List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9441388/publications.pdf Version: 2024-02-01

	218592	315616
1,811	26	38
citations	h-index	g-index
100	100	11.40
132	132	1149
docs citations	times ranked	citing authors
	citations 132	1,81126citationsh-index132132

#	Article	IF	CITATIONS
1	Dissolution Mechanism of Platinum in Sulfuric Acid Solution. Journal of the Electrochemical Society, 2012, 159, F779-F786.	1.3	124
2	Pit Initiation Mechanism at MnS Inclusions in Stainless Steel: Synergistic Effect of Elemental Sulfur and Chloride Ions. Journal of the Electrochemical Society, 2013, 160, C511-C520.	1.3	115
3	A Microelectrochemical System for In Situ High-Resolution Optical Microscopy: Morphological Characteristics of Pitting at MnS Inclusion in Stainless Steel. Journal of the Electrochemical Society, 2012, 159, C341-C350.	1.3	92
4	Fabrication of nanoporous copper by dealloying amorphous binary Ti–Cu alloys in hydrofluoric acid solutions. Intermetallics, 2012, 29, 14-20.	1.8	62
5	Pit initiation on sensitized Type 304 stainless steel under applied stress: Correlation of stress, Cr-depletion, and inclusion dissolution. Corrosion Science, 2020, 167, 108506.	3.0	54
6	Effect of atmospheric aging on dissolution of MnS inclusions and pitting initiation process in type 304 stainless steel. Corrosion Science, 2016, 106, 25-34.	3.0	51
7	EQCM Study on Dissolution of Ruthenium in Sulfuric Acid. Journal of the Electrochemical Society, 2008, 155, 8897.	1.3	48
8	Morphological Characteristics of Trenching around MnS Inclusions in Type 316ÂStainless Steel: The Role of Molybdenum in Pitting Corrosion Resistance. Journal of the Electrochemical Society, 2019, 166, C3081-C3089.	1.3	44
9	Direct Observation of Pit Initiation Process on Type 304 Stainless Steel. Materials Transactions, 2014, 55, 857-860.	0.4	43
10	Microelectrochemical Aspects of Interstitial Carbon in Type 304 Stainless Steel: Improving Pitting Resistance at MnS Inclusion. Journal of the Electrochemical Society, 2015, 162, C270-C278.	1.3	41
11	Simultaneous visualization of pH and Clâ^ distributions inside the crevice of stainless steel. Corrosion Science, 2016, 106, 298-302.	3.0	40
12	Fabrication of nanoporous copper by dealloying of amorphous Ti–Cu–Ag alloys. Journal of Alloys and Compounds, 2014, 586, S134-S138.	2.8	39
13	Real-Time Microelectrochemical Observations of Very Early Stage Pitting on Ferrite-Pearlite Steel in Chloride Solutions. Journal of the Electrochemical Society, 2017, 164, C261-C268.	1.3	39
14	Improvement of Pitting Corrosion Resistance of Type 316L Stainless Steel by Potentiostatic Removal of Surface MnS Inclusions. International Journal of Corrosion, 2012, 2012, 1-6.	0.6	37
15	Effects of Corrosion and Cracking of Sulfide Inclusions on Pit Initiation in Stainless Steel. Journal of the Electrochemical Society, 2014, 161, C494-C500.	1.3	37
16	Effectiveness of an intercritical heat-treatment on localized corrosion resistance at the microstructural boundaries of medium-carbon steels. Corrosion Science, 2019, 154, 159-177.	3.0	37
17	Visualization of pH and pCl Distributions: Initiation and Propagation Criteria for Crevice Corrosion of Stainless Steel. Journal of the Electrochemical Society, 2012, 159, C289-C297.	1.3	36
18	Nanoporous palladium fabricated from an amorphous Pd42.5Cu30Ni7.5P20 precursor and its ethanol electro-oxidation performance. Electrochimica Acta, 2013, 108, 512-519.	2.6	36

#	Article	IF	CITATIONS
19	Pitting Corrosion Resistance of Martensite of AISI 1045 Steel and the Beneficial Role of Interstitial Carbon. Journal of the Electrochemical Society, 2017, 164, C962-C972.	1.3	36
20	Effects of the initial microstructure of Ti–Cu alloys on final nanoporous copper via dealloying. Journal of Alloys and Compounds, 2013, 557, 166-171.	2.8	32
21	Bimodal nanoporous nickel prepared by dealloying Ni38Mn62 alloys. Intermetallics, 2012, 31, 157-164.	1.8	31
22	Pitting at inclusions of the equiatomic CoCrFeMnNi alloy and improving corrosion resistance by potentiodynamic polarization in H2SO4. Corrosion Science, 2021, 191, 109748.	3.0	31
23	Elaboration of nanoporous copper by modifying surface diffusivity by the minor addition of gold. Microporous and Mesoporous Materials, 2013, 165, 257-264.	2.2	30
24	The Role of Oxide Films on TiS and Ti ₄ C ₂ S ₂ Inclusions in the Pitting Corrosion Resistance of Stainless Steels. Journal of the Electrochemical Society, 2013, 160, C262-C269.	1.3	29
25	In situ monitoring of crevice corrosion morphology of Type 316L stainless steel and repassivation behavior induced by sulfate ions. Corrosion Science, 2017, 127, 131-140.	3.0	29
26	Passivity of (Mn,Cr)S inclusions in type 304 stainless steel: The role of Cr and the critical concentration for preventing inclusion dissolution in NaCl solution. Corrosion Science, 2020, 176, 109060.	3.0	28
27	Nickel-stabilized nanoporous copper fabricated from ternary TiCuNi amorphous alloys. Materials Letters, 2013, 94, 128-131.	1.3	27
28	Effects of pH on Dissolution and Surface Area Loss of Platinum Due to Potential Cycling. Journal of the Electrochemical Society, 2012, 159, C190-C194.	1.3	26
29	Local Electrochemistry and In Situ Microscopy of Pitting at Sensitized Grain Boundary of Type 304 Stainless Steel in NaCl Solution. Journal of the Electrochemical Society, 2017, 164, C779-C787.	1.3	25
30	First-principles analysis of the inhibitive effect of interstitial carbon on an active dissolution of martensitic steel. Corrosion Science, 2020, 163, 108251.	3.0	25
31	Cerium addition to CaS inclusions in stainless steel: Insolubilizing water-soluble inclusions and improving pitting corrosion resistance. Corrosion Science, 2021, 180, 109222.	3.0	25
32	Dealloying behavior of amorphous binary Ti–Cu alloys in hydrofluoric acid solutions at various temperatures. Journal of Alloys and Compounds, 2013, 581, 567-572.	2.8	23
33	Anodic Polarization Characteristics and Electrochemical Properties of Fe ₃ C in Chloride Solutions. Journal of the Electrochemical Society, 2019, 166, C345-C351.	1.3	22
34	Micro-electrochemical investigation on the role of Mg in sacrificial corrosion protection of 55mass%Al-Zn-Mg coated steel. Corrosion Science, 2017, 129, 126-135.	3.0	20
35	Artificial MnS Inclusions in Stainless Steel: Fabrication by Spark Plasma Sintering and Corrosion Evaluation by Microelectrochemical Measurements. ISIJ International, 2020, 60, 196-198.	0.6	20
36	Fabrication of Ultrafine Nanoporous Copper by the Minor Addition of Gold. Materials Transactions, 2012, 53, 1765-1769.	0.4	19

#	Article	IF	CITATIONS
37	Improving Pitting Corrosion Resistance at Inclusions and Ductility of a Martensitic Medium-Carbon Steel: Effectiveness of Short-Time Tempering. Journal of the Electrochemical Society, 2018, 165, C711-C721.	1.3	19
38	Mechanism for the Morphological Change from Trenching to Pitting around Intermetallic Particles in AA1050 Aluminum. Journal of the Electrochemical Society, 2019, 166, C19-C32.	1.3	18
39	The role of applied stress in the anodic dissolution of sulfide inclusions and pit initiation of stainless steels. Corrosion Science, 2021, 183, 109312.	3.0	18
40	Effect of anodizing on galvanic corrosion resistance of Al coupled to Fe or type 430 stainless steel in diluted synthetic seawater. Corrosion Science, 2021, 179, 109145.	3.0	17
41	A Methodology for Fabrication of Highly Pitting Corrosion-Resistant Type 304 Stainless Steel by Plasma Carburizing and Post-Pickling Treatment. Journal of the Electrochemical Society, 2018, 165, C441-C449.	1.3	16
42	Pitting at the δÎγ Boundary of Type 304 Stainless Steel in NaCl Solution: The Role of Oxide Inclusions and Segregation. Journal of the Electrochemical Society, 2017, 164, C991-C1002.	1.3	14
43	Morphological Change and Open-circuit Potential of Single Metastable Pit on AA1050 Aluminum in NaCl Solution. Journal of the Electrochemical Society, 2021, 168, 021504.	1.3	14
44	Roles of Interstitial Nitrogen, Carbon, and Boron in Steel Corrosion: Generation of Oxyanions and Stabilization of Electronic Structure. Journal of the Electrochemical Society, 2020, 167, 081503.	1.3	13
45	Effect of Sensitization on Pitting Corrosion at MnS and CrS in Type 304 Stainless Steel. Journal of the Electrochemical Society, 2021, 168, 091504.	1.3	13
46	Micro-Electrochemical Properties of CeS Inclusions in Stainless Steel and Inhibiting Effects of Ce ³⁺ Ions on Pitting. Journal of the Electrochemical Society, 2017, 164, C901-C910.	1.3	12
47	Galvanic Corrosion of AA5083/Fe in Diluted Synthetic Seawater: Effect of Anodizing on Local Electrochemistry on and around Al _₆ (Fe,Mn) on Al-Matrix. Journal of the Electrochemical Society, 2022, 169, 020550.	1.3	12
48	Dependency of the formation of Au-stabilized nanoporous copper on the dealloying temperature. Microporous and Mesoporous Materials, 2014, 186, 181-186.	2.2	11
49	Relationships between Pitting Corrosion Potentials and MnS Dissolution of 5–18 Mass% Cr Steels. Journal of the Electrochemical Society, 2018, 165, C732-C742.	1.3	11
50	Beneficial role of retained austenite in pitting corrosion resistance of Fe-C-Si-Mn steel in chloride environments. Corrosion Science, 2022, 200, 110251.	3.0	11
51	Detection of Hydrogen Distribution in Pure Iron Using WO ₃ Thin Film. ISIJ International, 2018, 58, 1860-1867.	0.6	10
52	Real-time in situ observation of the corrosion process of die-cast AZ91D magnesium alloy in NaCl solutions under galvanostatic polarization. Corrosion Science, 2021, 192, 109834.	3.0	10
53	First-Principles Investigation on Work Function of Martensitic Carbon Steels: Effect of Interstitial Carbon on Anodic Dissolution Resistance. Journal of the Electrochemical Society, 2021, 168, 111503.	1.3	10
54	High-Temperature Heat-Treatment at 1673 K: Improvement of Pitting Corrosion Resistance at Inclusions of Type 304 Stainless Steel under Applied Stress. Materials Transactions, 2022, 63, 265-268.	0.4	10

#	Article	IF	CITATIONS
55	A Microelectrochemical Approach to Understanding Hydrogen Absorption into Steel during Pitting Corrosion. ISIJ International, 2016, 56, 495-497.	0.6	9
56	Dealloying Behaviours of an Equiatomic TiCu Alloy. Materials Transactions, 2013, 54, 1120-1125.	0.4	8
57	Improving the Pitting Corrosion Resistance of AA1050 Aluminum by Removing Intermetallic Particles during Conversion Treatments. Materials Transactions, 2021, 62, 1160-1167.	0.4	8
58	Formation of Pt Skin Layer on Ordered and Disordered Pt-Co Alloys and Corrosion Resistance in Sulfuric Acid. Electrocatalysis, 2018, 9, 539-549.	1.5	7
59	Elucidating Electrochemical Properties at the Boundary between MnS and Steel Matrix: Towards the Improvement of Pitting Corrosion Resistance of Stainless Steels. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 2019, 105, 207-214.	0.1	7
60	A Corrosion Resistant Sintered Stainless Steel: Type 304L Containing Mo-Rich Phases. Materials Transactions, 2020, 61, 2248-2251.	0.4	7
61	Evaluation of the optimal exposure settings for occlusal photography with digital cameras. Pediatric Dental Journal, 2014, 24, 89-96.	0.3	6
62	Challenges and Prospects in Corrosion Science and Technology. Materia Japan, 2017, 56, 175-179.	0.1	6
63	NH ₄ ⁺ Generation: The Role of NO ₃ ^{â^`} in the Crevice Corrosion Repassivation of Type 316L Stainless Steel. Journal of the Electrochemical Society, 2019, 166, C250-C260.	1.3	6
64	Microelectrochemistry of Sulfide Inclusions and Pit Initiation Mechanisms of Stainless Steels. Hyomen Kagaku, 2015, 36, 18-23.	0.0	5
65	Micro-ElectrochemicalIn SituObservation of Pit Initiation at Precipitates in AA5182 Al-Mg Alloy in 0.1 M NaCl. ECS Transactions, 2017, 80, 553-564.	0.3	5
66	Effect of Impurity Elements on Localized Corrosion of Zirconium in Chloride Containing Environment. Journal of the Electrochemical Society, 2020, 167, 141507.	1.3	5
67	Effect of Applied Stress on Pitting Corrosion Behavior of Type 304 Stainless Steel in Chloride Environment. ECS Transactions, 2017, 80, 1407-1413.	0.3	4
68	Roles of Alloying Elements in the Corrosion Resistance of Equiatomic CoCrFeMnNi High-Entropy Alloy and Application to Corrosion-Resistant Alloy Design. Materials Transactions, 2021, 62, 1677-1680.	0.4	4
69	High-Temperature Annealing of Ferritic Stainless Steel: Modification of Sulfide Inclusion Properties and Inhibition of Inclusion Dissolution. Zairyo To Kankyo/ Corrosion Engineering, 2020, 69, 194-198.	0.0	4
70	Nanoporous Copper Dealloyed from a Nanocrystallized Ticu Alloy. Materials Science Forum, 2013, 750, 72-75.	0.3	3
71	Microelectrochemical Study on the Surface Oxidation of Pt: The Effects of Crystal Orientation and Grain Boundary. Materials Transactions, 2014, 55, 735-738.	0.4	3
72	Effect of Phosphate and Chromate Pigments on Sacrificial Corrosion Protection by Al–Zn Coating and Delamination Mechanism of Pre-painted Galvalume Steel. ISIJ International, 2016, 56, 2267-2275.	0.6	3

#	Article	IF	CITATIONS
73	â¢. Advanced Electrochemical Methods for Corrosion Study―Micro-scale Polarization―. Zairyo To Kankyo/ Corrosion Engineering, 2018, 67, 197-203.	0.0	3
74	Visualization of Solution Chemistry inside Crevice by pH and pCl Sensing Plates. ECS Transactions, 2012, 41, 205-216.	0.3	2
75	Uniform Evolution of Nanoporosity on Amorphous Ti–Cu Alloys. Journal of Nanoscience and Nanotechnology, 2014, 14, 7879-7883.	0.9	2
76	Corrosion Resistance of a Free-Cutting Soft-Magnetic Stainless Steel in Pure Water. Materials Transactions, 2015, 56, 1814-1820.	0.4	2
77	Improved Responsivity and Sensitivity of Hydrogen Mapping Technique in Pure Iron Using WO ₃ Thin Film by Control of Pd Intermediate Layer. ISIJ International, 2021, 61, 1201-1208.	0.6	2
78	Role of CaS Inclusions in Pitting Initiation of Carbon Steel: Triggering Steel Depassivation. ISIJ International, 2022, 62, 750-757.	0.6	2
79	Development of a New Microelectrochemical Measurement System for In Situ Optical Microscopic Observation of Pit Initiation Processes. ECS Transactions, 2012, 41, 237-245.	0.3	1
80	Electrochemical Roles of Anti-corrosive Pigments in Sacrificial Corrosion Protection of Painted Galvanized Steel and their Relation to Organic Coating Delamination. ISIJ International, 2015, 55, 2443-2449.	0.6	1
81	Electrochemical Passivation for Sm2Fe17N3 Magnetic Powders in Non-Aqueous Solvents. Electrochimica Acta, 2017, 224, 386-396.	2.6	1
82	Observations on Pit Initiation Behavior of Carbon Steel Using Microelectrochemical System with Confocal Laser Scanning Microscopy. Zairyo To Kankyo/ Corrosion Engineering, 2018, 67, 497-501.	0.0	1
83	Electrochemical Properties of Microstructures of Carbon Steels and Metallurgical Approaches for Improving Corrosion Resistance. Materia Japan, 2021, 60, 784-792.	0.1	1
84	Effect of Ni Addition on Corrosion Behavior of Weathering Steels Under Rust Layers in a Wet-Dry Cyclic Environment Containing Chloride Ions. ECS Meeting Abstracts, 2020, MA2020-02, 3562-3562.	0.0	1
85	â¢. Advanced Electrochemical Methods for Corrosion Study―Electrochemical Quartz Crystal Microbalance―. Zairyo To Kankyo/ Corrosion Engineering, 2018, 67, 156-161.	0.0	0
86	Micro-electrochemical Properties and Pitting Corrosion Resistance of Microstructures of Carbon Steels. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 2021, 107, .	0.1	0
87	Role of CaS Inclusions in Pitting Initiation of Carbon Steel: Triggering Steel Depassivation. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 2021, , .	0.1	0
88	141 Study of Methanol Fueled Single-Chamber SOFC for Intermediate-Temperature Operation. The Proceedings of Conference of Tohoku Branch, 2011, 2011.46, 86-87.	0.0	0
89	Change in pH and Chloride Concentration inside Crevice of Stainless Steels. ECS Meeting Abstracts, 2018, , .	0.0	0
90	Effects of Severe Plastic Deformation and Interstitial Carbon on Corrosion Resistance of Steel. ECS Meeting Abstracts, 2018, , .	0.0	0

#	Article	IF	CITATIONS
91	The Role of Nitrate lons in Repassivation of Crevice Corrosion on Type 316L Stainless Steel. ECS Meeting Abstracts, 2018, , .	0.0	0
92	Effect of Applied Stress on Pit Initiation of Sensitized Type 304 Stainless Steel in Chloride Solution. ECS Meeting Abstracts, 2018, , .	0.0	0
93	The Role of Pitting at Mns Inclusions in Intergranular Corrosion of Sensitized Type 304 Stainless Steel in NaCl Solution. ECS Meeting Abstracts, 2018, , .	0.0	0
94	In Situ Microscopic Observation of Pitting Corrosion Behavior of A1050-O. ECS Meeting Abstracts, 2018, , .	0.0	0
95	Effect of Molybdenum on Pit Initiation at Manganese Sulfide Inclusions in Stainless Steel. ECS Meeting Abstracts, 2018, , .	0.0	0
96	The Effect of Interstitial Carbon on Pitting Corrosion Resistance of Martensitic Carbon Steels. ECS Meeting Abstracts, 2018, , .	0.0	0
97	Spatially-Resolved Detection of Hydrogen Absorbed into Pure Iron Using Electrochromic Tungsten Oxide Thin Film. ECS Meeting Abstracts, 2018, , .	0.0	0
98	Visualization of Potential Distribution inside Crevice of Type 430 and 304 Stainless Steels. ECS Meeting Abstracts, 2018, , .	0.0	0
99	The Effect of Heat-Treatments on Corrosion Resistance of Martensitic Stainless Steel. ECS Meeting Abstracts, 2019, , .	0.0	0
100	Galvanic Corrosion Processes of Aluminum Coupled to Iron in Chloride Solutions at Near-Neutral pH. ECS Meeting Abstracts, 2019, , .	0.0	0
101	Pit Initiation Behavior at Sulfide Particles in Sintered Stainless Steels. ECS Meeting Abstracts, 2019, , .	0.0	0
102	First-Principles Investigation of the Effect of Interstitial Carbon on Corrosion Resistance of Martensitic Medium-Carbon Steel. ECS Meeting Abstracts, 2019, , .	0.0	0
103	Visualization of pH and Clâ^' Distributions inside Crevice of Type 430 Stainless Steel. ECS Meeting Abstracts, 2019, , .	0.0	0
104	Analysis of Local Dissolution Behavior of Intermetallic Particles on Chromate-Treated AA1050 Using Micro-Electrochemical System. ECS Meeting Abstracts, 2019, , .	0.0	0
105	Inhibition of Hydrogen Entry into Pure Iron By Formation of Nitrogen Solid Solution Layer in the Surface. ECS Meeting Abstracts, 2019, , .	0.0	0
106	Pitting Corrosion Behavior at Sulfide Inclusions on Type 304 Stainless Steel with Applied Stress. ECS Meeting Abstracts, 2019, , .	0.0	0
107	Corrosion Behavior of Cocrfemnni High Entropy Alloy in Acidic Solutions. ECS Meeting Abstracts, 2019, , .	0.0	0
108	Visualizing the Crevice Corrosion Behavior of Nitrogen-Containing Stainless Steel: Changes in pH and Cl ^{ï¼} Distributions with Initiation, Growth, and Local Repassivation. Zairyo To Kankyo/ Corrosion Engineering, 2021, 70, 250-256.	0.0	0

#	Article	IF	CITATIONS
109	Pitting Corrosion Resistance and Electrochemical Properties of Equimolar CoCrFeMnNi and Non-Equimolar Alcocrfeni High-entropy Alloys. ECS Meeting Abstracts, 2021, MA2021-02, 552-552.	0.0	0
110	Beneficial Effects of Cerium Addition to Sulfide Inclusions on Pitting Corrosion Resistance of Stainless Steels. ECS Meeting Abstracts, 2021, MA2021-02, 550-550.	0.0	0
111	Elucidation of the Growth of Filiform Corrosion of AZ91D Mg Alloy in NaCl Solution. ECS Meeting Abstracts, 2021, MA2021-02, 573-573.	0.0	0
112	Micro-electrochemical Analysis of Pit Initiation at Inclusions of Martensitic Stainless Steel. ECS Meeting Abstracts, 2021, MA2021-02, 549-549.	0.0	0
113	Effect of Surface Microstructure on the Hydrogen Permeation Behavior of Plasma-Nitrided AISI 4135 Steel. ECS Meeting Abstracts, 2021, MA2021-02, 591-591.	0.0	0
114	Effect of Mg on Intergranular Corrosion of Al-Cu Alloy. ECS Meeting Abstracts, 2021, MA2021-02, 1704-1704.	0.0	0
115	Improvement in Galvanic Corrosion Resistance between AA5083 and Pure Fe or Stainless Steels in Diluted Synthetic Seawater Due to Anodizing. ECS Meeting Abstracts, 2021, MA2021-02, 566-566.	0.0	0
116	Visualization of pH Distributions inside the Crevice of Stainless Steel in Corrosive Environments. ECS Meeting Abstracts, 2021, MA2021-02, 1703-1703.	0.0	0
117	The Effect of Cu Addition on the Corrosion Resistance of High Entropy Alloys. ECS Meeting Abstracts, 2021, MA2021-02, 1702-1702.	0.0	0
118	(Invited) Relationship between Protective Film on Sulfide Inclusions and Pitting Corrosion Resistance on Type 304 Stainless Steel Under Applied Stress. ECS Meeting Abstracts, 2020, MA2020-02, 1267-1267.	0.0	0
119	Effect of Al and Ni Contents on Anodized Oxide Film and Pitting Corrosion Resistance of Alcocrfeni High-Entropy Alloys. ECS Meeting Abstracts, 2020, MA2020-02, 1207-1207.	0.0	0
120	Galvanic Corrosion Behavior between Aluminum and Iron in Chloride Solutions at Near-Neutral pH and Corrosion Prevention By Anodizing. ECS Meeting Abstracts, 2020, MA2020-02, 1251-1251.	0.0	0
121	(Invited) Effect of Cr Concentration on Dissolution of (Mn,Cr)S Inclusions in Stainless Steel. ECS Meeting Abstracts, 2020, MA2020-02, 1269-1269.	0.0	0
122	(Invited) Beneficial Role of Interstitial Carbon on Corrosion Resistance of Carbon Steels. ECS Meeting Abstracts, 2020, MA2020-02, 1270-1270.	0.0	0
123	(Invited) Micro-Electrochemistry of Pit Initiation at Non-Metallic Inclusions of Stainless Steels and Roles of Alloying Elements in Improving Corrosion Resistance. ECS Meeting Abstracts, 2020, MA2020-02, 1208-1208.	0.0	0
124	Fabrication of Mo-Dispersed Type 304L Stainless Steel By Spark Plasma Sintering and Its Corrosion Resistance in 0.1 M NaCl. ECS Meeting Abstracts, 2020, MA2020-02, 3558-3558.	0.0	0
125	Elucidation of the Initiation of Pitting Corrosion and the Growth of Filiform Corrosion of AZ91D in Aqueous NaCl Electrolyte. ECS Meeting Abstracts, 2020, MA2020-02, 3561-3561.	0.0	0
126	In Situ Observation of Pitting Corrosion on AA1050 Under Open Circuit Conditions. ECS Meeting Abstracts, 2020, MA2020-02, 1247-1247.	0.0	0

#	Article	IF	CITATIONS
127	The Role of Mo Addition in the Improvement of Corrosion Resistance of Weathering Steel Under a Wet-Dry Cyclic Condition. ECS Meeting Abstracts, 2020, MA2020-02, 1325-1325.	0.0	Ο
128	Fabrication of Type 304L Containing Mo-rich Areas and Corrosion Behavior. ECS Meeting Abstracts, 2021, MA2021-02, 551-551.	0.0	0
129	Effect of pH Change on the Electrochemical Behavior of Intermetallic Particles in AA1050 Aluminum. ECS Meeting Abstracts, 2021, MA2021-02, 572-572.	0.0	Ο
130	Evaluating the Corrosion Resistance of AA7075 Containing Mn-Rich Phases Fabricated By Spark Plasma Sintering. ECS Meeting Abstracts, 2021, MA2021-02, 1700-1700.	0.0	0
131	Role of Retained Austenite in Corrosion Resistance of Si-Mn Steel. ECS Meeting Abstracts, 2021, MA2021-02, 558-558.	0.0	0
132	Effect of Alloying Elements on Pit Growth in AA7075. ECS Meeting Abstracts, 2020, MA2020-02, 3559-3559.	0.0	0