Hector Manuel Mora Montes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/944227/publications.pdf Version: 2024-02-01

		117625	95266
111	5,103	34	68
papers	citations	h-index	g-index
115	115	115	4796
all docs	docs citations	times ranked	citing authors

Hector Manuel Mora

#	Article	IF	CITATIONS
1	Syk kinase is required for collaborative cytokine production induced through Dectinâ€1 and Tollâ€like receptors. European Journal of Immunology, 2008, 38, 500-506.	2.9	328
2	A Biphasic Innate Immune MAPK Response Discriminates between the Yeast and Hyphal Forms of Candida albicans in Epithelial Cells. Cell Host and Microbe, 2010, 8, 225-235.	11.0	303
3	Immune Recognition of <i>Candida albicans</i> βâ€glucan by Dectinâ€1. Journal of Infectious Diseases, 2007, 196, 1565-1571.	4.0	277
4	Contribution of <i>Candida albicans</i> Cell Wall Components to Recognition by and Escape from Murine Macrophages. Infection and Immunity, 2010, 78, 1650-1658.	2.2	225
5	Functional analysis of Candida albicans CPI-anchored proteins: Roles in cell wall integrity and caspofungin sensitivity. Fungal Genetics and Biology, 2008, 45, 1404-1414.	2.1	212
6	Dendritic Cell Interaction with Candida albicans Critically Depends on N-Linked Mannan. Journal of Biological Chemistry, 2008, 283, 20590-20599.	3.4	209
7	The Genomes of Three Uneven Siblings: Footprints of the Lifestyles of Three Trichoderma Species. Microbiology and Molecular Biology Reviews, 2016, 80, 205-327.	6.6	194
8	Candida parapsilosis: from Genes to the Bedside. Clinical Microbiology Reviews, 2019, 32, .	13.6	182
9	Differential Adaptation of Candida albicans In Vivo Modulates Immune Recognition by Dectin-1. PLoS Pathogens, 2013, 9, e1003315.	4.7	181
10	Recognition and Blocking of Innate Immunity Cells by Candida albicans Chitin. Infection and Immunity, 2011, 79, 1961-1970.	2.2	172
11	<i>Sporothrix schenckii</i> complex and sporotrichosis, an emerging health problem. Future Microbiology, 2011, 6, 85-102.	2.0	156
12	Candida albicans Yeast, Pseudohyphal, and Hyphal Morphogenesis Differentially Affects Immune Recognition. Frontiers in Immunology, 2017, 8, 629.	4.8	125
13	Comparative genomics of the major fungal agents of human and animal Sporotrichosis: Sporothrix schenckii and Sporothrix brasiliensis. BMC Genomics, 2014, 15, 943.	2.8	121
14	Sporotrichosis between 1898 and 2017: The evolution of knowledge on a changeable disease and on emerging etiological agents Medical Mycology, 2018, 56, S126-S143.	0.7	117
15	Endoplasmic Reticulum α-Clycosidases of <i>Candida albicans</i> Are Required for N Glycosylation, Cell Wall Integrity, and Normal Host-Fungus Interaction. Eukaryotic Cell, 2007, 6, 2184-2193.	3.4	116
16	A Multifunctional Mannosyltransferase Family in Candida albicans Determines Cell Wall Mannan Structure and Host-Fungus Interactions. Journal of Biological Chemistry, 2010, 285, 12087-12095.	3.4	106
17	Toll-Like Receptor 9-Dependent Activation of Myeloid Dendritic Cells by Deoxynucleic Acids from <i>Candida albicans</i> . Infection and Immunity, 2009, 77, 3056-3064.	2.2	98
18	Fungal Strategies to Evade the Host Immune Recognition. Journal of Fungi (Basel, Switzerland), 2017, 3, 51.	3.5	86

Hector Manuel Mora

#	Article	IF	CITATIONS
19	Melanin Externalization in Candida albicans Depends on Cell Wall Chitin Structures. Eukaryotic Cell, 2010, 9, 1329-1342.	3.4	85
20	<p>Differential recognition of Candida tropicalis, Candida guilliermondii, Candida krusei, and Candida auris by human innate immune cells</p> . Infection and Drug Resistance, 2019, Volume 12, 783-794.	2.7	83
21	Protein glycosylation in <i>Candida</i> . Future Microbiology, 2009, 4, 1167-1183.	2.0	79
22	Bypassing Pathogenâ€Induced Inflammasome Activation for the Regulation of Interleukinâ€1β Production by the Fungal Pathogen <i>Candida albicans</i> . Journal of Infectious Diseases, 2009, 199, 1087-1096.	4.0	70
23	Current progress in the biology of members of the <i>Sporothrix schenckii</i> complex following the genomic era. FEMS Yeast Research, 2015, 15, fov065.	2.3	67
24	Sporothrix schenckii sensu stricto and Sporothrix brasiliensis Are Differentially Recognized by Human Peripheral Blood Mononuclear Cells. Frontiers in Microbiology, 2017, 8, 843.	3.5	61
25	Differential Virulence of Candida glabrata Glycosylation Mutants*. Journal of Biological Chemistry, 2013, 288, 22006-22018.	3.4	57
26	Role of Protein Glycosylation in Candida parapsilosis Cell Wall Integrity and Host Interaction. Frontiers in Microbiology, 2016, 7, 306.	3.5	57
27	Cell walls of the dimorphic fungal pathogens Sporothrix schenckii and Sporothrix brasiliensis exhibit bilaminate structures and sloughing of extensive and intact layers. PLoS Neglected Tropical Diseases, 2018, 12, e0006169.	3.0	56
28	Tenebrio molitor (Coleoptera: Tenebrionidae) as an alternative host to study fungal infections. Journal of Microbiological Methods, 2015, 118, 182-186.	1.6	54
29	Loss of mannosylphosphate from Candida albicans cell wall proteins results in enhanced resistance to the inhibitory effect of a cationic antimicrobial peptide via reduced peptide binding to the cell surface. Microbiology (United Kingdom), 2009, 155, 1058-1070.	1.8	51
30	Role of the Fungal Cell Wall in Pathogenesis and Antifungal Resistance. Current Fungal Infection Reports, 2012, 6, 275-282.	2.6	46
31	Members of the Candida parapsilosis Complex and Candida albicans are Differentially Recognized by Human Peripheral Blood Mononuclear Cells. Frontiers in Microbiology, 2015, 6, 1527.	3.5	46
32	The immune response against Candida spp. and Sporothrix schenckii. Revista Iberoamericana De Micologia, 2014, 31, 62-66.	0.9	43
33	Disruption of Protein Mannosylation Affects Candida guilliermondii Cell Wall, Immune Sensing, and Virulence. Frontiers in Microbiology, 2016, 7, 1951.	3.5	40
34	Biochemical characterization of recombinant Candida albicans mannosyltransferases Mnt1, Mnt2 and Mnt5 reveals new functions in O- and N-mannan biosynthesis. Biochemical and Biophysical Research Communications, 2012, 419, 77-82.	2.1	39
35	<p>Current Aspects in the Biology, Pathogeny, and Treatment of Candida krusei, a Neglected Fungal Pathogen</p> . Infection and Drug Resistance, 2020, Volume 13, 1673-1689.	2.7	36
36	Phosphorylation regulates polarisation of chitin synthesis in Candida albicans. Journal of Cell Science, 2010, 123, 2199-2206.	2.0	33

HECTOR MANUEL MORA

#	Article	IF	CITATIONS
37	Analysis of Sporothrix schenckii sensu stricto and Sporothrix brasiliensis virulence in Galleria mellonella. Journal of Microbiological Methods, 2016, 122, 73-77.	1.6	33
38	Differences in fungal immune recognition by monocytes and macrophages: N-mannan can be a shield or activator of immune recognition. Cell Surface, 2020, 6, 100042.	3.0	30
39	bcpmr1 encodes a P-type Ca2+/Mn2+-ATPase mediating cell-wall integrity and virulence in the phytopathogen Botrytis cinerea. Fungal Genetics and Biology, 2015, 76, 36-46.	2.1	28
40	FormylBODIPYs: Privileged Building Blocks for Multicomponent Reactions. The Case of the Passerini Reaction. Journal of Organic Chemistry, 2016, 81, 2888-2898.	3.2	28
41	Hydrolysis of Man9GlcNAc2 and Man8GlcNAc2 oligosaccharides by a purified Â-mannosidase from Candida albicans. Glycobiology, 2004, 14, 593-598.	2.5	26
42	Phosphomannosylation and the Functional Analysis of the Extended Candida albicans MNN4-Like Gene Family. Frontiers in Microbiology, 2017, 8, 2156.	3.5	25
43	Purification and biochemica characterisation of endoplasmic reticulum α 1,2-mannosidase from Sporothrix schenckiil. Memorias Do Instituto Oswaldo Cruz, 2010, 105, 79-85.	1.6	24
44	Comparative Analysis of Protein Glycosylation Pathways in Humans and the Fungal PathogenCandida albicans. International Journal of Microbiology, 2014, 2014, 1-16.	2.3	24
45	Isolation and functional characterization of Sporothrix schenckii ROT2, the encoding gene for the endoplasmic reticulum glucosidase II. Fungal Biology, 2012, 116, 910-918.	2.5	23
46	Interactions Between Macrophages and Cell Wall Oligosaccharides of Candida albicans. Methods in Molecular Biology, 2012, 845, 247-260.	0.9	23
47	2D-immunoblotting analysis of Sporothrix schenckii cell wall. Memorias Do Instituto Oswaldo Cruz, 2011, 106, 248-250.	1.6	22
48	Effects of the binding of a Helianthus annuus lectin to Candida albicans cell wall on biofilm development and adhesion to host cells. Phytomedicine, 2019, 58, 152875.	5.3	22
49	Role of protein phosphomannosylation in the Candida tropicalis–macrophage interaction. FEMS Yeast Research, 2018, 18, .	2.3	21
50	Generation of Sporothrix schenckii mutants expressing the green fluorescent protein suitable for the study of host-fungus interactions. Fungal Biology, 2018, 122, 1023-1030.	2.5	21
51	Current trends to control fungal pathogens: exploiting our knowledge in the host–pathogen interaction. Infection and Drug Resistance, 2018, Volume 11, 903-913.	2.7	21
52	Influences of the Culturing Media in the Virulence and Cell Wall of Sporothrix schenckii, Sporothrix brasiliensis, and Sporothrix globosa. Journal of Fungi (Basel, Switzerland), 2020, 6, 323.	3.5	21
53	Silencing of OCH1 unveils the role of Sporothrix schenckii N -linked glycans during the host–fungus interaction. Infection and Drug Resistance, 2019, Volume 12, 67-85.	2.7	20
54	Virulence Factors in <i>Sporothrix schenckii</i> , One of the Causative Agents of Sporotrichosis. Current Protein and Peptide Science, 2020, 21, 295-312.	1.4	18

HECTOR MANUEL MORA

#	Article	IF	CITATIONS
55	Biochemical characterization of Candida albicans α-glucosidase I heterologously expressed in Escherichia coli. Antonie Van Leeuwenhoek, 2010, 98, 291-298.	1.7	17
56	The Heat Shock Protein 60 and Pap1 Participate in the Sporothrix schenckii-Host Interaction. Journal of Fungi (Basel, Switzerland), 2021, 7, 960.	3.5	17
57	Early Virulence Predictors during the Candida Species–Galleria mellonella Interaction. Journal of Fungi (Basel, Switzerland), 2020, 6, 152.	3.5	16
58	Functional characterization of Sporothrix schenckii glycosidases involved in the N-linked glycosylation pathway. Medical Mycology, 2015, 53, 60-68.	0.7	15
59	The Sporothrix schenckii Gene Encoding for the Ribosomal Protein L6 Has Constitutive and Stable Expression and Works as an Endogenous Control in Gene Expression Analysis. Frontiers in Microbiology, 2017, 8, 1676.	3.5	15
60	Coinfection of domestic felines by distinct Sporothrix brasiliensis in the Brazilian sporotrichosis hyperendemic area. Fungal Genetics and Biology, 2020, 140, 103397.	2.1	15
61	Isolation of Sporothrix schenckii MNT1 and the biochemical and functional characterization of the encoded α1,2-mannosyltransferase activity. Microbiology (United Kingdom), 2012, 158, 2419-2427.	1.8	14
62	Tenebrio molitor as an Alternative Model to Analyze the Sporothrix Species Virulence. Infection and Drug Resistance, 2021, Volume 14, 2059-2072.	2.7	14
63	Kex2 protease converts the endoplasmic reticulum α1,2-mannosidase of Candida albicans into a soluble cytosolic form. Microbiology (United Kingdom), 2008, 154, 3782-3794.	1.8	14
64	Antifungal Effect of Novel 2-Bromo-2-Chloro-2-(4-Chlorophenylsulfonyl)-1-Phenylethanone against Candida Strains. Frontiers in Microbiology, 2016, 7, 1309.	3.5	13
65	Purification of Single-Stranded cDNA Based on RNA Degradation Treatment and Adsorption Chromatography. Nucleosides, Nucleotides and Nucleic Acids, 2016, 35, 404-409.	1.1	13
66	Analysis of some immunogenic properties of the recombinant <i>Sporothrix schenckii</i> Gp70 expressed in <i>Escherichia coli</i> . Future Microbiology, 2019, 14, 397-410.	2.0	13
67	Comparison of Cell Wall Polysaccharide Composition and Structure Between Strains of Sporothrix schenckii and Sporothrix brasiliensis. Frontiers in Microbiology, 2021, 12, 726958.	3.5	13
68	Disruption of protein rhamnosylation affects the Sporothrix schenckii-host interaction. Cell Surface, 2021, 7, 100058.	3.0	13
69	Effect of serine protease KEX2 on Candida albicans virulence under halogenated methyl sulfones. Future Microbiology, 2017, 12, 285-306.	2.0	12
70	Loss of Kex2 Affects the Candida albicans Cell Wall and Interaction with Innate Immune Cells. Journal of Fungi (Basel, Switzerland), 2020, 6, 57.	3.5	12
71	Transcriptome-wide expression profiling of Sporothrix schenckii yeast and mycelial forms and the establishment of the Sporothrix Genome DataBase. Microbial Genomics, 2020, 6, .	2.0	12
72	Role of Protein Glycosylation in Interactions of Medically Relevant Fungi with the Host. Journal of Fungi (Basel, Switzerland), 2021, 7, 875.	3.5	12

HECTOR MANUEL MORA

#	Article	IF	CITATIONS
73	Biological and Clinical Attributes of Sporothrix globosa, a Causative Agent of Sporotrichosis. Infection and Drug Resistance, 2022, Volume 15, 2067-2090.	2.7	12
74	Purification of soluble α1,2-mannosidase fromCandida albicansCAI-4. FEMS Microbiology Letters, 2006, 256, 50-56.	1.8	11
75	Isolation of Sporothrix schenckii GDA1 and functional characterization of the encoded guanosine diphosphatase activity. Archives of Microbiology, 2013, 195, 499-506.	2.2	11
76	Mucormycosis and COVID-19-Associated Mucormycosis: Insights of a Deadly but Neglected Mycosis. Journal of Fungi (Basel, Switzerland), 2022, 8, 445.	3.5	11
77	Role of Protein Mannosylation in the Candida tropicalis-Host Interaction. Frontiers in Microbiology, 2019, 10, 2743.	3.5	10
78	Synthesis, Photophysical Study, and Biological Application Analysis of Complex Borondipyrromethene Dyes. ACS Omega, 2018, 3, 7783-7797.	3.5	9
79	Polysialic acid is expressed in human naÃ⁻ve CD4+ T cells and is involved in modulating activation. Glycobiology, 2019, 29, 557-564.	2.5	9
80	Heterologous expression and biochemical characterization of an α1,2-mannosidase encoded by the Candida albicans MNS1 gene. Memorias Do Instituto Oswaldo Cruz, 2008, 103, 724-730.	1.6	8
81	Group X hybrid histidine kinase Chk1 is dispensable for stress adaptation, host–pathogen interactions and virulence in the opportunistic yeast Candida guilliermondii. Research in Microbiology, 2017, 168, 644-654.	2.1	8
82	Investigation of OCH1 in the Virulence of Candida parapsilosis Using a New Neonatal Mouse Model. Frontiers in Microbiology, 2017, 8, 1197.	3.5	8
83	Conversion of α1,2-mannosidase E-I from Candida albicans to α1,2-mannosidase E-II by limited proteolysis. Antonie Van Leeuwenhoek, 2008, 93, 61-69.	1.7	7
84	Saccharomyces cerevisiae KTR4, KTR5 and KTR7 encode mannosyltransferases differentially involved in the N- and O-linked glycosylation pathways. Research in Microbiology, 2017, 168, 740-750.	2.1	7
85	New antifungal 4-chloro-3-nitrophenyldifluoroiodomethyl sulfone reduces the Candida albicans pathogenicity in the Galleria mellonella model organism. Brazilian Journal of Microbiology, 2020, 51, 5-14.	2.0	7
86	Mechanochemistry as a Sustainable Method for the Preparation of Fluorescent Ugi BODIPY Adducts. European Journal of Organic Chemistry, 2021, 2021, 253-265.	2.4	7
87	Genome-Wide Mutant Screening in Yeast Reveals that the Cell Wall is a First Shield to Discriminate Light From Heavy Lanthanides. Frontiers in Microbiology, 2022, 13, .	3.5	7
88	Reporters for the analysis of N-glycosylation in Candida albicans. Fungal Genetics and Biology, 2013, 56, 107-115.	2.1	6
89	The Endoplasmic Reticulum Alpha-Glycosidases as Potential Targets for Virus Control. Current Protein and Peptide Science, 2017, 18, 1090-1097.	1.4	6

90 The Secretory Pathway in the Filamentous Fungus Trichoderma. , 2014, , 115-121.

5

Hector Manuel Mora

#	Article	IF	CITATIONS
91	Special Issue "Sporothrix and Sporotrichosis― Journal of Fungi (Basel, Switzerland), 2018, 4, 116.	3.5	5
92	Generation of a synthetic binary plasmid that confers resistance to nourseothricin for genetic engineering of Sporothrix schenckii. Plasmid, 2018, 100, 1-5.	1.4	5
93	Current Models to Study the Sporothrix-Host Interaction. Frontiers in Fungal Biology, 2022, 3, .	2.0	4
94	Sporothrix and Sporotrichosis. , 2017, , 309-331.		3
95	Functional characterization of the Sporothrix schenckii Ktr4 and Ktr5, mannosyltransferases involved in the N-linked glycosylation pathway. Research in Microbiology, 2018, 169, 188-197.	2.1	3
96	Human adenovirus type 5 increases host cell fucosylation and modifies Ley antigen expression. Glycobiology, 2019, 29, 469-478.	2.5	3
97	The Search for Cryptic L-Rhamnosyltransferases on the Sporothrix schenckii Genome. Journal of Fungi (Basel, Switzerland), 2022, 8, 529.	3.5	3
98	ALG1-CDG Caused by Non-functional Alternative Splicing Involving a Novel Pathogenic Complex Allele. Frontiers in Genetics, 2021, 12, 744884.	2.3	2
99	Editorial: Recent Advances in the Study of the Host-Fungus Interaction. Frontiers in Microbiology, 2016, 7, 1694.	3.5	1
100	A Perspective on the Role of Proteins and Peptides in the Virulence and Pathogenesis. Current Protein and Peptide Science, 2019, 20, 960-961.	1.4	1
101	Overexpression of the celA1 gene in BCG modifies surface pellicle, glucosamine content in biofilms, and affects in vivo replication. Tuberculosis, 2020, 125, 102005.	1.9	1
102	Proteins as Virulence Factors and Immune Modulators During the Host-Fungus Interaction. Current Protein and Peptide Science, 2020, 21, 226-226.	1.4	1
103	Non-functional alternative splicing caused by a Latino pathogenic variant in a case of PMM2-CDG. Molecular Genetics and Metabolism Reports, 2021, 28, 100781.	1.1	1
104	Editorial: Role of Proteins and Peptides in the Virulence and Pathogenesis of Human and Plant Pathogens - PART I. Current Protein and Peptide Science, 2017, 18, 974-975.	1.4	0
105	Editorial: Role of Proteins and Peptides in the Virulence and Pathogenesis of Human and Plant Pathogens – PART II. Current Protein and Peptide Science, 2017, 18, 1064.	1.4	Ο
106	The Cell Wall of Medically Relevant Yeasts and Molds. , 2021, , 12-22.		0
107	Aislamiento y caracterización bioquÃmica de la α-glucosidasa II del hongo patógeno Candida albicans. Acta Universitaria, 2012, 21, 5-10.	0.2	0
108	When Glycobiology and Immunology Work Together: The Immunoglycobiology of Fungal Immune Sensing. Journal of Glycobiology, 2012, 01, .	0.2	0

#	Article	IF	CITATIONS
109	Exploring the Protein Glycosylation Pathways to Find New Therapeutic Alternatives. Journal of Glycobiology, 2015, 03, .	0.2	Ο
110	A perspective on the role of proteins and peptides in the virulence and pathogenesis. Current Protein and Peptide Science, 2019, 20, .	1.4	0
111	Editorial: The Role of Glycans in Infectious Disease. Frontiers in Microbiology, 2022, 13, .	3.5	Ο