Markus Rettenmayr

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9441729/publications.pdf

Version: 2024-02-01

567281 677142 48 604 15 22 citations g-index h-index papers 48 48 48 511 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Microstructure and morphology of Si crystals grown in pure Si and Al–Si melts. Journal of Physics Condensed Matter, 2022, 34, 094002.	1.8	11
2	Thermodynamic description of metastable fcc/liquid phase equilibria and solidification kinetics in Al-Cu alloys. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2022, 380, 20200327.	3.4	3
3	Modelling of liquid film migration in Al-Cu alloys. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2022, 380, 20200328.	3.4	1
4	Simulation of the Peritectic Phase Transition in Fe-C Alloys. Materials, 2022, 15, 537.	2.9	1
5	Amorphization and nanocrystal formation in a Pd–Ni–Cu–P alloy after cooling under different conditions. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2022, 380, 20200321.	3.4	7
6	On/off directional solidification of near peritectic TRIS-NPG with a planar but tilted solid/liquid interface under microgravity conditions. Scripta Materialia, 2022, 214, 114683.	5.2	3
7	Mathematical modeling of dendrite growth in an Al–Ge alloy with convective flow. Mathematical Methods in the Applied Sciences, 2022, 45, 8069-8081.	2.3	2
8	Joining of SiO2 glass and 316L stainless steel using Bi–Ag-based active solders. Journal of Materials Science, 2021, 56, 3444-3454.	3.7	8
9	Nucleation behaviour and microstructure of single Al-Si12 powder particles rapidly solidified in a fast scanning calorimeter. Journal of Materials Science, 2021, 56, 12881-12897.	3.7	14
10	Nucleation Behavior of a Single Al-20Si Particle Rapidly Solidified in a Fast Scanning Calorimeter. Materials, 2021, 14, 2920.	2.9	5
11	The shape of dendritic tips: a test of theory with computations and experiments. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2021, 379, 20200326.	3.4	22
12	Dendrite tips as elliptical paraboloids. Journal of Physics Condensed Matter, 2021, 33, 443002.	1.8	9
13	Effects of local nonequilibrium in rapid eutectic solidification—Part 2: Analysis of effects and comparison to experiment. Mathematical Methods in the Applied Sciences, 2021, 44, 12271.	2.3	3
14	Resolidification of a mushy-zone and directional solidification: a method for efficient alloy development demonstrated using the example of Cu–Ga–Sn. Scientific Reports, 2020, 10, 21705.	3.3	3
15	Phase field analysis of the growth of fast and slow crystallites. European Physical Journal: Special Topics, 2020, 229, 433-437.	2.6	5
16	Theoretical modeling of crystalline symmetry order with dendritic morphology. European Physical Journal: Special Topics, 2020, 229, 275-286.	2.6	15
17	Simultaneous melting and solidification of a columnar dendritic microstructure in a temperature gradient: Numerical modeling and experimentsa. European Physical Journal E, 2020, 43, 5.	1.6	2
18	Diffusionless (chemically partitionless) crystallization and subsequent decomposition of supersaturated solid solutions in Sn–Bi eutectic alloy. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2019, 377, 20180204.	3.4	32

#	Article	IF	CITATIONS
19	Effect of Heat Treatment Combined with an Alternating Magnetic Field on Microstructure and Mechanical Properties of a Ni-Based Superalloy. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2019, 50, 1837-1850.	2.2	6
20	Solute trapping in non-equilibrium solidification: A comparative model study. Materialia, 2019, 6, 100256.	2.7	12
21	Microstructural evolution during temperature gradient zone melting: Cellular automaton simulation and experiment. Computational Materials Science, 2018, 146, 204-212.	3.0	31
22	Modeling of melting and resolidification of equiaxed microstructures in a temperature gradient. Scripta Materialia, 2018, 151, 28-32.	5.2	11
23	Kinetic transition in the order–disorder transformation at a solid/liquid interface. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2018, 376, 20170207.	3.4	12
24	A phase-field study on the peritectic phase transition in Fe-C alloys. Acta Materialia, 2017, 132, 565-575.	7.9	31
25	Alternating-magnetic-field induced enhancement of diffusivity in Ni-Cr alloys. Scientific Reports, 2017, 7, 18085.	3.3	15
26	Interaction of local solidification and remelting during dendrite coarsening - modeling and comparison with experiments. Scientific Reports, 2017, 7, 17809.	3.3	17
27	Quaternary Al-Cu-Mg-Si Q Phase: Sample Preparation, Heat Capacity Measurement and First-Principles Calculations. Journal of Phase Equilibria and Diffusion, 2016, 37, 119-126.	1.4	12
28	Reactive wetting of alumina by Ti-rich Ni–Ti–Zr alloys. Journal of Materials Science, 2016, 51, 3693-3700.	3.7	19
29	Liquid droplet migration under static and dynamic conditions: Analytical model, phase-field simulation and experiment. Acta Materialia, 2015, 86, 229-239.	7.9	29
30	Diffusion in a temperature gradient – A single cycle method to determine frequency factor and activation energy of solid diffusion coefficients in alloys. Acta Materialia, 2015, 95, 212-215.	7.9	7
31	Resolidification of the mushy zone of multiphase and multicomponent alloys in a temperature gradient – Experiments and modeling. Acta Materialia, 2015, 91, 34-40.	7.9	25
32	Local supersaturation during melting in a temperature gradient. Philosophical Magazine Letters, 2014, 94, 696-701.	1.2	4
33	Local melting/solidification during peritectic solidification in a steep temperature gradient: analysis of a directionally solidified Al–25at%Ni. Applied Physics A: Materials Science and Processing, 2014, 116, 1821-1831.	2.3	9
34	Simulation of Liquid Film Migration during Melting. Materials Science Forum, 2014, 790-791, 127-132.	0.3	3
35	Influence of time-variant temperature gradients on resolidifying mushy zones. Journal of Crystal Growth, 2014, 408, 49-53.	1.5	11
36	Experimental determination of the nucleation rate of melt in a solid solution. Acta Materialia, 2014, 72, 32-40.	7.9	9

3

#	Article	IF	CITATION
37	Quantitative Modeling of Fibrinogen Adsorption on Different Biomaterials. Cellular and Molecular Bioengineering, 2013, 6, 210-219.	2.1	4
38	Transient growth of solid nuclei in the liquid $\hat{a} \in$ A numerical study on early stages of solidification. Journal of Crystal Growth, 2013, 382, 26-30.	1.5	1
39	Evaluation of wettability and surface energy of native Nitinol surfaces in relation to hemocompatibility. Materials Science and Engineering C, 2013, 33, 127-132.	7.3	24
40	The Li–C phase equilibria. International Journal of Materials Research, 2013, 104, 1066-1078.	0.3	14
41	Advance in Orientation Microscopy: Quantitative Analysis of Nanocrystalline Structures. ACS Nano, 2011, 5, 2580-2586.	14.6	37
42	Observation of early melting stages of an Al – Cu alloy in a temperature gradient. International Journal of Materials Research, 2011, 102, 1226-1231.	0.3	17
43	Characterization of precipitate evolution in an artificially aged Al–Zn–Mg–Sc–Zr alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2010, 527, 1068-1073.	5.6	47
44	Predicting microsegregation in multicomponent aluminum alloys $\hat{a}\in$ progress in thermodynamic consistency. International Journal of Materials Research, 2010, 101, 1398-1404.	0.3	3
45	Nitinol Surfaces for Implantation. Journal of Materials Engineering and Performance, 2009, 18, 470-474.	2.5	16
46	Solidification and melting processes â€" one of the fundamental asymmetries in nature. Transactions of the Indian Institute of Metals, 2009, 62, 265-268.	1.5	1
47	Characterization of grain structure in nanocrystalline gadolinium by high-resolution transmission electron microscopy. Journal of Materials Research, 2009, 24, 342-346.	2.6	21
48	Modeling rapid liquid/solid and solid/liquid phase transformations in Al alloys. International Journal of Materials Research, 2008, 99, 613-617.	0.3	10