Sarah Vreugde

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9440986/publications.pdf

Version: 2024-02-01

		117625	149698
133	4,007	34	56
papers	citations	h-index	g-index
106	106	106	4-1-
136	136	136	4515
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Beethoven, a mouse model for dominant, progressive hearing loss DFNA36. Nature Genetics, 2002, 30, 257-258.	21.4	246
2	From flies' eyes to our ears: Mutations in a human class III myosin cause progressive nonsyndromic hearing loss DFNB30. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 7518-7523.	7.1	230
3	SPPL2a and SPPL2b promote intramembrane proteolysis of TNFα in activated dendritic cells to trigger IL-12 production. Nature Cell Biology, 2006, 8, 843-848.	10.3	175
4	USH3A transcripts encode clarin-1, a four-transmembrane-domain protein with a possible role in sensory synapses. European Journal of Human Genetics, 2002, 10, 339-350.	2.8	153
5	Association between Group 2 Innate Lymphoid Cells enrichment, nasal polyps and allergy in Chronic Rhinosinusitis. Allergy: European Journal of Allergy and Clinical Immunology, 2014, 69, 1154-1161.	5.7	151
6	Activity of Bacteriophages in Removing Biofilms of Pseudomonas aeruginosa Isolates from Chronic Rhinosinusitis Patients. Frontiers in Cellular and Infection Microbiology, 2017, 7, 418.	3.9	132
7	Nuclear Myosin VI Enhances RNA Polymerase II-Dependent Transcription. Molecular Cell, 2006, 23, 749-755.	9.7	123
8	Safety and Tolerability of Bacteriophage Therapy for Chronic Rhinosinusitis Due to <i>Staphylococcus aureus</i> . JAMA Otolaryngology - Head and Neck Surgery, 2019, 145, 723.	2.2	105
9	The fungal microbiome in chronic rhinosinusitis: richness, diversity, postoperative changes and patient outcomes. International Forum of Allergy and Rhinology, 2014, 4, 259-265.	2.8	76
10	Th17 Cytokines Disrupt the Airway Mucosal Barrier in Chronic Rhinosinusitis. Mediators of Inflammation, 2016, 2016, 1-7.	3.0	69
11	High frequency of the deafness-associated 167delT mutation in the connexin 26 (GJB2) gene in Israeli Ashkenazim. American Journal of Medical Genetics Part A, 1999, 86, 499-500.	2.4	67
12	The Bacterial Microbiome in Chronic Rhinosinusitis: Richness, Diversity, Postoperative Changes, and Patient Outcomes. American Journal of Rhinology and Allergy, 2016, 30, 37-43.	2.0	66
13	<i>Staphylococcus aureus</i> impairs the airway epithelial barrier in vitro. International Forum of Allergy and Rhinology, 2015, 5, 551-556.	2.8	64
14	The microbiome of otitis media with effusion. Laryngoscope, 2016, 126, 2844-2851.	2.0	62
15	Probiotic manipulation of the chronic rhinosinusitis microbiome. International Forum of Allergy and Rhinology, 2014, 4, 309-314.	2.8	60
16	Sinonasal Microbiome Sampling: A Comparison of Techniques. PLoS ONE, 2015, 10, e0123216.	2.5	60
17	A Topical Hydrogel with Deferiprone and Gallium-Protoporphyrin Targets Bacterial Iron Metabolism and Has Antibiofilm Activity. Antimicrobial Agents and Chemotherapy, 2017, 61, .	3.2	58
18	Intracellular <i>Staphylococcus aureus</i> : the Trojan horse of recalcitrant chronic rhinosinusitis?. International Forum of Allergy and Rhinology, 2013, 3, 261-266.	2.8	56

#	Article	IF	CITATIONS
19	Methylglyoxalâ€augmented manuka honey as a topical anti– <i>Staphylococcus aureus</i> biofilm agent: safety and efficacy in an in vivo model. International Forum of Allergy and Rhinology, 2014, 4, 187-195.	2.8	56
20	Bacteriophage Reduces Biofilm of Staphylococcus Aureus Ex Vivo Isolates from Chronic Rhinosinusitis Patients. American Journal of Rhinology and Allergy, 2014, 28, 3-11.	2.0	55
21	Distribution and Inhibition of Liposomes on Staphylococcus aureus and Pseudomonas aeruginosa Biofilm. PLoS ONE, 2015, 10, e0131806.	2.5	55
22	The international sinonasal microbiome study: A multicentre, multinational characterization of sinonasal bacterial ecology. Allergy: European Journal of Allergy and Clinical Immunology, 2020, 75, 2037-2049.	5.7	55
23	Safety and efficacy of topical bacteriophage and ethylenediaminetetraacetic acid treatment of <i>Staphylococcus aureus</i> infection in a sheep model of sinusitis. International Forum of Allergy and Rhinology, 2014, 4, 176-186.	2.8	50
24	3D bioprinting of a cell-laden antibacterial polysaccharide hydrogel composite. Carbohydrate Polymers, 2021, 264, 117989.	10.2	48
25	Deferiprone and Gallium-Protoporphyrin Have the Capacity to Potentiate the Activity of Antibiotics in Staphylococcus aureus Small Colony Variants. Frontiers in Cellular and Infection Microbiology, 2017, 7, 280.	3.9	47
26	Role of fungi in chronic rhinosinusitis through ITS sequencing. Laryngoscope, 2018, 128, 16-22.	2.0	47
27	<i>Staphylococcus Aureus</i> V8 protease disrupts the integrity of the airway epithelial barrier and impairs ILâ€6 production in vitro. Laryngoscope, 2018, 128, E8-E15.	2.0	47
28	Long-Term Safety of Topical Bacteriophage Application to the Frontal Sinus Region. Frontiers in Cellular and Infection Microbiology, 2017, 7, 49.	3.9	44
29	Taking the Silver Bullet Colloidal Silver Particles for the Topical Treatment of Biofilm-Related Infections. ACS Applied Materials & Samp; Interfaces, 2017, 9, 21631-21638.	8.0	43
30	Mind "De GaPP― in vitro efficacy of deferiprone and galliumâ€protoporphyrin against <i>Staphylococcus aureus</i> biofilms. International Forum of Allergy and Rhinology, 2016, 6, 737-743.	2.8	39
31	Liposome-Encapsulated ISMN: A Novel Nitric Oxide-Based Therapeutic Agent against Staphylococcus aureus Biofilms. PLoS ONE, 2014, 9, e92117.	2.5	39
32	Smallâ€colony variants and phenotype switching of intracellular <i><scp>S</scp>taphylococcus aureus</i> in chronic rhinosinusitis. Allergy: European Journal of Allergy and Clinical Immunology, 2014, 69, 1364-1371.	5.7	38
33	Bacteriophage effectively kills multidrug resistant <i>Staphylococcus aureus</i> clinical isolates from chronic rhinosinusitis patients. International Forum of Allergy and Rhinology, 2018, 8, 406-414.	2.8	37
34	Early and late complications of endoscopic hemostatic techniques following different carotid artery injury characteristics. International Forum of Allergy and Rhinology, 2014, 4, 651-657.	2.8	36
35	Pseudomonas aeruginosa Exoprotein-Induced Barrier Disruption Correlates With Elastase Activity and Marks Chronic Rhinosinusitis Severity. Frontiers in Cellular and Infection Microbiology, 2019, 9, 38.	3.9	31
36	Corynebacterium accolens Has Antimicrobial Activity against Staphylococcus aureus and Methicillin-Resistant S. aureus Pathogens Isolated from the Sinonasal Niche of Chronic Rhinosinusitis Patients. Pathogens, 2021, 10, 207.	2.8	31

3

#	Article	IF	CITATIONS
37	Subepithelial inflammatory load and basement membrane thickening in refractory chronic rhinosinusitis with nasal polyposis: a histopathological study. International Forum of Allergy and Rhinology, 2016, 6, 248-255.	2.8	30
38	An inÂvivo safety and efficacy demonstration of a topical liposomal nitric oxide donor treatment for Staphylococcus aureus biofilm–associated rhinosinusitis. Translational Research, 2015, 166, 683-692.	5.0	29
39	The effect of neutrophil serine proteases on human nasal epithelial cell barrier function. International Forum of Allergy and Rhinology, 2019, 9, 1220-1226.	2.8	29
40	Quatsomes for the treatment of Staphylococcus aureus biofilm. Journal of Materials Chemistry B, 2015, 3, 2770-2777.	5.8	28
41	Safety and efficacy of a bacteriophage cocktail in an in vivo model of Pseudomonas aeruginosa sinusitis. Translational Research, 2019, 206, 41-56.	5.0	27
42	Colloidal silver: a novel treatment for <i>Staphylococcus aureus</i> biofilms?. International Forum of Allergy and Rhinology, 2014, 4, 171-175.	2.8	26
43	Cousins, siblings, or copies: the genomics of recurrent <i>Staphylococcus aureus</i> infections in chronic rhinosinusitis. International Forum of Allergy and Rhinology, 2014, 4, 953-960.	2.8	26
44	Reduced Innate Immune Response to a Staphylococcus aureus Small Colony Variant Compared to Its Wild-Type Parent Strain. Frontiers in Cellular and Infection Microbiology, 2016, 6, 187.	3.9	26
45	Primary human nasal epithelial cells: a source of poly (I:C) LMW-induced IL-6 production. Scientific Reports, 2018, 8, 11325.	3.3	26
46	In vitro safety evaluation of a povidoneâ€iodine solution applied to human nasal epithelial cells. International Forum of Allergy and Rhinology, 2020, 10, 1141-1148.	2.8	26
47	T regulatory and Th17 cells in chronic rhinosinusitis with polyps. International Forum of Allergy and Rhinology, 2016, 6, 826-834.	2.8	25
48	Proteomic analysis of nasal mucus samples of healthy patients and patients with chronic rhinosinusitis. Journal of Allergy and Clinical Immunology, 2021, 147, 168-178.	2.9	25
49	Corticosteroids directly reduce <i>Staphylococcus aureus</i> biofilm growth: An in vitro study. Laryngoscope, 2014, 124, 602-607.	2.0	24
50	Association of intracellular <i>Staphylococcus aureus</i> with prognosis in chronic rhinosinusitis. International Forum of Allergy and Rhinology, 2016, 6, 792-799.	2.8	24
51	Identification of the Bacterial Reservoirs for the Middle Ear Using Phylogenic Analysis. JAMA Otolaryngology - Head and Neck Surgery, 2017, 143, 155.	2.2	24
52	Fighting sinusâ€derived <i>Staphylococcus aureus</i> biofilms in vitro with a bacteriophageâ€derived muralytic enzyme. International Forum of Allergy and Rhinology, 2016, 6, 349-355.	2.8	22
53	Role of intracellular zinc in molecular and cellular function in allergic inflammatory diseases. Allergology International, 2021, 70, 190-200.	3.3	22
54	Topical colloidal silver as an antiâ€biofilm agent in a <i>Staphylococcus aureus</i> chronic rhinosinusitis sheep model. International Forum of Allergy and Rhinology, 2015, 5, 283-288.	2.8	21

#	Article	IF	CITATIONS
55	In vitro safety evaluation of human nasal epithelial cell monolayers exposed to carrageenan sinus wash. International Forum of Allergy and Rhinology, 2017, 7, 1170-1177.	2.8	21
56	Tertiary lymphoid organs in recalcitrant chronic rhinosinusitis. Journal of Allergy and Clinical Immunology, 2017, 139, 1371-1373.e6.	2.9	21
57	Microbiotyping the Sinonasal Microbiome. Frontiers in Cellular and Infection Microbiology, 2020, 10, 137.	3.9	21
58	Alloiococcus otitidis Forms Multispecies Biofilm with Haemophilus influenzae: Effects on Antibiotic Susceptibility and Growth in Adverse Conditions. Frontiers in Cellular and Infection Microbiology, 2017, 7, 344.	3.9	20
59	Mucosal zinc deficiency in chronic rhinosinusitis with nasal polyposis contributes to barrier disruption and decreases ⟨scp>ZO⟨/scp>â€1. Allergy: European Journal of Allergy and Clinical Immunology, 2018, 73, 2095-2097.	5.7	20
60	Topical Colloidal Silver for the Treatment of Recalcitrant Chronic Rhinosinusitis. Frontiers in Microbiology, 2018, 9, 720.	3.5	20
61	Manuka honey sinus irrigations in recalcitrant chronic rhinosinusitis: phase 1 randomized, singleâ€blinded, placeboâ€controlled trial. International Forum of Allergy and Rhinology, 2019, 9, 1470-1477.	2.8	20
62	The presence of virus significantly associates with chronic rhinosinusitis disease severity. Allergy: European Journal of Allergy and Clinical Immunology, 2019, 74, 1569-1572.	5.7	20
63	Deferiprone has anti-inflammatory properties and reduces fibroblast migration in vitro. Scientific Reports, 2019, 9, 2378.	3.3	20
64	TLR response pathways in NuLi-1 cells and primary human nasal epithelial cells. Molecular Immunology, 2015, 68, 476-483.	2.2	19
65	Association between mucosal barrier disruption by <i>Pseudomonas aeruginosa</i> exoproteins and asthma in patients with chronic rhinosinusitis. Allergy: European Journal of Allergy and Clinical Immunology, 2021, 76, 3459-3469.	5.7	19
66	Chronic Rhinosinusitis with Polyps Is Characterized by Increased Mucosal and Blood Th17 Effector Cytokine Producing Cells. Frontiers in Physiology, 2017, 8, 898.	2.8	18
67	Sub-Inhibitory Clindamycin and Azithromycin reduce S. aureus Exoprotein Induced Toxicity, Inflammation, Barrier Disruption and Invasion. Journal of Clinical Medicine, 2019, 8, 1617.	2.4	18
68	<i>Staphylococcus aureus</i> biofilm exoproteins are cytotoxic to human nasal epithelial barrier in chronic rhinosinusitis. International Forum of Allergy and Rhinology, 2020, 10, 871-883.	2.8	18
69	<i>Staphylococcus Aureus</i> Biofilms Induce Apoptosis and Expression of Interferon-γ, Interleukin-10, and Interleukin-17A on Human Sinonasal Explants. American Journal of Rhinology and Allergy, 2015, 29, 23-28.	2.0	17
70	Colloidal silver combating pathogenic Pseudomonas aeruginosa and MRSA in chronic rhinosinusitis. Colloids and Surfaces B: Biointerfaces, 2021, 202, 111675.	5.0	17
71	Gene expression differences in nitric oxide and reactive oxygen species regulation point to an altered innate immune response in chronic rhinosinusitis. International Forum of Allergy and Rhinology, 2013, 3, 193-198.	2.8	16
72	Inducing a Mucosal Barrier–Sparing Inflammatory Response in Laboratoryâ€Grown Primary Human Nasal Epithelial Cells. Current Protocols in Toxicology / Editorial Board, Mahin D Maines (editor-in-chief) [et Al], 2019, 80, e69.	1.1	16

#	Article	IF	Citations
73	Antibiotics Affect ROS Production and Fibroblast Migration in an In-vitro Model of Sinonasal Wound Healing. Frontiers in Cellular and Infection Microbiology, 2020, 10, 110.	3.9	16
74	Acoustic drug delivery to the maxillary sinus. International Journal of Pharmaceutics, 2021, 606, 120927.	5.2	16
75	A human nasal explant model to study <i>Staphylococcus aureus</i> biofilm in vitro. International Forum of Allergy and Rhinology, 2013, 3, 556-562.	2.8	15
76	Extent of maxillary sinus surgery and its effect on instrument access, irrigation penetration, and disease clearance. International Forum of Allergy and Rhinology, 2019, 9, 1097-1104.	2.8	15
77	Inhibition of <i>Staphylococcus aureus</i> and <i>Pseudomonas aeruginosa</i> biofilms by quatsomes in low concentrations. Experimental Biology and Medicine, 2020, 245, 34-41.	2.4	15
78	Silver nanoparticles as a bioadjuvant of antibiotics against biofilm-mediated infections with methicillin-resistant Staphylococcus aureus and Pseudomonas aeruginosa in chronic rhinosinusitis patients. Pathology, 2022, 54, 453-459.	0.6	15
79	Sirtuin-1 Controls Poly (I:C)–Dependent Matrix Metalloproteinase 9 Activation in Primary Human Nasal Epithelial Cells. American Journal of Respiratory Cell and Molecular Biology, 2018, 59, 500-510.	2.9	14
80	Identifying Intracellular Staphylococcus Aureus in Chronic Rhinosinusitis: A Direct Comparison of Techniques. American Journal of Rhinology and Allergy, 2012, 26, 444-449.	2.0	13
81	Safety and Efficacy of Topical Chitogel- Deferiprone-Gallium Protoporphyrin in Sheep Model. Frontiers in Microbiology, 2018, 9, 917.	3.5	13
82	Staphylococcus aureus biofilm activates the nucleotideâ€binding oligomerization domain containing 2 (Nod2) pathway and proinflammatory factors on a human sinonasal explant model. International Forum of Allergy and Rhinology, 2013, 3, 877-884.	2.8	11
83	Increased IL-13 expression is independently associated with neo-osteogenesis in patients with chronic rhinosinusitis. Journal of Allergy and Clinical Immunology, 2017, 140, 1444-1448.e11.	2.9	11
84	Naive and Effector B-cell Subtypes are Increased in Chronic Rhinosinusitis with Polyps. American Journal of Rhinology and Allergy, 2018, 32, 3-6.	2.0	11
85	In vitro characteristics of an airway barrierâ€disrupting factor secreted by <i>Staphylococcus aureus</i> . International Forum of Allergy and Rhinology, 2019, 9, 187-196.	2.8	11
86	Barrier disruptive effects of mucus isolated from chronic rhinosinusitis patients. Allergy: European Journal of Allergy and Clinical Immunology, 2020, 75, 200-203.	5.7	11
87	Fluticasone Propionate Suppresses Poly(I:C)-Induced ACE2 in Primary Human Nasal Epithelial Cells. Frontiers in Cellular and Infection Microbiology, 2021, 11, 655666.	3.9	11
88	Prophages encoding human immune evasion cluster genes are enriched in Staphylococcus aureus isolated from chronic rhinosinusitis patients with nasal polyps. Microbial Genomics, 2021, 7, .	2.0	11
89	Chronic Rhinosinusitis, S. aureus Biofilm and Secreted Products, Inflammatory Responses, and Disease Severity. Biomedicines, 2022, 10, 1362.	3.2	11
90	Comparative Viral Sampling in the Sinonasal Passages; Different Viruses at Different Sites. Frontiers in Cellular and Infection Microbiology, 2018, 8, 334.	3.9	10

#	Article	IF	CITATIONS
91	Comparative antibacterial activity of 2D materials coated on porous-titania. Journal of Materials Chemistry B, 2021, 9, 6412-6424.	5.8	10
92	Prophage: a crucial catalyst in infectious disease modulation. Lancet Microbe, The, 2022, 3, e162-e163.	7.3	10
93	Overcoming bacteriophage insensitivity in <i>Staphylococcus aureus</i> using clindamycin and azithromycinat subinhibitory concentrations. Allergy: European Journal of Allergy and Clinical Immunology, 2021, 76, 3446-3458.	5.7	9
94	Preclinical Development of a Bacteriophage Cocktail for Treating Multidrug Resistant Pseudomonas aeruginosa Infections. Microorganisms, 2021, 9, 2001.	3.6	9
95	Converging 2D Nanomaterials and 3D Bioprinting Technology: Stateâ€ofâ€theâ€Art, Challenges, and Potential Outlook in Biomedical Applications. Advanced Healthcare Materials, 2021, 10, e2101439.	7.6	9
96	APTC-C-SA01: A Novel Bacteriophage Cocktail Targeting Staphylococcus aureus and MRSA Biofilms. International Journal of Molecular Sciences, 2022, 23, 6116.	4.1	9
97	Prevention of false positive binding during immunofluorescence of Staphylococcus aureus infected tissue biopsies. Journal of Immunological Methods, 2012, 384, 111-117.	1.4	8
98	Tertiary lymphoid organs: AÂnovel target in patients with chronic rhinosinusitis. Journal of Allergy and Clinical Immunology, 2018, 142, 1673-1676.	2.9	8
99	Staphylococcus aureus from patients with chronic rhinosinusitis show minimal genetic association between polyp and non-polyp phenotypes. BMC Ear, Nose and Throat Disorders, 2018, 18, 16.	2.6	8
100	Effect of commercial nasal steroid preparation on bacterial growth. International Forum of Allergy and Rhinology, 2019, 9, 766-775.	2.8	8
101	Effect of breathing profiles on nebuliser drug delivery targeting the paranasal sinuses in a post-operative nasal cavity. Journal of Aerosol Science, 2022, 161, 105913.	3.8	8
102	Safety evaluation of a sinus surfactant in an explant-based cytotoxicity assay. Laryngoscope, 2014, 124, 369-372.	2.0	7
103	The Microbiome of the Nasolacrimal System and Its Role in Nasolacrimal Duct Obstruction. Ophthalmic Plastic and Reconstructive Surgery, 2020, 36, 80-85.	0.8	7
104	The potential of chitosan-based haemostats for use in neurosurgical setting – Literature review. Journal of Clinical Neuroscience, 2021, 94, 128-134.	1.5	7
105	Kappaâ€carrageenan sinus rinses reduce inflammation and intracellular Staphylococcus aureus infection in airway epithelial cells. International Forum of Allergy and Rhinology, 2019, 9, 918-925.	2.8	6
106	Prevention of peridural adhesions in spinal surgery: Assessing safety and efficacy of Chitogel with Deferiprone in a sheep model. Journal of Clinical Neuroscience, 2020, 72, 378-385.	1.5	6
107	A Novel Rat Model to Test Intra-Abdominal Anti-adhesive Therapy. Frontiers in Surgery, 2020, 7, 12.	1.4	6
108	Der p 1 Disrupts the Epithelial Barrier and Induces IL-6 Production in Patients With House Dust Mite Allergic Rhinitis. Frontiers in Allergy, 2021, 2, 692049.	2.8	6

#	Article	IF	CITATIONS
109	APTC-EC-2A: A Lytic Phage Targeting Multidrug Resistant E. coli Planktonic Cells and Biofilms. Microorganisms, 2022, 10, 102.	3.6	6
110	Genomic characterization of three bacteriophages targeting multidrug resistant clinical isolates of Escherichia, Klebsiella and Salmonella. Archives of Microbiology, 2022, 204, 334.	2.2	6
111	Innate lymphoid type 2 cells in chronic rhinosinusitis. Current Opinion in Allergy and Clinical Immunology, 2016, 16, 7-12.	2.3	5
112	Green synthesized colloidal silver is devoid of toxic effects on primary human nasal epithelial cells in vitro. Food and Chemical Toxicology, 2021, 157, 112606.	3.6	5
113	TLR Signals in Epithelial Cells in the Nasal Cavity and Paranasal Sinuses. Frontiers in Allergy, 2021, 2, 780425.	2.8	5
114	In vitro and in vivo evaluation of probiotic properties of Corynebacterium accolens isolated from the human nasal cavity. Microbiological Research, 2022, 255, 126927.	5.3	5
115	Chitogel following endoscopic sinus surgery promotes a healthy microbiome and reduces postoperative infections. International Forum of Allergy and Rhinology, 2022, 12, 1362-1376.	2.8	5
116	Role of crushed skeletal muscle extract in hemostasis. International Forum of Allergy and Rhinology, 2015, 5, 431-434.	2.8	4
117	<i>Staphylococcus aureus</i> small colony variants: Prevalence in chronic rhinosinusitis and induction by antibiotics. Allergy: European Journal of Allergy and Clinical Immunology, 2018, 73, 2403-2405.	5.7	4
118	Tween 80 and its derivative oleic acid promote the growth of <i>Corynebacterium accolens and inhibit Staphylococcus aureus</i> clinical isolates. International Forum of Allergy and Rhinology, 2021, 11, 810-813.	2.8	4
119	Prevention of adhesions post-abdominal surgery: Assessing the safety and efficacy of Chitogel with Deferiprone in a rat model. PLoS ONE, 2021, 16, e0244503.	2.5	4
120	Trimellitic anhydride facilitates transepithelial permeability disrupting tight junctions in sinonasal epithelial cells. Toxicology Letters, 2021, 353, 27-33.	0.8	4
121	Discordant frequencies of tissueâ€resident and circulating CD180â€negative B cells in chronic rhinosinusitis. International Forum of Allergy and Rhinology, 2017, 7, 609-614.	2.8	3
122	Metallothionein-3 is a clinical biomarker for tissue zinc levels in nasal mucosa. Auris Nasus Larynx, 2021, 48, 890-897.	1.2	3
123	Optimising Aerosol Delivery for Maxillary Sinus Deposition in a Post-FESS Sinonasal Cavities. Aerosol and Air Quality Research, 2021, 21, 210098.	2.1	3
124	Cytokine-Induced Modulation of SARS-CoV2 Receptor Expression in Primary Human Nasal Epithelial Cells. Pathogens, 2021, 10, 848.	2.8	2
125	Optimal primer selection for sinus microbiome profiling: A comparative analysis of the V1â€V3 and V3â€4 16S target regions. International Forum of Allergy and Rhinology, 2021, 11, 1698-1702.	2.8	2
126	Investigation of Kappa Carrageenan's mucoâ€adhesive, antibacterial, and antiâ€biofilm properties. International Forum of Allergy and Rhinology, 2022, 12, 302-305.	2.8	2

SARAH VREUGDE

#	Article	IF	CITATIONS
127	Spontaneous Regression of Swollen Submandibular Glands in IgG4-Related Disease. Allergy and Rhinology, 2019, 10, 215265671881673.	1.6	1
128	Tertiary Lymphoid Organs: A Primer for Otolaryngologists. Laryngoscope, 2021, 131, 1697-1703.	2.0	1
129	Efficacy and Safety of Novel Beta-Chitin Patches as Haemostat in Rat Vascular and Neurosurgical Model. Frontiers in Surgery, 2022, 9, 830364.	1.4	1
130	Nano-hemostats and a Pilot Study of Their Use in a Large Animal Model of Major Vessel Hemorrhage in Endoscopic Skull Base Surgery. Journal of Neurological Surgery, Part B: Skull Base, 2017, 38, 215-221.	0.8	0
131	Association between viral infection and increased mucosal eosinophils and CD8 ⁺ CD103 ⁺ T cells in chronic rhinosinusitis. International Forum of Allergy and Rhinology, 2020, 10, 978-980.	2.8	0
132	The effect of chemical and structural modifiers on the haemostatic process and cytotoxicity of the beta-chitin patch. Scientific Reports, 2021, 11, 18577.	3.3	0
133	<i>In vitro</i> safety and antiâ€bacterial efficacy assessment of acriflavine. Allergy: European Journal of Allergy and Clinical Immunology, 2022, 77, 1917-1920.	5.7	0