List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9440049/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Fabrication of nanostructures with long-range order using block copolymer lithography. Applied Physics Letters, 2002, 81, 3657-3659.	1.5	401
2	Nanoscale Hydrophobic Recovery:Â A Chemical Force Microscopy Study of UV/Ozone-Treated Cross-Linked Poly(dimethylsiloxane). Langmuir, 2004, 20, 785-794.	1.6	272
3	Templated Self-Assembly of Block Copolymers: Effect of Substrate Topography. Advanced Materials, 2003, 15, 1599-1602.	11.1	229
4	Multifunctional and Recyclable Photothermally Responsive Cryogels as Efficient Platforms for Wound Healing. Advanced Functional Materials, 2019, 29, 1904402.	7.8	227
5	Quantitative mapping of elastic moduli at the nanoscale in phase separated polyurethanes by AFM. European Polymer Journal, 2011, 47, 692-698.	2.6	192
6	Colloidal crystal assembly on topologically patterned templates. Soft Matter, 2005, 1, 265.	1.2	183
7	Nanostructured Thin Films of Organic-Organometallic Block Copolymers: One-Step Lithography with Poly(ferrocenylsilanes) by Reactive Ion Etching. Advanced Materials, 2000, 12, 98-103.	11.1	170
8	Synthesis, characterization, glass transition behavior, and the electronic structure of high-molecular-weight, symmetrically substituted poly(ferrocenylsilanes) with alkyl or aryl side groups. Macromolecules, 1993, 26, 2878-2884.	2.2	147
9	Mechanical Properties of a Single Electrospun Fiber and Its Structures. Macromolecular Rapid Communications, 2005, 26, 716-720.	2.0	137
10	Synthesis, Characterization, and Properties of High Molecular Weight Unsymmetrically Substituted Poly(ferrocenylsilanes). Macromolecules, 1994, 27, 3992-3999.	2.2	131
11	Interrogation of Single Synthetic Polymer Chains and Polysaccharides by AFMâ€Based Force Spectroscopy. ChemPhysChem, 2007, 8, 2290-2307.	1.0	126
12	Nanocellular polymer foams as promising high performance thermal insulation materials. European Polymer Journal, 2015, 65, 33-45.	2.6	120
13	Redox active gels: synthesis, structures and applications. Journal of Materials Chemistry B, 2013, 1, 1658.	2.9	112
14	Block opolymer Vesicles as Nanoreactors for Enzymatic Reactions. Small, 2009, 5, 1436-1445.	5.2	105
15	Redox-Active Cross-Linkable Poly(ionic liquid)s. Journal of the American Chemical Society, 2012, 134, 4023-4025.	6.6	105
16	Thermoresponsive Semi-IPN Hydrogel Microfibers from Continuous Fluidic Processing with High Elasticity and Fast Actuation. ACS Applied Materials & Interfaces, 2017, 9, 901-908.	4.0	99
17	Enhanced Stability of Low Fouling Zwitterionic Polymer Brushes in Seawater with Diblock Architecture. Langmuir, 2013, 29, 10859-10867.	1.6	97
18	Poly(ferrocenyldimethylsilanes) for Reactive Ion Etch Barrier Applications. Chemistry of Materials, 2001, 13, 429-434.	3.2	96

#	Article	IF	CITATIONS
19	Biomimicking Micropatterned Surfaces and Their Effect on Marine Biofouling. Langmuir, 2014, 30, 9165-9175.	1.6	94
20	Cross-Linked Polyelectrolyte Multilayers for Marine Antifouling Applications. ACS Applied Materials & amp; Interfaces, 2013, 5, 5961-5968.	4.0	92
21	Probing the Collapse Dynamics of Poly(<i>N</i> â€isopropylacrylamide) Brushes by AFM: Effects of Coâ€nonsolvency and Grafting Densities. Small, 2011, 7, 1440-1447.	5.2	90
22	Breathing Pores on Command: Redoxâ€Responsive Spongy Membranes from Poly(ferrocenylsilane)s. Angewandte Chemie - International Edition, 2014, 53, 13789-13793.	7.2	90
23	Polyion Multilayers with Precise Surface Charge Control for Antifouling. ACS Applied Materials & Interfaces, 2015, 7, 852-861.	4.0	90
24	Measuring protein isoelectric points by AFM-based force spectroscopy using trace amounts of sample. Nature Nanotechnology, 2016, 11, 817-823.	15.6	89
25	Solvent-induced immiscibility of polymer brushes eliminates dissipation channels. Nature Communications, 2014, 5, 3781.	5.8	80
26	A Brushâ€Gel/Metalâ€Nanoparticle Hybrid Film as an Efficient Supported Catalyst in Glass Microreactors. Chemistry - A European Journal, 2010, 16, 12406-12411.	1.7	77
27	Reactivity in the Confinement of Self-Assembled Monolayers:Â Chain Length Effects on the Hydrolysis ofN-Hydroxysuccinimide Ester Disulfides on Gold. Langmuir, 2003, 19, 5780-5786.	1.6	76
28	Layer-by-Layer Printing of Photopolymers in 3D: How Weak is the Interface?. ACS Applied Materials & Interfaces, 2020, 12, 8908-8914.	4.0	76
29	Synthesis and Characterization of Anionic and Cationic Poly(ferrocenylsilane) Polyelectrolytes. Macromolecules, 2003, 36, 6683-6688.	2.2	68
30	Poly(N-isopropylacrylamide)–poly(ferrocenylsilane) dual-responsive hydrogels: synthesis, characterization and antimicrobial applications. Polymer Chemistry, 2013, 4, 337-342.	1.9	65
31	Characterization and molecular engineering of surface-grafted polymer brushes across the length scales by atomic force microscopy. Journal of Materials Chemistry, 2010, 20, 4981.	6.7	63
32	Multifaceted applications of cellulosic porous materials in environment, energy, and health. Progress in Polymer Science, 2020, 106, 101253.	11.8	63
33	Electrochemistry of Surface-Grafted Stimulus-Responsive Monolayers of Poly(ferrocenyldimethylsilane) on Gold. Langmuir, 2005, 21, 5115-5123.	1.6	62
34	Surfaceâ€Grafted Gelâ€Brush/Metal Nanoparticle Hybrids. Advanced Functional Materials, 2010, 20, 939-944.	7.8	60
35	Sulfobetaine-based polymer brushes in marine environment: Is there an effect of the polymerizable group on the antifouling performance?. Colloids and Surfaces B: Biointerfaces, 2014, 120, 118-124.	2.5	59
36	Morphology Characterization of PP/Clay Nanocomposites Across the Length Scales of the Structural Architecture. Macromolecular Materials and Engineering, 2006, 291, 858-868.	1.7	57

GYULA JULIUS VANCSO

#	Article	IF	CITATIONS
37	MORPHOLOGY OF POLYURETHANES REVISITED BY COMPLEMENTARY AFM AND TEM. Journal of Macromolecular Science - Physics, 2002, 41, 1291-1304.	0.4	56
38	Closed Mechanoelectrochemical Cycles of Individual Single hain Macromolecular Motors by AFM. Angewandte Chemie - International Edition, 2007, 46, 8400-8404.	7.2	56
39	Stretching of collapsed polymers causes an enhanced dissipative response of PNIPAM brushes near their LCST. Soft Matter, 2015, 11, 8508-8516.	1.2	56
40	Morphology and Surface Relief Structures of Asymmetric Poly(styrene-block-ferrocenylsilane) Thin Films. Macromolecules, 2001, 34, 942-950.	2.2	54
41	Preparation of a Rapidly Forming Poly(ferrocenylsilane)â€Poly(ethylene glycol)â€based Hydrogel by a Thiolâ€Michael Addition Click Reaction. Macromolecular Rapid Communications, 2010, 31, 2059-2063.	2.0	54
42	Probing the Thermal Collapse of Poly(<i>N</i> -isopropylacrylamide) Grafts by Quantitative <i>in Situ</i> Ellipsometry. Journal of Physical Chemistry B, 2012, 116, 9261-9268.	1.2	54
43	Electrografting of Stimuli-Responsive, Redox Active Organometallic Polymers to Gold from Ionic Liquids. Journal of the American Chemical Society, 2014, 136, 7865-7868.	6.6	54
44	Formation and Detection of Clay Network Structure in Poly(propylene)/Layered Silicate Nanocomposites. Macromolecular Rapid Communications, 2006, 27, 132-135.	2.0	53
45	Force Spectroscopy of Individual Stimulus-Responsive Poly(ferrocenyldimethylsilane) Chains: Towards a Redox-Driven Macromolecular Motor. Macromolecular Rapid Communications, 2006, 27, 103-108.	2.0	52
46	Multilayers of Fluorinated Amphiphilic Polyions for Marine Fouling Prevention. Langmuir, 2014, 30, 288-296.	1.6	50
47	Synthesis of Poly(ferrocenylsilane) Polyelectrolyte Hydrogels with Redox Controlled Swelling. Macromolecules, 2009, 42, 2324-2326.	2.2	49
48	Scanning Force Microscopy of Polymers. , 2010, , .		49
49	Grafting mixed responsive brushes of poly(N-isopropylacrylamide) and poly(methacrylic acid) from gold by selective initiation. Polymer Chemistry, 2011, 2, 879.	1.9	49
50	Effect of Variations in Micropatterns and Surface Modulus on Marine Fouling of Engineering Polymers. ACS Applied Materials & Interfaces, 2017, 9, 17508-17516.	4.0	48
51	Self-Assembled Monolayers of Branched Thiols and Disulfides on Gold:Â Surface Coverage, Order and Chain Orientation. Langmuir, 1998, 14, 3003-3010.	1.6	46
52	Towards a nanomechanical basis for temporary adhesion in barnacle cyprids (<i>Semibalanus) Tj ETQq0 0 0 rgB</i>	Г /Qverloc 1.5	k 10 Tf 50 14
53	Mechanical properties of block copolymer vesicle membranes by atomic force microscopy. Soft Matter, 2009, 5, 4944.	1.2	46

⁵⁴Covalent Binding of Bone Morphogenetic Proteinâ€2 and Transforming Growth Factorâ€123 to 3D Plotted
Scaffolds for Osteochondral Tissue Regeneration. Biotechnology Journal, 2017, 12, 1700072.1.846

#	Article	IF	CITATIONS
55	Hydrogels with a Memory: Dual-Responsive, Organometallic Poly(ionic liquid)s with Hysteretic Volume-Phase Transition. Journal of the American Chemical Society, 2017, 139, 10029-10035.	6.6	45
56	Surface-Confined Metallodendrimers: Isolated Nanosize Molecules. Angewandte Chemie - International Edition, 1999, 38, 2248-2251.	7.2	43
57	Fabrication of Freestanding Nanoporous Polyethersulfone Membranes Using Organometallic Polymer Resists Patterned by Nanosphere Lithography. Advanced Materials, 2009, 21, 2064-2067.	11.1	43
58	Electrochemically controlled release of molecular guests from redox responsive polymeric multilayers and devices. European Polymer Journal, 2013, 49, 2477-2484.	2.6	43
59	Highly Swellable, Dualâ€Responsive Hydrogels Based on PNIPAM and Redox Active Poly(ferrocenylsilane) Poly(ionic liquid)s: Synthesis, Structure, and Properties. Macromolecular Rapid Communications, 2016, 37, 1939-1944.	2.0	43
60	Thermoresponsive Membranes from Electrospun Mats with Switchable Wettability for Efficient Oil/Water Separations. Macromolecules, 2018, 51, 8435-8442.	2.2	43
61	Quantitative mapping of surface elastic moduli in silica-reinforced rubbers and rubber blends across the length scales by AFM. Journal of Materials Science, 2011, 46, 3507-3516.	1.7	42
62	Collapse from the top: brushes of poly(N-isopropylacrylamide) in co-nonsolvent mixtures. Soft Matter, 2014, 10, 3134.	1.2	42
63	Cosolvency-Induced Switching of the Adhesion between Poly(methyl methacrylate) Brushes. ACS Macro Letters, 2015, 4, 75-79.	2.3	42
64	Silica-Assisted Nucleation of Polymer Foam Cells with Nanoscopic Dimensions: Impact of Particle Size, Line Tension, and Surface Functionality. ACS Applied Materials & Interfaces, 2017, 9, 37929-37940.	4.0	41
65	Reversible pH-Controlled Switching of Poly(methacrylic acid) Grafts for Functional Biointerfaces. Langmuir, 2010, 26, 17513-17519.	1.6	40
66	Stemâ€Cell Clinging by a Thread: AFM Measure of Polymerâ€Brush Lateral Deformation. Advanced Materials Interfaces, 2016, 3, 1500456.	1.9	40
67	Pick up, move and release of nanoparticles utilizing co-non-solvency of PNIPAM brushes. Nanoscale, 2017, 9, 1670-1675.	2.8	40
68	Organometallic polymeric carriers for redox triggered release of molecular payloads. Journal of Materials Chemistry, 2012, 22, 6429.	6.7	39
69	Creeping Proteins in Microporous Structures: Polymer Brushâ€Assisted Fabrication of 3D Gradients for Tissue Engineering. Advanced Healthcare Materials, 2015, 4, 1169-1174.	3.9	39
70	Efficient and robust coatings using poly(2â€methylâ€2â€oxazoline) and its copolymers for marine and bacterial fouling prevention. Journal of Polymer Science Part A, 2016, 54, 275-283.	2.5	39
71	Substantially enhanced stability against degrafting of zwitterionic PMPC brushes by utilizing PGMA-linked initiators. European Polymer Journal, 2017, 89, 221-229.	2.6	39
72	Observations of crystallization and melting in poly(ethylene oxide)/poly(methyl methacrylate) blends by hot-stage atomic-force microscopy. Journal of Polymer Science, Part B: Polymer Physics, 1998, 36, 2643-2651.	2.4	37

#	Article	IF	CITATIONS
73	Supramolecular Materials: Molecular Packing of Tetranitrotetrapropoxycalix[4]arene in Highly Stable Films with Second-Order Nonlinear Optical Properties. Chemistry - A European Journal, 1998, 4, 1225-1234.	1.7	37
74	Grafting of Single, Stimuli-Responsive Poly(ferrocenylsilane) Polymer Chains to Gold Surfaces. Langmuir, 2004, 20, 6278-6287.	1.6	37
75	Supramolecular assembly of water-soluble poly(ferrocenylsilanes): multilayer structures on flat interfaces and permeability of microcapsules. Soft Matter, 2007, 3, 889-895.	1.2	37
76	Redox-responsive organometallic hydrogels for in situ metal nanoparticle synthesis. Chemical Communications, 2015, 51, 636-639.	2.2	36
77	Electrochemical sensing by surface-immobilized poly(ferrocenylsilane) grafts. Journal of Materials Chemistry, 2012, 22, 11261.	6.7	35
78	Preparation and characterization of macromolecular "hedge―brushes grafted from Au nanowires. Journal of Materials Chemistry, 2007, 17, 3293.	6.7	34
79	Surface functionalization of titanium dioxide nanoparticles with alkanephosphonic acids for transparent nanocomposites. Journal of Nanoparticle Research, 2011, 13, 2779-2790.	0.8	34
80	Tunable friction by employment of co-non-solvency of PNIPAM brushes. Polymer, 2016, 102, 372-378.	1.8	34
81	Switching Light Transmittance by Responsive Organometallic Poly(ionic liquid)s: Control by Cross Talk of Thermal and Redox Stimuli. Advanced Functional Materials, 2017, 27, 1702784.	7.8	34
82	Magnetic properties of large-area particle arrays fabricated using block copolymer lithography. IEEE Transactions on Magnetics, 2002, 38, 2541-2543.	1.2	33
83	Covalent Layer-by-Layer Assembly of Redox-Active Polymer Multilayers. Langmuir, 2013, 29, 7257-7265.	1.6	33
84	Polymer bottlebrushes with a redox responsive backbone feel the heat: synthesis and characterization of dual responsive poly(ferrocenylsilane)s with PNIPAM side chains. Polymer Chemistry, 2014, 5, 771-783.	1.9	33
85	Barnacle Larvae Exploring Surfaces with Variable Hydrophilicity: Influence of Morphology and Adhesion of "Footprint―Proteins by AFM. ACS Applied Materials & Interfaces, 2014, 6, 13667-13676.	4.0	32
86	Sponges with Janus Character from Nanocellulose: Preparation and Applications in the Treatment of Hemorrhagic Wounds. Advanced Healthcare Materials, 2020, 9, e1901796.	3.9	32
87	Bubble Seeding Nanocavities: Multiple Polymer Foam Cell Nucleation by Polydimethylsiloxane-Grafted Designer Silica Nanoparticles. ACS Nano, 2020, 14, 1623-1634.	7.3	32
88	Nanomechanical properties of polymer brushes by colloidal AFM probes. European Polymer Journal, 2012, 48, 8-15.	2.6	31
89	Nanostructured Polymer Brushes by UVâ€Assisted Imprint Lithography and Surfaceâ€Initiated Polymerization for Biological Functions. Advanced Functional Materials, 2011, 21, 2088-2095.	7.8	29
90	Surface-grafted zwitterionic polymers as platforms for functional supported phospholipid membranes. Soft Matter, 2012, 8, 1556-1562.	1.2	29

#	Article	IF	CITATIONS
91	Redox-responsive organometallic microgel particles prepared from poly(ferrocenylsilane)s generated using microfluidics. Chemical Communications, 2014, 50, 3058-3060.	2.2	29
92	Engineered, Robust Polyelectrolyte Multilayers by Precise Control of Surface Potential for Designer Protein, Cell, and Bacteria Adsorption. Langmuir, 2016, 32, 1338-1346.	1.6	29
93	Atomic force microscopy of the morphology and mechanical behaviour of barnacle cyprid footprint proteins at the nanoscale. Journal of the Royal Society Interface, 2010, 7, 285-296.	1.5	28
94	Study of the Molecular Geometry, Electronic Structure, and Thermal Stability of Phosphazene and Heterophosphazene Rings with ab Initio Molecular Orbital Calculations. Inorganic Chemistry, 1999, 38, 1153-1159.	1.9	27
95	Effects of contact time, humidity, and surface roughness on the adhesion hysteresis of polydimethylsiloxane. Journal of Adhesion Science and Technology, 2001, 15, 1429-1441.	1.4	27
96	Surface properties of oxidized LDPE by scanning force microscopy with chemically modified probes. Journal of Polymer Science, Part B: Polymer Physics, 1998, 36, 2483-2492.	2.4	26
97	Poly(ferrocenylsilane) electrolytes as a gold nanoparticle foundry: "two-in-one―redox synthesis and electrosteric stabilization, and sensing applications. Nanoscale, 2017, 9, 19255-19262.	2.8	26
98	Metal nanoparticle loading of gel-brush grafted polymer fibers in membranes for catalysis. Journal of Materials Chemistry A, 2018, 6, 7741-7748.	5.2	26
99	Stability and Cell Adhesion Properties of Poly(N-isopropylacrylamide) Brushes with Variable Grafting Densities. Australian Journal of Chemistry, 2011, 64, 1261.	0.5	25
100	Oriented crystallization and mechanical properties of polypropylene nucleated on fibrillated polytetrafluoroethylene scaffolds. Polymer Engineering and Science, 2005, 45, 458-468.	1.5	24
101	Thin film hydrogels from redox responsive poly(ferrocenylsilanes): Preparation, properties, and applications in electrocatalysis. European Polymer Journal, 2015, 72, 535-542.	2.6	24
102	Non-Covalent Chemistry on Surface-Confined, Isolated Dendrimers. Advanced Functional Materials, 2002, 12, 811-818.	7.8	23
103	Compositional Mapping of Polymer Surfaces by Chemical Force Microscopy Down to the Nanometer Scale: Reactions in Block Copolymer Microdomains. Macromolecular Symposia, 2005, 230, 149-157.	0.4	23
104	Stimulus Responsive Poly(ferrocenylsilanes): Redox Chemistry of Iron in the Main Chain. Journal of Inorganic and Organometallic Polymers and Materials, 2005, 15, 527-540.	1.9	23
105	Molecular Dynamics and Energy Landscape of Decanethiolates in Self-Assembled Monolayers on Au(111) Studied by Scanning Tunneling Microscopy. Langmuir, 2013, 29, 3662-3667.	1.6	23
106	Nanocellular polymer foams nucleated by core-shell nanoparticles. Polymer, 2016, 104, 22-30.	1.8	23
107	Mechanical mapping and morphology across the length scales unveil structure-property relationships in polycaprolactone based polyurethanes. Journal of Polymer Science, Part B: Polymer Physics, 2016, 54, 2298-2310.	2.4	23
108	Brush Swelling and Attachment Strength of Barnacle Adhesion Protein on Zwitterionic Polymer Films as a Function of Macromolecular Structure. Langmuir, 2019, 35, 8085-8094.	1.6	23

#	Article	IF	CITATIONS
109	Polymer single chain imaging, molecular forces, and nanoscale processes by Atomic Force Microscopy: The ultimate proof of the macromolecular hypothesis. Progress in Polymer Science, 2020, 104, 101232.	11.8	23
110	Synthesis, characterization and thin film formation of end-functionalized organometallic polymers. Chemical Communications, 1999, , 359-360.	2.2	22
111	Cation sensing by patterned self-assembled monolayers on gold. Perkin Transactions II RSC, 2000, , 2141-2146.	1.1	22
112	Morphology, Crystallization, and Melting of Single Crystals and Thin Films of Starâ€branched Polyesters with Poly(ϵ aprolactone) Arms as Revealed by Atomic Force Microscopy. Journal of Macromolecular Science - Physics, 2008, 47, 589-607.	0.4	22
113	Organometallic polymers for electrode decoration in sensing applications. RSC Advances, 2015, 5, 106355-106376.	1.7	22
114	Ion‣elective Ionic Polymer Metal Composite (IPMC) Actuator Based on Crown Ether Containing Sulfonated Poly(Arylene Ether Ketone). Macromolecular Materials and Engineering, 2017, 302, 1600381.	1.7	22
115	Chain Endâ€Functionalized Polymer Brushes with Switchable Fluorescence Response. Macromolecular Chemistry and Physics, 2019, 220, 1800537.	1.1	22
116	Electrostatic Assembly with Poly(ferrocenylsilanes). Journal of Inorganic and Organometallic Polymers and Materials, 2007, 17, 3-18.	1.9	21
117	Responsive Organometallic Polymer Grafts: Electrochemical Switching of Surface Properties and Current Mediation Behavior. Langmuir, 2011, 27, 6822-6829.	1.6	21
118	Vinylimidazoleâ€based asymmetric ion pair comonomers: Synthesis, polymerization studies and formation of ionically crosslinked PMMA. Journal of Polymer Science Part A, 2013, 51, 3260-3273.	2.5	21
119	Adhesion Engineering in Polymer–Metal Comolded Joints with Biomimetic Polydopamine. ACS Applied Materials & Interfaces, 2021, 13, 19244-19253.	4.0	20
120	Functional Group Transfer from Gold Nanoparticles to Flat Gold Surfaces for the Creation of Molecular Anchoring Points on Surfaces. Advanced Materials, 2002, 14, 722.	11.1	19
121	Synchrotron SAXS and Impedance Spectroscopy Unveil Nanostructure Variations in Redox-Responsive Porous Membranes from Poly(ferrocenylsilane) Poly(ionic liquid)s. Macromolecules, 2017, 50, 296-302.	2.2	19
122	Size-Dependent Submerging of Nanoparticles in Polymer Melts: Effect of Line Tension. Macromolecules, 2018, 51, 2411-2417.	2.2	19
123	Feeling the Force of Supramolecular Bonds in Polymers. Angewandte Chemie - International Edition, 2007, 46, 3794-3796.	7.2	18
124	Surface relaxations of poly(methyl methacrylate) assessed by friction force microscopy on the nanoscale. Soft Matter, 2009, 5, 1489.	1.2	18
125	Surface-grafted polyacrylonitrile brushes with aggregation-induced emission properties. Polymer Chemistry, 2020, 11, 669-674.	1.9	18
126	Thin cyclomatrix polyphosphazene films: interfacial polymerization of hexachlorocyclotriphosphazene with aromatic biphenols. Polymer Chemistry, 2018, 9, 3169-3180.	1.9	17

#	Article	IF	CITATIONS
127	Fluorescent Patterns by Selective Grafting of a Telechelic Polymer. ACS Applied Polymer Materials, 2019, 1, 136-140.	2.0	17
128	Cu2+-doping of polyanionic brushes: A facile route to prepare implant coatings with both antifouling and antibacterial properties. European Polymer Journal, 2020, 134, 109845.	2.6	17
129	Lignin Nanoparticles as Highly Efficient, Recyclable Emulsifiers for Enhanced Oil Recovery. ACS Sustainable Chemistry and Engineering, 2022, 10, 9334-9344.	3.2	17
130	Towards mapping of functional group distributions in functional polymers by AFM force titration measurements. Chemical Communications, 2000, , 1303-1304.	2.2	16
131	Properties and Phase Structure of Polycaprolactoneâ€Based Segmented Polyurethanes with Varying Hard and Soft Segments: Effects of Processing Conditions. Macromolecular Chemistry and Physics, 2018, 219, 1700214.	1.1	16
132	Highly Stable and Nonflammable Hydrated Salt-Paraffin Shape-Memory Gels for Sustainable Building Technology. ACS Sustainable Chemistry and Engineering, 2021, 9, 15442-15450.	3.2	16
133	Magnetic reversal phenomena of perpendicular magnetic islands fabricated by block copolymer lithography. Journal of Applied Physics, 2008, 103, .	1.1	15
134	Synthesis of poly(arylene ether ketone)s bearing skeletal crown ether units for cation exchange membranes. Journal of Polymer Science Part A, 2015, 53, 2786-2793.	2.5	15
135	PEG stabilized DNA – poly(ferrocenylsilane) polyplexes for gene delivery. Chemical Communications, 2016, 52, 7707-7710.	2.2	15
136	Enhanced Stability of Poly(3-sulfopropyl methacrylate potassium) Brushes Coated on Artificial Implants in Combatting Bacterial Infections. Industrial & Engineering Chemistry Research, 2019, 58, 21459-21465.	1.8	15
137	Redox-Induced Backbiting of Surface-Tethered Alkylsulfonate Amphiphiles: Reversible Switching of Surface Wettability and Adherence. Langmuir, 2015, 31, 6343-6350.	1.6	14
138	pH Dependent Elasticity of Polystyreneâ€ <i>block</i> â€poly(acrylic acid) Vesicle Shell Membranes by Atomic Force Microscopy. Macromolecular Rapid Communications, 2011, 32, 1704-1709.	2.0	13
139	Fluorescent Polyethylene by In Situ Facile Synthesis of Carbon Quantum Dots Facilitated by Silica Nanoparticle Agglomerates. ACS Applied Polymer Materials, 2021, 3, 5517-5526.	2.0	13
140	Angle-Dependent Atomic Force Microscopy Single-Chain Pulling of Adsorbed Macromolecules from Planar Surfaces Unveils the Signature of an Adsorption–Desorption Transition. Journal of the American Chemical Society, 2018, 140, 6408-6415.	6.6	12
141	Controlled subâ€10â€nanometer poly(<i>N</i> â€isopropylâ€acrylamide) layers grafted from silicon by atom transfer radical polymerization. Polymers for Advanced Technologies, 2018, 29, 806-813.	1.6	12
142	Designer Core–Shell Nanoparticles as Polymer Foam Cell Nucleating Agents: The Impact of Molecularly Engineered Interfaces. ACS Applied Materials & Interfaces, 2021, 13, 17034-17045.	4.0	12
143	Azobenzene-Based Cross-Linked Small-Molecule Vesicles for Precise Oxidative Damage Treatments Featuring Controlled and Prompt Molecular Release. Chemistry of Materials, 2021, 33, 7357-7366.	3.2	12
144	Variable-temperature study of the transport through a single octanethiol molecule. Physical Review B, 2012, 86, .	1.1	11

#	Article	IF	CITATIONS
145	Colloidal, water soluble probes constructed with quantum dots and amphiphilic poly(ferrocenylsilane) for smart redox sensing. European Polymer Journal, 2014, 54, 87-94.	2.6	11
146	Designer poly(urea-siloxane) microspheres with controlled modulus and size: Synthesis, morphology, and nanoscale stiffness by AFM. Polymer, 2018, 150, 289-300.	1.8	11
147	Atomic Force Microscopy-Based Single-Molecule Force Spectroscopy of Synthetic Supramolecular Dimers and Polymers. , 2006, , 315-353.		10
148	Controlled Surface Initiated Polymerization of <i>N</i> â€Isopropylacrylamide from Polycaprolactone Substrates for Regulating Cell Attachment and Detachment. Israel Journal of Chemistry, 2012, 52, 339-346.	1.0	10
149	Kinetic aspects of formation and processing of polycaprolactone polyurethanes <i>in situ</i> from a blocked isocyanate. Polymer Chemistry, 2018, 9, 1983-1995.	1.9	10
150	Printing "Smart―Inks of Redox-Responsive Organometallic Polymers on Microelectrode Arrays for Molecular Sensing. ACS Applied Materials & Interfaces, 2019, 11, 37060-37068.	4.0	10
151	Network Mesh Nanostructures in Cross‣inked Poly(Dimethylsiloxane) Visualized by AFM. Macromolecular Chemistry and Physics, 2020, 221, 2000170.	1.1	10
152	Electrochemical AFM on surface grafted poly(ferrocenylsilanes). Macromolecular Symposia, 2001, 167, 285-296.	0.4	9
153	Poly(ferrocenylsilane)â€ <i>block</i> â€Polylactide Block Copolymers. Macromolecular Rapid Communications, 2007, 28, 2125-2130.	2.0	9
154	Low Friction in CuO-Doped Yttria-Stabilized Tetragonal Zirconia Ceramics: A Complementary Macro- and Nanotribology Study. Journal of the American Ceramic Society, 2008, 91, 1646-1652.	1.9	9
155	Influence of the length and grafting density of PNIPAM chains on the colloidal and optical properties of quantum dot/PNIPAM assemblies. Nanotechnology, 2011, 22, 265701.	1.3	9
156	Oscillating Surfaces Fueled by a Continuous AC Electric Field. Advanced Materials Interfaces, 2019, 6, 1901292.	1.9	9
157	Static and Dynamic Control of Fingerprint Landscapes of Liquid Crystal Network Coatings. ACS Applied Materials & Interfaces, 2020, 12, 5265-5273.	4.0	9
158	Influence of Grain Size and Humidity on the Nanotribological Properties of Wear-Resistant Nanostructured ZrO2 Coatings: An Atomic Force Microscopy Study. Journal of the American Ceramic Society, 2005, 88, 2498-2503.	1.9	8
159	Elasticity of Single Poly(amido amine) Dendrimers. Macromolecular Rapid Communications, 2007, 28, 1640-1644.	2.0	8
160	Chemistry-Specific Interfacial Forces Between Barnacle (<i>Semibalanus Balanoides</i>) Cyprid Footprint Proteins and Chemically Functionalised AFM Tips. Journal of Adhesion, 2009, 85, 616-630.	1.8	8
161	Molecular Alignment and Nanotribology of Polymeric Solids Studied by Lateral Force Microscopy. ACS Symposium Series, 1999, , 317-335.	0.5	7
162	Interactions between sorbitolâ€ŧype nucleator and additives for polypropylene. Polymer Engineering and Science, 2020, 60, 3046-3055.	1.5	7

#	Article	IF	CITATIONS
163	Targeted Positioning of Quantum Dots Inside 3D Silicon Photonic Crystals Revealed by Synchrotron X-ray Fluorescence Tomography. ACS Nano, 2022, 16, 3674-3683.	7.3	7
164	Ordering and dynamics of oligo(phenylene ethynylene) self-assembled monolayers on Au(111). RSC Advances, 2015, 5, 42069-42074.	1.7	6
165	Pulling angle-dependent force microscopy. Review of Scientific Instruments, 2017, 88, 033705.	0.6	6
166	Thin Film Plasma Deposition of Allylamine; Effects of Solvent Treatment. Materials Research Society Symposia Proceedings, 1998, 544, 45.	0.1	5
167	Dynamics of oligo(phenylene-ethynylene) self-assembled monolayers on Au(1 1 1). Chemical Physics Letters, 2014, 614, 45-48.	1.2	5
168	Catalytic Performance of Pd Nanoparticles Obtained by Direct Reduction in Cellulose–Poly(ferrocenylsilane) Hybrid Sponges. Advanced Materials Interfaces, 2022, 9, .	1.9	5
169	Foaming of Polylactic Acid/Cellulose Nanocrystal Composites: Pickering Emulsion Templating for High-Homogeneity Filler Dispersions. ACS Applied Polymer Materials, 2022, 4, 111-120.	2.0	5
170	Initial bacterial retention on polydimethylsiloxane of various stiffnesses: The relevance of modulus (mis)match. Colloids and Surfaces B: Biointerfaces, 2022, 217, 112709.	2.5	5
171	Kinetics and Domain Formation in Surface Reactions by Inverted Chemical Force Microscopy and FTIR Spectroscopy. ACS Symposium Series, 2000, , 36-57.	0.5	4
172	Optical imaging beyond the diffraction limit by SNEM: Effects of AFM tip modifications with thiol monolayers on imaging quality. Ultramicroscopy, 2015, 150, 79-87.	0.8	4
173	AFM Study on Lattice Orientation and Tribology of SAMS of Fluorinated Thiols and Disulfides on Au(111): The Influence of the Molecular Structure. ACS Symposium Series, 2001, , 15-30.	0.5	3
174	Chemical Force Microscopy: Nanometer-Scale Surface Analysis with Chemical Sensitivity. , 2006, , 275-314.		3
175	Poly(ferrocenylsilane) Hydrogels as a Foundry for Metal Nanoparticle Synthesis by Direct Reduction of Electrolytes via a Catalytic Route. ACS Applied Nano Materials, 2022, 5, 8868-8874.	2.4	3
176	Preparation and Friction Force Microscopy Measurements of Immiscible, Opposing Polymer Brushes. Journal of Visualized Experiments, 2014, , .	0.2	2
177	Cell Adhesion: Stem ell Clinging by a Thread: AFM Measure of Polymerâ€Brush Lateral Deformation (Adv. Mater. Interfaces 3/2016). Advanced Materials Interfaces, 2016, 3, .	1.9	2
178	Nanostructured Thin Films of Organic–Organometallic Block Copolymers: One-Step Lithography with Poly(ferrocenylsilanes) by Reactive Ion Etching. Advanced Materials, 2000, 12, 98-103.	11.1	2
179	Stimuli-Responsive Polymer Brushes. , 0, , 125-144.		2
180	Scanning Thermal Lithography as a Tool for Highly Localized Nanoscale Chemical Surface Functionalization. Materials Research Society Symposia Proceedings, 2011, 1318, 1.	0.1	1

#	ARTICLE	IF	CITATIONS
181	Call for Papers for Zwitterionic Interfaces: Concepts and Emerging Applications. Langmuir, 2018, 34, 3375-3375.	1.6	1
182	Supramolecular Materials: Molecular Packing of Tetranitrotetrapropoxycalix[4]arene in Highly Stable Films with Second-Order Nonlinear Optical Properties. Chemistry - A European Journal, 1998, 4, 1225-1234.	1.7	1
183	Formation of a Cobalt Magnetic Dot Array via Block Copolymer Lithography. , 2001, 13, 1174.		1
184	Force–Extension Behavior of Single Polymer Chains by AFM. , 2010, , 75-105.		0
185	Energy transfer: Visualizing Resonance Energy Transfer in Supramolecular Surface Patterns of β-CD-Functionalized Quantum Dot Hosts and Organic Dye Guests by Fluorescence Lifetime Imaging (Small 24/2010). Small, 2010, 6, 2869-2869.	5.2	0
186	Polymer Brushes: Probing the Collapse Dynamics of Poly(N-isopropylacrylamide) Brushes by AFM: Effects of Co-nonsolvency and Grafting Densities (Small 10/2011). Small, 2011, 7, 1274-1274.	5.2	0
187	Atomic force microscopy based quantitative mapping of elastic moduli in phase separated polyurethanes and silica reinforced rubbers across the length scales. Materials Research Society Symposia Proceedings, 2011, 1318, 1.	0.1	0
188	Fabrication and antimicrobial effects of silver nanoparticle-poly(N-isopropylacrylamide)-poly(ferrocenylsilane) hydrogel composites. Materials Research Society Symposia Proceedings, 2012, 1453, 21.	0.1	0
189	Nanoscale scanning near-field ellipsometric microscopy (SNEM) imaging of heterogeneous polymers. Materials Research Society Symposia Proceedings, 2014, 1652, 1.	0.1	0
190	Macromol. Rapid Commun. 23/2016. Macromolecular Rapid Communications, 2016, 37, 1980-1980.	2.0	0
191	Smart Windows: Switching Light Transmittance by Responsive Organometallic Poly(ionic liquid)s: Control by Cross Talk of Thermal and Redox Stimuli (Adv. Funct. Mater. 41/2017). Advanced Functional Materials, 2017, 27, .	7.8	0