process. Angewandte Chemie, 2017, 129, 9167-9171.	1.6	29
64	Enhancing ethylene selectivity in MTO reaction by incorporating metal species in the cavity of SAPO-34 catalysts. Chinese Journal of Catalysis, 2018, 39, 1821-1831.	6.9	29
65	Synthesis of nanosized SAPO-34 with the assistance of bifunctional amine and seeds. Chemical Communications, 2018, 54, 11160-11163.	2.2	29
66	Organophosphorous surfactant-assistant synthesis of SAPO-34 molecular sieve with special morphology and improved MTO performance. RSC Advances, 2016, 6, 47864-47872.	1.7	28
67	Direct observation of methylcyclopentenyl cations (MCP ⁺) and olefin generation in methanol conversion over TON zeolite. Catalysis Science and Technology, 2016, 6, 89-97.	2.1	28
68	Synthesis of hierarchical beta zeolite by using a bifunctional cationic polymer and the improved catalytic performance. RSC Advances, 2015, 5, 9852-9860.	1.7	27
69	Waterâ€Induced Structural Dynamic Process in Molecular Sieves under Mild Hydrothermal Conditions: Shipâ€inâ€aâ€Bottle Strategy for Acidity Identification and Catalyst Modification. Angewandte Chemie - International Edition, 2020, 59, 20672-20681.	7.2	26
70	Study of crystallization process of SAPO-11 molecular sieve. Chinese Journal of Catalysis, 2013, 34, 593-603.	6.9	25
71	CN and NH Bond Metathesis Reactions Mediated by Carbon Dioxide. ChemSusChem, 2015, 8, 2066-2072.	3.6	24
72	The first carbon-carbon bond formation mechanism in methanol-to-hydrocarbons process over chabazite zeolite. CheM, 2021, 7, 2415-2428.	5.8	24

<u> </u>
Shutao Xu

#	Article	IF	CITATIONS
73	An approach to prepare nanosized HZSM-22 with enhanced lifetime in the methanol to hydrocarbon (MTH) reaction. RSC Advances, 2015, 5, 88928-88935.	1.7	23
74	Understanding the Fundamentals of Microporosity Upgrading in Zeolites: Increasing Diffusion and Catalytic Performances. Advanced Science, 2021, 8, e2100001.	5.6	23
75	Direct structural identification of carbenium ions and investigation of host–guest interaction in the methanol to olefins reaction obtained by multinuclear NMR correlations. Chemical Science, 2017, 8, 8309-8314.	3.7	22
76	Locking of phase transition in MOF ZIF-7: improved selectivity in mixed-matrix membranes for O ₂ /N ₂ separation. Materials Horizons, 2020, 7, 223-228.	6.4	21
77	Role of ball milling during Cs/X catalyst preparation and effects on catalytic performance in side-chain alkylation of toluene with methanol. Chinese Journal of Catalysis, 2020, 41, 1268-1278.	6.9	19
78	Enhanced Propene/Propane Separation by Directional Decoration of the 12â€Membered Rings of Mordenite with ZIF Fragments. Angewandte Chemie - International Edition, 2020, 59, 6765-6768.	7.2	19
79	In Situ Aluminum Migration into Zeolite Framework during Methanol-To-Propylene Reaction: An Innovation To Design Superior Catalysts. Industrial & Engineering Chemistry Research, 2018, 57, 8190-8199.	1.8	18
80	Aluminous ZSM-48 Zeolite Synthesis Using a Hydroisomerization Intermediate Mimicking Allyltrimethylammonium Chloride as a Structure-Directing Agent. Industrial & Engineering Chemistry Research, 2020, 59, 11139-11148.	1.8	18
81	Synthesis and Characterization of Fe-Substituted ZSM-5 Zeolite and Its Catalytic Performance for Alkylation of Benzene with Dilute Ethylene. Industrial & Engineering Chemistry Research, 2020, 59, 22413-22421.	1.8	18
82	Heptamethylbenzenium cation formation and the correlated reaction pathway during methanol-to-olefins conversion over DNL-6. Catalysis Today, 2014, 226, 47-51.	2.2	16
83	Fluorescent cross-linked supramolecular polymers constructed from a novel self-complementary AABB-type heteromultitopic monomer. Organic and Biomolecular Chemistry, 2016, 14, 4039-4045.	1.5	16
84	Increasing the Number of Aluminum Atoms in T ₃ Sites of a Mordenite Zeolite by Lowâ€Pressure SiCl ₄ Treatment to Catalyze Dimethyl Ether Carbonylation. Angewandte Chemie - International Edition, 2022, 61, .	7.2	16
85	The role of water in methane adsorption and diffusion within nanoporous silica investigated by hyperpolarized 129Xe and 1H PFG NMR spectroscopy. Nano Research, 2018, 11, 360-369.	5.8	15
86	Selective Removal of Acid Sites in Mordenite Zeolite by Trimethylchlorosilane Silylation to Improve Dimethyl Ether Carbonylation Stability. ACS Catalysis, 2022, 12, 4491-4500.	5.5	15
87	Revealing the roles of hydrocarbon pool mechanism in ethanol-to-hydrocarbons reaction. Journal of Catalysis, 2022, 413, 517-526.	3.1	15
88	Investigation of the Strong BrÃnsted Acidity in a Novel SAPO-type Molecular Sieve, DNL-6. Journal of Physical Chemistry C, 2015, 119, 2589-2596.	1.5	14
89	Silicoaluminophosphate molecular sieve DNL-6: Synthesis with a novel template, N,N ′-dimethylethylenediamine, and its catalytic application. Chinese Journal of Catalysis, 2018, 39, 1511-1519.	6.9	14
90	Tuning the product selectivity of SAPO-18 catalysts in MTO reaction via cavity modification. Chinese Journal of Catalysis, 2019, 40, 477-485.	6.9	14

SHUTAO XU

#	Article	IF	CITATIONS
91	Differentiating Diffusivity in Different Channels of ZSMâ€5 Zeolite by Pulsed Field Gradient (PFG) NMR. ChemCatChem, 2020, 12, 463-468.	1.8	14
92	Dynamic Activation of C1 Molecules Evoked by Zeolite Catalysis. ACS Central Science, 2021, 7, 681-687.	5.3	14
93	Insights into the aminothermal crystallization process of SAPO-34 and its comparison with hydrothermal system. Microporous and Mesoporous Materials, 2017, 248, 204-213.	2.2	13
94	A novel approach for facilitating the targeted synthesis of silicoaluminophosphates. Journal of Materials Chemistry A, 2018, 6, 24186-24193.	5.2	13
95	A highly efficient Nafion-H catalyst for vapour phase carbonylation of dimethoxymethane. RSC Advances, 2014, 4, 40999-41002.	1.7	12
96	Activity enhancement of Nafion resin: Vapor-phase carbonylation of dimethoxymethane over Nafion-silica composite. Applied Catalysis A: General, 2015, 497, 153-159.	2.2	11
97	Cationic surfactant-assisted hydrothermal synthesis: an effective way to tune the crystalline phase and morphology of SAPO molecular sieves. CrystEngComm, 2015, 17, 8555-8561.	1.3	11
98	Preparation of hierarchical SAPO-18 via alkaline/acid etching. Microporous and Mesoporous Materials, 2020, 300, 110156.	2.2	11
99	Synthesis of mesoporous ZSM-5 using a new gemini surfactant as a mesoporous directing agent: A crystallization transformation process. Chinese Journal of Catalysis, 2014, 35, 1727-1739.	6.9	10
100	Exploring BrÃ,nsted acids confined in the 10-ring channels of the zeolite ferrierite. CrystEngComm, 2018, 20, 699-702.	1.3	10
101	Investigation of Ethanol Conversion on H-ZSM-5 Zeolite by <i>in Situ</i> Solid-State NMR. Energy & Fuels, 2021, 35, 12319-12328.	2.5	10
102	Directly decorated CeY zeolite for O ₂ -selective adsorption in O ₂ /N ₂ separation at ambient temperature. Materials Horizons, 2022, 9, 688-693.	6.4	10
103	Realizing Fast Synthesis of Highâ€Silica Zeolite Y with Remarkable Catalytic Performance. Angewandte Chemie - International Edition, 2022, 61, .	7.2	10
104	Dynamic evolution of Al species in the hydrothermal dealumination process of CHA zeolites. Inorganic Chemistry Frontiers, 2022, 9, 3609-3618.	3.0	10
105	Rapid synthesis of metal-organic frameworks MIL-53(Cr). Materials Letters, 2019, 255, 126519.	1.3	9
106	Capture and identification of coke precursors to elucidate the deactivation route of the methanol-to-olefin process over H-SAPO-34. Chemical Communications, 2020, 56, 8063-8066.	2.2	9
107	Structural investigation of interlayer-expanded zeolite by hyperpolarized 129Xe and 1H NMR spectroscopy. Microporous and Mesoporous Materials, 2019, 288, 109555.	2.2	8
108	Effects of the Pore Structure and Acid–Base Property of X Zeolites on Side-Chain Alkylation of Toluene with Methanol. Industrial & Engineering Chemistry Research, 2021, 60, 14381-14396.	1.8	8

<u> </u>
Shutao Xu

#	Article	IF	CITATIONS
109	Microporous Aluminophosphate ULM-6: Synthesis, NMR Assignment, and Its Transformation to AlPO4-14 Molecular Sieve. Journal of Physical Chemistry C, 2016, 120, 11854-11863.	1.5	7
110	Methylcyclopentenyl cation mediated reaction route in methanol-to-olefins reaction over H-RUB-50 with small cavity. Journal of Energy Chemistry, 2020, 45, 25-30.	7.1	6
111	Progresses of hyperpolarized 129Xe NMR application in porous materials and catalysis. Magnetic Resonance Letters, 2021, 1, 11-27.	0.7	6
112	Designed synthesis of MOR zeolites using gemini-type bis(methylpyrrolidinium) dications as structure directing agents and their DME carbonylation performance. Journal of Materials Chemistry A, 2022, 10, 8334-8343.	5.2	6
113	Increasing the Number of Aluminum Atoms in T ₃ Sites of a Mordenite Zeolite by Lowâ€Pressure SiCl ₄ Treatment to Catalyze Dimethyl Ether Carbonylation. Angewandte Chemie, 2022, 134, .	1.6	6
114	Quantitatively Mapping the Distribution of Intrinsic Acid Sites in Mordenite Zeolite by High-Field ²³ Na Solid-State Nuclear Magnetic Resonance. Journal of Physical Chemistry Letters, 2022, 13, 5186-5194.	2.1	6
115	Direct probing of heterogeneity for adsorption and diffusion within a SAPO-34 crystal. Chemical Communications, 2019, 55, 10693-10696.	2.2	5
116	Waterâ€Induced Structural Dynamic Process in Molecular Sieves under Mild Hydrothermal Conditions: Shipâ€inâ€aâ€Bottle Strategy for Acidity Identification and Catalyst Modification. Angewandte Chemie, 2020, 132, 20853-20862.	1.6	5
117	A facile strategy based on the metal-free design of carbon to deliver an insight into the active sites for liquid phase carbocatalysis. Chemical Communications, 2020, 56, 3789-3792.	2.2	5
118	Electrolyte Solvation Manipulation Enables Unprecedented Roomâ€Temperature Calciumâ€Metal Batteries. Angewandte Chemie, 2020, 132, 12789-12793.	1.6	5
119	Correlating the Adsorption Preference and Mass Transfer of Xenon in RHO-Type Molecular Sieves. Journal of Physical Chemistry C, 2021, 125, 6832-6838.	1.5	5
120	Generating Assembled MFI Nanocrystals with Reduced <i>b</i> â€Axis through Structureâ€Directing Agent Exchange Induced Recrystallization. Angewandte Chemie, 2021, 133, 14078-14087.	1.6	5
121	Influence of Al Coordinates on Hierarchical Structure and T Atoms Redistribution during Base Leaching of ZSM-5. Industrial & Engineering Chemistry Research, 0, , .	1.8	4
122	Mapping the dynamics of methanol and xenon co-adsorption in SWNTs by <i>in situ</i> continuous-flow hyperpolarized ¹²⁹ Xe NMR. Physical Chemistry Chemical Physics, 2019, 21, 3287-3293.	1.3	4
123	Insight into the Dual Cycle Mechanism of Methanol-to-Olefins Reaction over SAPO-34 Molecular Sieve by Isotopic Tracer Studies. Chemical Research in Chinese Universities, 2020, 36, 1203-1208.	1.3	4
124	Revealing the Specific Spatial Confinement in 8â€membered Ring Cageâ€type Molecular Sieves via Solidâ€state NMR and Theoretical Calculations. ChemCatChem, 2021, 13, 1299-1305.	1.8	3
125	Dissolution Equilibrium and In Situ Growth of HMCM-49 in Aqueous-Phase Reaction. Industrial & Engineering Chemistry Research, 2019, 58, 9339-9342.	1.8	2
126	Effect of acid distribution and pore structure of ZSM-5 on catalytic performance. Reaction Chemistry and Engineering, 2022, 7, 2152-2162.	1.9	2

SHUTAO XU

#	Article	IF	CITATIONS
127	Innenrücktitelbild: Direct Mechanism of the First Carbon–Carbon Bond Formation in the Methanolâ€ŧoâ€Hydrocarbons Process (Angew. Chem. 31/2017). Angewandte Chemie, 2017, 129, 9369-9369.	1.6	0
128	Realizing Fast Synthesis of Highâ€Silica Zeolite Y with Remarkable Catalytic Performance. Angewandte Chemie, 0, , .	1.6	0
129	Innentitelbild: Increasing the Number of Aluminum Atoms in T ₃ Sites of a Mordenite Zeolite by Lowâ€Pressure SiCl ₄ Treatment to Catalyze Dimethyl Ether Carbonylation (Angew. Chem. 18/2022). Angewandte Chemie, 2022, 134, .	1.6	0