Sheng-Li Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9440369/publications.pdf

Version: 2024-02-01

53	1,093	18	31
papers	citations	h-index	g-index
53	53	53	1303
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Kinetics of Formation of Monodisperse Colloidal Silica Particles through the Hydrolysis and Condensation of Tetraethylorthosilicate. Industrial & Engineering Chemistry Research, 1996, 35, 4487-4493.	3.7	150
2	Characteristic Aspects of Formation of New Particles during the Growth of Monosize Silica Seeds. Journal of Colloid and Interface Science, 1996, 180, 237-241.	9.4	111
3	Effect of tungsten oxide loading on metathesis activity of ethene and 2-butene over WO3/SiO2 catalysts. Transition Metal Chemistry, 2009, 34, 621-627.	1.4	60
4	Metathesis of butene to propene and pentene over WO3/MTS-9. Microporous and Mesoporous Materials, 2011, 143, 320-325.	4.4	44
5	The effect of photonic band gap on the photo-catalytic activity of nc-TiO2/SnO2 photonic crystal composite membranes. Chemical Engineering Journal, 2014, 249, 48-53.	12.7	43
6	Enhanced photocatalytic performance of nanocrystalline TiO ₂ membrane by both slow photons and stopâ€band reflection of photonic crystals. AICHE Journal, 2012, 58, 568-572.	3.6	42
7	Enhanced Methanol to Olefin Catalysis by Physical Mixtures of SAPO-34 Molecular Sieve and MgO. ACS Catalysis, 2017, 7, 5572-5584.	11.2	39
8	Probing photon localization effect between titania and photonic crystals on enhanced photocatalytic activity of titania film. Chemical Engineering Journal, 2016, 284, 305-314.	12.7	33
9	Rapid fabrication of a large-area 3D silica colloidal crystal thin film by a room temperature floating self-assembly method. Materials Letters, 2009, 63, 1586-1589.	2.6	31
10	High-selective-hydrogenation activity of W/Beta catalyst in hydrocracking of 1-methylnaphalene to benzene, toluene and xylene. Fuel, 2018, 234, 1015-1025.	6.4	29
11	Influence of template content on selective synthesis of SAPO-18, SAPO-18/34 intergrowth and SAPO-34 molecular sieves used for methanol-to-olefins process. RSC Advances, 2016, 6, 104985-104994.	3.6	28
12	Synthesis, characterization and hydroisomerization catalytic performance of nanosize SAPO-11 molecular sieves. Catalysis Letters, 2007, 118, 109-117.	2.6	25
13	Synthesis and Catalytic Hydroisomerization Performance of SAPO-11 Molecular Sieve with Small Crystals. Chinese Journal of Catalysis, 2007, 28, 857-864.	14.0	24
14	Preparation and size determination of monodisperse silica microspheres for particle size certified reference materials. Powder Technology, 2011, 207, 232-237.	4.2	24
15	Diffusion of heavy oil in well-defined and uniform pore-structure catalyst under hydrodemetallization reaction conditions. Chemical Engineering Journal, 2013, 231, 420-426.	12.7	23
16	Kinetics of coke formation in the dimethyl ether-to-olefins process over SAPO-34 catalyst. Chemical Engineering Journal, 2017, 326, 528-539.	12.7	22
17	Large pore heavy oil processing catalysts prepared using colloidal particles as templates. Catalysis Today, 2007, 125, 143-148.	4.4	20
18	High Metal–Acid Balance and Selective Hydrogenation Activity Catalysts for Hydrocracking of 1-Methylnaphthalene to Benzene, Toluene, and Xylene. Industrial & Engineering Chemistry Research, 2020, 59, 5546-5556.	3.7	20

#	Article	IF	Citations
19	Preparation and photocatalytic activity of hierarchically 3D ordered macro/mesoporous titania inverse opal films. Microporous and Mesoporous Materials, 2015, 204, 143-148.	4.4	19
20	Enhanced Visible-Light Photocatalytic Activity of a TiO ₂ Membrane-Assisted with N-Doped Carbon Quantum Dots and SiO ₂ Opal Photonic Crystal. Industrial & Dots amp; Engineering Chemistry Research, 2019, 58, 120-127.	3.7	19
21	TiO 2 activity enhancement through synergistic effect of photons localization of photonic crystals and the sensitization of CdS quantum dots. Photonics and Nanostructures - Fundamentals and Applications, 2017, 23, 12-20.	2.0	18
22	Homogenous hydrolysis of cellulose to glucose in an inorganic ionic liquid catalyzed by zeolites. Cellulose, 2020, 27, 9201-9215.	4.9	18
23	Synthesis, Characterization and Hydroisomerization Performance of SAPO-11 Molecular Sieves with Caverns by Polymer Spheres. Catalysis Letters, 2010, 136, 126-133.	2.6	16
24	Measurement of Diffusion Coefficient of Heavy Oil in Fluidized Catalytic Cracking (FCC) Catalysts. Energy & Ene	5.1	16
25	Metathesis of butene to propene on WO3 supported on MTS-9 titanium-silica: effect of loading on selectivity of product and yield of propene. Transition Metal Chemistry, 2011, 36, 245-248.	1.4	16
26	Preparation of photonic crystal heterostructures composed of two TiO2 inverse opal films with different filling factors. Synthetic Metals, 2011, 161, 504-507.	3.9	15
27	Enhancement of gas–solid photocatalytic activity of nanocrystalline TiO2 by SiO2 opal photonic crystal. Journal of Materials Science, 2016, 51, 2079-2089.	3.7	15
28	Preparation of Three-Dimensionally Ordered Inorganic/Organic Bi-Continuous Composite Proton Conducting Membranes. Chemistry of Materials, 2005, 17, 5880-5883.	6.7	13
29	Diffusion Coefficient of Petroleum Residue Fractions in a SiO ₂ Model Catalyst. Energy & Ene	5.1	13
30	Metathesis of 1-butene and 2-butene to propene over Re2O7 supported on macro-mesoporous \hat{I}^3 -alumina prepared via a dual template method. Journal of Natural Gas Chemistry, 2012, 21, 105-108.	1.8	13
31	Insight into the intraparticle diffusion of residue oil components in catalysts during hydrodesulfurization reaction. AICHE Journal, 2014, 60, 3267-3275.	3.6	13
32	Tailored ordered porous alumina with well-defined and uniform pore-structure. Chemical Engineering Journal, 2013, 223, 670-677.	12.7	12
33	Structure and activity of NiMo/alumina hydrodesulfurization model catalyst with ordered opal-like pores. Catalysis Communications, 2012, 19, 5-9.	3.3	11
34	Insight into the Coke Precursor in the Process of the Methanol-to-Olefins Reaction. Energy & Samp; Fuels, 2020, 34, 742-748.	5.1	10
35	A Green and Cost-Effective Synthesis of Hierarchical SAPO-34 through Dry Gel Conversion and Its Performance in a Methanol-to-Olefin Reaction. Industrial & Engineering Chemistry Research, 2021, 60, 15380-15390.	3.7	10
36	Fabrication of colloidal crystal heterostructures by a room temperature floating self-assembly method. Materials Chemistry and Physics, 2011, 128, 6-9.	4.0	9

#	Article	IF	CITATIONS
37	Synthesis of monodisperse crosslinked polystyrene microspheres. Petroleum Science, 2008, 5, 375-378.	4.9	8
38	Fabrication of large-area and high-quality colloidal crystal films on nanocrystalline porous substrates by a room temperature floating self-assembly method. Thin Solid Films, 2011, 519, 1798-1802.	1.8	8
39	The diffusion of molecules inside porous materials with bidisperse pore structures. Chemical Engineering Journal, 2019, 365, 201-219.	12.7	8
40	Dual-Bandgap Effect of Photonic Crystals on TiO2 Photocatalytic Activity in Ultraviolet and Visible Light Regions. Catalysis Surveys From Asia, 2019, 23, 23-32.	2.6	7
41	The structure evolution of colloidal aggregates composed of monodisperse silica nanospheres. Journal of Colloid and Interface Science, 2017, 502, 219-226.	9.4	6
42	Differences in Product Distribution Measured with Flame Ionization Detector Gas Chromatography and Thermal Conductivity Detector Gas Chromatography during the Dimethyl Ether-to-Olefins and Methanol-to-Olefins Processes. Energy & Energy 31, 13266-13272.	5.1	6
43	The surface properties of aluminated meso–macroporous silica and its catalytic performance as hydrodesulfurization catalyst support. Petroleum Science, 2017, 14, 424-433.	4.9	6
44	The measurements of the intrinsic diffusivity in pores and surface diffusivity inside the porous materials in liquid phase. Chemical Engineering Science, 2019, 196, 176-187.	3.8	5
45	Preparation and evaluation of a well-ordered mesoporous nickel-molybdenum/silica opal hydrodesulfurization model catalyst. Transition Metal Chemistry, 2012, 37, 25-30.	1.4	4
46	Influence of catalyst support structure on ethene/decene metathesis and coke formation over WO3/SiO2 catalyst. Petroleum Science, 2013, 10, 112-119.	4.9	4
47	A model for transient diffusion in bidisperse pore structures. Petroleum Science, 2019, 16, 1455-1470.	4.9	4
48	Investigation of macro-/mesoporous Re2O7/Al2O3 catalysts prepared by a particle-template method for butylene metathesis. Transition Metal Chemistry, 2011, 36, 441-445.	1.4	1
49	Fabrication and characterization of novel composite membranes composed of photonic crystals and TiO2 nanotube array films. Optical Materials, 2016, 55, 130-135.	3.6	1
50	Measurement of pore diffusion factor of porous solid materials. Petroleum Science, 2022, 19, 1897-1904.	4.9	1
51	Photonic bandgap extension of surface-disordered 3D photonic crystals based on the TiO_2 inverse opal architecture. Optics Letters, 2014, 39, 2386.	3.3	0
52	A Novel Method for Rapid Fabrication of Colloidal Clusters. Journal of Nanoscience and Nanotechnology, 2019, 19, 4237-4243.	0.9	0
53	Modification and Photocatalytic Activity of TiO ₂ Inverse Opal Membranes. Wuji Cailiao Xuebao/Journal of Inorganic Materials, 2013, 28, 283-286.	1.3	0