
Xiaofeng Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9440325/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Ordered Mesoporous Carbon with Chitosan for Disinfection of Water via Capacitive Deionization. Nanomaterials, 2020, 10, 489.	4.1	7
2	Three-dimensional cubic ordered mesoporous carbon with chitosan for capacitive deionization disinfection of water. Environmental Science and Pollution Research, 2020, 27, 15001-15010.	5.3	4
3	Low-temperature catalytic oxidation of benzene over nanocrystalline Cu–Mn composite oxides by facile sol–gel synthesis. New Journal of Chemistry, 2020, 44, 2442-2451.	2.8	32
4	Enhanced gas-sensing performance of metal@ZnO core–shell nanoparticles towards ppb–ppm level benzene: the role of metal–ZnO hetero-interfaces. New Journal of Chemistry, 2019, 43, 2220-2230.	2.8	24
5	Synergetic effect over flame-made manganese doped CuO–CeO ₂ nanocatalyst for enhanced CO oxidation performance. RSC Advances, 2019, 9, 2343-2352.	3.6	17
6	Self-Templating Synthesis of 3D Hierarchical NiCo2O4@NiO Nanocage from Hydrotalcites for Toluene Oxidation. Catalysts, 2019, 9, 352.	3.5	34
7	Catalytic Behaviour of Flame-Made CuO-CeO2 Nanocatalysts in Efficient CO Oxidation. Catalysts, 2019, 9, 256.	3.5	27
8	Facile solution synthesis of Cu ₂ O–CuO–Cu(OH) ₂ hierarchical nanostructures for effective catalytic ozone decomposition. CrystEngComm, 2018, 20, 3096-3104.	2.6	50
9	Enhanced NO ₂ Sensing Property of ZnO by Ga Doping and H ₂ Activation. Physica Status Solidi (A) Applications and Materials Science, 2018, 215, 1700861.	1.8	5
10	Epoxy/αâ€alumina nanocomposite with decreased dielectric constant and dielectric loss. Polymer Composites, 2018, 39, 2307-2319.	4.6	12
11	In-situ synthesis of Cu2O/reduced graphene oxide composite as effective catalyst for ozone decomposition. Catalysis Communications, 2018, 106, 25-29.	3.3	46
12	Crystal-Defect-Dependent Gas-Sensing Mechanism of the Single ZnO Nanowire Sensors. ACS Sensors, 2018, 3, 2385-2393.	7.8	69
13	Noble Metal/Tin Dioxide Hierarchical Hollow Spheres for Low-Concentration Breath Methane Sensing. ACS Applied Nano Materials, 2018, 1, 6327-6336.	5.0	30
14	Designed synthesis of ultrafine NiO nanocrystals bonded on a three dimensional graphene framework for high-capacity lithium-ion batteries. New Journal of Chemistry, 2018, 42, 9901-9910.	2.8	24
15	Facetâ€dependent gas sensing properties of Cu ₂ O crystals. Physica Status Solidi (A) Applications and Materials Science, 2017, 214, 1600904.	1.8	20
16	Growth and Photovoltaic Properties of High-Quality GaAs Nanowires Prepared by the Two-Source CVD Method. Nanoscale Research Letters, 2016, 11, 191.	5.7	9
17	Importance of porous structure and synergistic effect on the catalytic oxidation activities over hierarchical Mn–Ni composite oxides. Catalysis Science and Technology, 2016, 6, 1710-1718.	4.1	55
18	Catalytic removal of gaseous benzene over Pt/SBA-15 catalyst: the effect of the preparation method. Reaction Kinetics, Mechanisms and Catalysis, 2015, 114, 711-723.	1.7	15

XIAOFENG WU

#	Article	IF	CITATIONS
19	Hierarchical hollow ZnO cubes constructed using self-sacrificial ZIF-8 frameworks and their enhanced benzene gas-sensing properties. New Journal of Chemistry, 2015, 39, 7060-7065.	2.8	48
20	Design and synthesis of porous non-noble metal oxides for catalytic removal of VOCs. Science China Chemistry, 2015, 58, 1359-1366.	8.2	41
21	Effect of Cu substitution on promoted benzene oxidation over porous CuCo-based catalysts derived from layered double hydroxide with resistance of water vapor. Applied Catalysis B: Environmental, 2015, 166-167, 260-269.	20.2	175
22	Synergistic Effects in Porous Mn–Co Mixed Oxide Nanorods Enhance Catalytic Deep Oxidation of Benzene. Catalysis Letters, 2014, 144, 1900-1910.	2.6	65
23	Synthesis and characterization of mesoporous MgO by template-free hydrothermal method. Materials Research Bulletin, 2014, 50, 307-311.	5.2	38
24	Oxalate route for promoting activity of manganese oxide catalysts in total VOCs' oxidation: effect of calcination temperature and preparation method. Journal of Materials Chemistry A, 2014, 2, 2544-2554.	10.3	301
25	Controlled synthesis of hierarchical MnO2 microspheres with hollow interiors for the removal of benzene. RSC Advances, 2014, 4, 26796.	3.6	22
26	Chemical vapor deposition preparation of nanostructured ZnO particles and their gas-sensing properties. Journal of Nanoparticle Research, 2013, 15, 1.	1.9	20
27	Catalytic oxidation of benzene over Ce–Mn oxides synthesized by flame spray pyrolysis. Particuology, 2013, 11, 454-459.	3.6	72
28	Synthesis of Hierarchical Hollow MnO ₂ Microspheres and Potential Application in Abatement of VOCs. Journal of Physical Chemistry C, 2013, 117, 11040-11046.	3.1	43
29	Synthesis of network reduced graphene oxide in polystyrene matrix by a two-step reduction method for superior conductivity of the composite. Journal of Materials Chemistry, 2012, 22, 17254.	6.7	212
30	Hydrothermal synthesis of β-FeOOH with different morphologies using NaH2PO4 as structural modifier. Journal Wuhan University of Technology, Materials Science Edition, 2012, 27, 662-664.	1.0	3
31	Coalescence of Ag2S and Au nanocrystals at room temperature. Journal of Materials Chemistry, 2011, 21, 11750.	6.7	28
32	Pure and Sn-, Ga- and Mn-doped ZnO gas sensors working at different temperatures for formaldehyde, humidity, NH3, toluene and CO. Applied Physics A: Materials Science and Processing, 2011, 104, 627-633.	2.3	36