Thomas F Parkerton

List of Publications by Citations

Source: https://exaly.com/author-pdf/9440743/thomas-f-parkerton-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

62 89 4,097 31 h-index g-index citations papers 91 4,595 5.22 5.3 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
89	The environmental fate of phthalate esters: A literature review. <i>Chemosphere</i> , 1997 , 35, 667-749	8.4	1123
88	An equilibrium model of organic chemical accumulation in aquatic food webs with sediment interaction. <i>Environmental Toxicology and Chemistry</i> , 1992 , 11, 615-629	3.8	276
87	Aquatic toxicity of eighteen phthalate esters. Environmental Toxicology and Chemistry, 1997, 16, 875-89	13.8	151
86	Passive sampling methods for contaminated sediments: scientific rationale supporting use of freely dissolved concentrations. <i>Integrated Environmental Assessment and Management</i> , 2014 , 10, 197-209	2.5	122
85	Kinetics of chromium transformations in the environment. <i>Science of the Total Environment</i> , 1989 , 86, 25-41	10.2	108
84	A database of fish biotransformation rates for organic chemicals. <i>Environmental Toxicology and Chemistry</i> , 2008 , 27, 2263-70	3.8	105
83	Base-line model for identifying the bioaccumulation potential of chemicals. <i>SAR and QSAR in Environmental Research</i> , 2005 , 16, 531-54	3.5	86
82	PETROTOX: an aquatic toxicity model for petroleum substances. <i>Environmental Toxicology and Chemistry</i> , 2012 , 31, 2498-506	3.8	75
81	A proposed multigeneration protocol for Japanese medaka (Oryzias latipes) to evaluate effects of endocrine disruptors. <i>Science of the Total Environment</i> , 1999 , 233, 211-20	10.2	75
80	Evaluation of bioaccumulation using in vivo laboratory and field studies. <i>Integrated Environmental Assessment and Management</i> , 2009 , 5, 598-623	2.5	68
79	A risk assessment of selected phthalate esters in North American and Western European surface waters. <i>Chemosphere</i> , 2000 , 40, 885-91	8.4	68
78	Polyacrylate-Coated SPME Fibers as a Tool To Simulate Body Residues and Target Concentrations of Complex Organic Mixtures for Estimation of Baseline Toxicity. <i>Environmental Science & Estimation of Baseline Toxicity</i> . <i>Environmental Science & Technology</i> , 2000 , 34, 324-331	10.3	68
77	Guidance for improving comparability and relevance of oil toxicity tests. <i>Marine Pollution Bulletin</i> , 2015 , 98, 156-70	6.7	66
76	Validation of the narcosis target lipid model for petroleum products: gasoline as a case study. <i>Environmental Toxicology and Chemistry</i> , 2005 , 24, 2382-94	3.8	64
75	The primary aerobic biodegradation of gasoline hydrocarbons. <i>Environmental Science & Environmental Sc</i>	10.3	63
74	Application of quantitative structureactivity relationships for assessing the aquatic toxicity of phthalate esters. <i>Ecotoxicology and Environmental Safety</i> , 2000 , 45, 61-78	7	56
73	Comparing laboratory and field measured bioaccumulation endpoints. <i>Integrated Environmental Assessment and Management</i> , 2012 , 8, 17-31	2.5	54

(2014-2004)

72	Application of the narcosis target lipid model to algal toxicity and deriving predicted-no-effect concentrations. <i>Environmental Toxicology and Chemistry</i> , 2004 , 23, 2503-17	3.8	54	
71	A new biodegradation prediction model specific to petroleum hydrocarbons. <i>Environmental Toxicology and Chemistry</i> , 2005 , 24, 1847-60	3.8	54	
7°	Assessing the aquatic toxicity of complex hydrocarbon mixtures using solid phase microextraction. <i>Toxicology Letters</i> , 2000 , 112-113, 273-82	4.4	50	
69	A review of the tissue residue approach for organic and organometallic compounds in aquatic organisms. <i>Integrated Environmental Assessment and Management</i> , 2011 , 7, 50-74	2.5	44	
68	Comparative Risk Assessment of spill response options for a deepwater oil well blowout: Part 1. Oil spill modeling. <i>Marine Pollution Bulletin</i> , 2018 , 133, 1001-1015	6.7	40	
67	Passive sampling methods for contaminated sediments: risk assessment and management. Integrated Environmental Assessment and Management, 2014, 10, 224-36	2.5	40	
66	Improving the quality and scientific understanding of trophic magnification factors (TMFs). <i>Environmental Science & Environmental Science & Environme</i>	10.3	40	
65	A novel passive dosing system for determining the toxicity of phenanthrene to early life stages of zebrafish. <i>Science of the Total Environment</i> , 2013 , 463-464, 952-8	10.2	40	
64	An assessment of the toxicity of phthalate esters to freshwater benthos. 1. Aqueous exposures. <i>Environmental Toxicology and Chemistry</i> , 2001 , 20, 1798-1804	3.8	39	
63	Guidance for evaluating in vivo fish bioaccumulation data. <i>Integrated Environmental Assessment and Management</i> , 2008 , 4, 139-55	2.5	38	
62	Multimedia modeling of human exposure to chemical substances: the roles of food web biomagnification and biotransformation. <i>Environmental Toxicology and Chemistry</i> , 2010 , 29, 45-55	3.8	35	
61	Applications of contaminant fate and bioaccumulation models in assessing ecological risks of chemicals: a case study for gasoline hydrocarbons. <i>Environmental Science & Environmental Science & Envir</i>	10.3	33	
60	Re-evaluation of target lipid model-derived HC5 predictions for hydrocarbons. <i>Environmental Toxicology and Chemistry</i> , 2018 , 37, 1579-1593	3.8	31	
59	Temporal patterns in the transcriptomic response of rainbow trout, Oncorhynchus mykiss, to crude oil. <i>Aquatic Toxicology</i> , 2010 , 99, 320-9	5.1	31	
58	A kinetic model for predicting biodegradation. SAR and QSAR in Environmental Research, 2007, 18, 443-	5 7.5	30	
57	Review of Polycyclic Aromatic Hydrocarbons (PAHs) Sediment Quality Guidelines for the Protection of Benthic Life. <i>Integrated Environmental Assessment and Management</i> , 2019 , 15, 505-518	2.5	28	
56	Oil dispersants do facilitate biodegradation of spilled oil. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2016 , 113, E1421	11.5	26	
55	PETRORISK: a risk assessment framework for petroleum substances. <i>Integrated Environmental Assessment and Management</i> , 2014 , 10, 437-48	2.5	26	

54	Evaluating toxicity of heavy fuel oil fractions using complementary modeling and biomimetic extraction methods. <i>Environmental Toxicology and Chemistry</i> , 2014 , 33, 2094-104	3.8	26
53	Use of passive samplers for improving oil toxicity and spill effects assessment. <i>Marine Pollution Bulletin</i> , 2014 , 86, 274-282	6.7	26
52	The treatment of biodegradation in models of sub-surface oil spills: A review and sensitivity study. <i>Marine Pollution Bulletin</i> , 2019 , 143, 204-219	6.7	25
51	A chemical activity approach to exposure and risk assessment of chemicals: Focus articles are part of a regular series intended to sharpen understanding of current and emerging topics of interest to the scientific community. <i>Environmental Toxicology and Chemistry</i> , 2018 , 37, 1235-1251	3.8	25
50	Sediment sorption coefficient measurements for four phthalate esters: Experimental results and model theory. <i>Environmental Toxicology and Chemistry</i> , 1995 , 14, 1477-1486	3.8	25
49	In Vivo Biotransformation Rates of Organic Chemicals in Fish: Relationship with Bioconcentration and Biomagnification Factors. <i>Environmental Science & Environmental Science </i>	10.3	24
48	Chronic toxicity of selected polycyclic aromatic hydrocarbons to algae and crustaceans using passive dosing. <i>Environmental Toxicology and Chemistry</i> , 2016 , 35, 2948-2957	3.8	24
47	Comparing laboratory- and field-measured biota-sediment accumulation factors. <i>Integrated Environmental Assessment and Management</i> , 2012 , 8, 32-41	2.5	24
46	Recommendations for Improving Methods and Models for Aquatic Hazard Assessment of Ionizable Organic Chemicals. <i>Environmental Toxicology and Chemistry</i> , 2020 , 39, 269-286	3.8	24
45	A re-evaluation of PETROTOX for predicting acute and chronic toxicity of petroleum substances. <i>Environmental Toxicology and Chemistry</i> , 2017 , 36, 2245-2252	3.8	23
44	Five-stage environmental exposure assessment strategy for mixtures: gasoline as a case study. <i>Environmental Science & Environmental Environmental</i>	10.3	23
43	Physical-Chemical Properties and Evaluative Fate Modelling of Phthalate Esters. <i>Handbook of Environmental Chemistry</i> , 2003 , 57-84	0.8	23
42	Assessing Aromatic-Hydrocarbon Toxicity to Fish Early Life Stages Using Passive-Dosing Methods and Target-Lipid and Chemical-Activity Models. <i>Environmental Science & Environmental Science & Environ</i>	5 -1 053	23
41	The sensitivity of a deep-sea fish species (Anoplopoma fimbria) to oil-associated aromatic compounds, dispersant, and Alaskan North Slope crude oil. <i>Environmental Toxicology and Chemistry</i> , 2018 , 37, 2210-2221	3.8	22
40	Hazard evaluation of diisononyl phthalate and diisodecyl phthalate in a Japanese medaka multigenerational assay. <i>Ecotoxicology and Environmental Safety</i> , 2006 , 65, 36-47	7	22
39	An assessment of the toxicity of phthalate esters to freshwater benthos. 2. Sediment exposures. <i>Environmental Toxicology and Chemistry</i> , 2001 , 20, 1805-1815	3.8	22
38	Do aquatic effects or human health end points govern the development of sediment-quality criteria for nonionic organic chemicals?. <i>Environmental Toxicology and Chemistry</i> , 1993 , 12, 507-523	3.8	22
37	Comparative toxicity and speciation of two hexavalent chromium salts in acute toxicity tests. <i>Environmental Toxicology and Chemistry</i> , 1987 , 6, 697-703	3.8	22

36	Investigating the role of dissolved and droplet oil in aquatic toxicity using dispersed and passive dosing systems. <i>Environmental Toxicology and Chemistry</i> , 2017 , 36, 1020-1028	3.8	20	
35	Slow-stir water solubility measurements of selected alcohols and diesters. <i>Chemosphere</i> , 2002 , 48, 257	'-635.4	19	
34	Application of the Target Lipid Model and Passive Samplers to Characterize the Toxicity of Bioavailable Organics in Oil Sands Process-Affected Water. <i>Environmental Science & Environmental &</i>	10.3	18	
33	Passive dosing yields dissolved aqueous exposures of crude oil comparable to the CROSERF (Chemical Response to Oil Spill: Ecological Effects Research Forum) water accommodated fraction method. <i>Environmental Toxicology and Chemistry</i> , 2018 , 37, 2810-2819	3.8	18	
32	Technical basis for using passive sampling as a biomimetic extraction procedure to assess bioavailability and predict toxicity of petroleum substances. <i>Chemosphere</i> , 2018 , 199, 585-594	8.4	17	
31	Application of the target lipid model for deriving predicted no-effect concentrations for wastewater organisms. <i>Environmental Toxicology and Chemistry</i> , 2007 , 26, 2317-31	3.8	16	
30	Passive sampling in contaminated sediment assessment: building consensus to improve decision making. <i>Integrated Environmental Assessment and Management</i> , 2014 , 10, 163-6	2.5	15	
29	Extension and validation of the target lipid model for deriving predicted no-effect concentrations for soils and sediments. <i>Environmental Toxicology and Chemistry</i> , 2014 , 33, 2679-87	3.8	15	
28	Hepatic gene expression in rainbow trout (Oncorhynchus mykiss) exposed to different hydrocarbon mixtures. <i>Environmental Toxicology and Chemistry</i> , 2010 , 29, 2034-43	3.8	15	
27	Bioaccumulation of Phthalate Esters in Aquatic Food-Webs. <i>Handbook of Environmental Chemistry</i> , 2003 , 201-225	0.8	15	
26	Water solubility of selected C9-C18 alkanes using a slow-stir technique: Comparison to structure - property models. <i>Chemosphere</i> , 2016 , 150, 416-423	8.4	14	
25	Assessing the aquatic hazard of commercial hydrocarbon resins. <i>Ecotoxicology and Environmental Safety</i> , 2007 , 66, 159-68	7	12	
24	Alternative Management of Oil and Gas Produced Water Requires More Research on Its Hazards and Risks. <i>Integrated Environmental Assessment and Management</i> , 2019 , 15, 677-682	2.5	11	
23	Aquatic exposures of chemical mixtures in urban environments: Approaches to impact assessment. <i>Environmental Toxicology and Chemistry</i> , 2018 , 37, 703-714	3.8	11	
22	Modeling the toxicity of dissolved crude oil exposures to characterize the sensitivity of cod (Gadus morhua) larvae and role of individual and unresolved hydrocarbons. <i>Marine Pollution Bulletin</i> , 2019 , 138, 286-294	6.7	10	
21	Use of Selenastrum capricornutum and Microfeast as food for Daphnia pulex. <i>Bulletin of Environmental Contamination and Toxicology</i> , 1990 , 44, 59-66	2.7	9	
20	An evaluation of cumulative risks from offshore produced water discharges in the Bass Strait. <i>Marine Pollution Bulletin</i> , 2018 , 126, 610-621	6.7	9	
19	An equilibrium model of organic chemical accumulation in aquatic food webs with sediment interaction 1992 , 11, 615		8	

18	A Toxicokinetic Framework and Analysis Tool for Interpreting Organisation for Economic Co-operation and Development Guideline 305 Dietary Bioaccumulation Tests. <i>Environmental Toxicology and Chemistry</i> , 2020 , 39, 171-188	3.8	8
17	The sensitivity of the deepsea species northern shrimp (Pandalus borealis) and the cold-water coral (Lophelia pertusa) to oil-associated aromatic compounds, dispersant, and Alaskan North Slope crude oil. <i>Marine Pollution Bulletin</i> , 2020 , 156, 111202	6.7	6
16	Comment on "Toxicity and mutagenicity of Gulf of Mexico waters during and after the deepwater horizon oil spill". <i>Environmental Science & Environmental Science & Environment</i>	10.3	6
15	Environmental fate factors and human intake fractions for risk assessment of petroleum products. <i>Integrated Environmental Assessment and Management</i> , 2010 , 6, 135-44	2.5	6
14	Bioconcentration factors for hydrocarbons and petrochemicals: Understanding processes, uncertainty and predictive model performance. <i>Chemosphere</i> , 2019 , 226, 472-482	8.4	4
13	An Assessment of the Potential Environmental Risks Posed by Phthalates in Soil and Sediment. Handbook of Environmental Chemistry, 2003 , 317-349	0.8	4
12	Comparison of In Situ and Ex Situ Equilibrium Passive Sampling for Measuring Freely Dissolved Concentrations of Parent and Alkylated Polycyclic Aromatic Hydrocarbons in Sediments. <i>Environmental Toxicology and Chemistry</i> , 2020 , 39, 2169-2179	3.8	4
11	Aqueous solubility and Daphnia magna chronic toxicity of di(2-ethylhexyl) adipate. <i>Bulletin of Environmental Contamination and Toxicology</i> , 2008 , 80, 539-43	2.7	3
10	Miniaturised marine tests as indicators of aromatic hydrocarbon toxicity: Potential applicability to oil spill assessment. <i>Marine Pollution Bulletin</i> , 2021 , 165, 112151	6.7	3
9	Preparing the Hydrocarbon/Crude Oil. <i>Springer Protocols</i> , 2016 , 15-32	0.3	3
8	Preparing the Hydrocarbon/Crude Oil. Springer Protocols, 2016, 15-32 Toxicity of two representative petroleum hydrocarbons, toluene and phenanthrene, to five Atlantic coral species. Marine Pollution Bulletin, 2021, 169, 112560	6.7	3
	Toxicity of two representative petroleum hydrocarbons, toluene and phenanthrene, to five Atlantic	6.7	
8	Toxicity of two representative petroleum hydrocarbons, toluene and phenanthrene, to five Atlantic coral species. <i>Marine Pollution Bulletin</i> , 2021 , 169, 112560 Assessing the Fate of an Aromatic Hydrocarbon Fluid in Agricultural Spray Applications Using the	6.7	3
8	Toxicity of two representative petroleum hydrocarbons, toluene and phenanthrene, to five Atlantic coral species. <i>Marine Pollution Bulletin</i> , 2021 , 169, 112560 Assessing the Fate of an Aromatic Hydrocarbon Fluid in Agricultural Spray Applications Using the Three-Stage ADVOCATE Model Framework. <i>Journal of Agricultural and Food Chemistry</i> , 2015 , 63, 6866-1000. Modeling bioaccumulation in coupled pelagic-benthic food chains: past insights and future	6.7 7 5 ·7	3
8 7 6	Toxicity of two representative petroleum hydrocarbons, toluene and phenanthrene, to five Atlantic coral species. <i>Marine Pollution Bulletin</i> , 2021 , 169, 112560 Assessing the Fate of an Aromatic Hydrocarbon Fluid in Agricultural Spray Applications Using the Three-Stage ADVOCATE Model Framework. <i>Journal of Agricultural and Food Chemistry</i> , 2015 , 63, 6866-1000. Modeling bioaccumulation in coupled pelagic-benthic food chains: past insights and future directions. <i>Environmental Toxicology and Chemistry</i> , 2013 , 32, 1931-4 Development of a Multimedia Model for the Fate Prediction of Hydrocarbon Fluids in Agrochemical	6.7 7 5 ·7	3 2 1
8 7 6	Toxicity of two representative petroleum hydrocarbons, toluene and phenanthrene, to five Atlantic coral species. <i>Marine Pollution Bulletin</i> , 2021 , 169, 112560 Assessing the Fate of an Aromatic Hydrocarbon Fluid in Agricultural Spray Applications Using the Three-Stage ADVOCATE Model Framework. <i>Journal of Agricultural and Food Chemistry</i> , 2015 , 63, 6866-1 Modeling bioaccumulation in coupled pelagic-benthic food chains: past insights and future directions. <i>Environmental Toxicology and Chemistry</i> , 2013 , 32, 1931-4 Development of a Multimedia Model for the Fate Prediction of Hydrocarbon Fluids in Agrochemical Formulations. <i>Journal of ASTM International</i> , 2008 , 5, 101637 Assessing toxicity of hydrophobic aliphatic and monoaromatic hydrocarbons at the solubility limit	6.7 75 ^{.7} 3.8	3 2 1
8 7 6 5	Toxicity of two representative petroleum hydrocarbons, toluene and phenanthrene, to five Atlantic coral species. <i>Marine Pollution Bulletin</i> , 2021 , 169, 112560 Assessing the Fate of an Aromatic Hydrocarbon Fluid in Agricultural Spray Applications Using the Three-Stage ADVOCATE Model Framework. <i>Journal of Agricultural and Food Chemistry</i> , 2015 , 63, 6866-19. Modeling bioaccumulation in coupled pelagic-benthic food chains: past insights and future directions. <i>Environmental Toxicology and Chemistry</i> , 2013 , 32, 1931-4 Development of a Multimedia Model for the Fate Prediction of Hydrocarbon Fluids in Agrochemical Formulations. <i>Journal of ASTM International</i> , 2008 , 5, 101637 Assessing toxicity of hydrophobic aliphatic and monoaromatic hydrocarbons at the solubility limit using novel dosing methods. <i>Chemosphere</i> , 2021 , 265, 129174 Assessing the Toxicity of Individual Aromatic Compounds and Mixtures to American Lobster (Homarus americanus) Larvae Using a Passive Dosing System. <i>Environmental Toxicology and</i>	6.7 75·7 3.8	3 2 1 1