Raf Dewil

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/9439813/raf-dewil-publications-by-year.pdf

Version: 2024-04-25

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

8,664 164 40 91 h-index g-index citations papers 10,262 6.56 8.4 176 avg, IF L-index ext. citations ext. papers

#	Paper	IF	Citations
164	Comparative life cycle cost assessment of (lean) duplex stainless steel in wastewater treatment environments <i>Journal of Environmental Management</i> , 2022 , 306, 114375	7.9	1
163	Sustainable development in period of climate crisis <i>Journal of Environmental Management</i> , 2022 , 303, 114271	7.9	2
162	Self-assembled embedding of ion exchange materials into nanofiber-based hydrogel framework for fluoride capture. <i>Chemical Engineering Journal</i> , 2022 , 431, 134201	14.7	5
161	Role of carrier characteristics affecting microbial density and population in enhanced nitrogen and phosphorus removal from wastewater. <i>Journal of Environmental Management</i> , 2022 , 302, 113976	7.9	1
160	Engineered nanomaterials in microbial fuel cells Recent developments, sustainability aspects, and future outlook. <i>Fuel</i> , 2022 , 310, 122347	7.1	4
159	Degradation of sulfamethoxazole by ferrous iron activated peroxymonosulfate: Elucidation of the degradation mechanism and influence of process parameters. <i>Chemical Engineering Journal</i> , 2022 , 430, 132875	14.7	3
158	The state of art on the prediction of efficiency and modeling of the processes of pollutants removal based on machine learning. <i>Science of the Total Environment</i> , 2022 , 807, 150554	10.2	11
157	Biochar for soil applications-sustainability aspects, challenges and future prospects. <i>Chemical Engineering Journal</i> , 2022 , 428, 131189	14.7	23
156	Acclimatized activated sludge for enhanced phenolic wastewater treatment using pinewood biochar. <i>Chemical Engineering Journal</i> , 2022 , 427, 131708	14.7	9
155	Fluidized Bed Technology: Challenges and Perspectives. <i>IOP Conference Series: Earth and Environmental Science</i> , 2022 , 952, 012010	0.3	0
154	Co-Al and Mn-Fe Catalytic Steam Reforming of CH3OH to H2. <i>IOP Conference Series: Earth and Environmental Science</i> , 2022 , 952, 012007	0.3	1
153	Ionic Control of Functional Zeolitic Imidazolate Framework-Based Membrane for Tailoring Selectivity toward Target Ions <i>ACS Applied Materials & Amp; Interfaces</i> , 2022 ,	9.5	3
152	Hydrogen-enriched natural gas in a decarbonization perspective. <i>Fuel</i> , 2022 , 318, 123680	7.1	1
151	Corrosion behaviour of lean duplex stainless steel in advanced oxidation process (AOP) based wastewater treatment plants. <i>Engineering Failure Analysis</i> , 2022 , 136, 106170	3.2	1
150	Kinetics and mechanisms of the carbamazepine degradation in aqueous media using novel iodate-assisted photochemical and photocatalytic systems <i>Science of the Total Environment</i> , 2022 , 153	38 ¹ /1 ²	2
149	ZnO/Fe2O3/Bentonite: An Efficient Solar-Light Active Magnetic Photocatalyst for the Degradation of Pharmaceutical Active Compounds. <i>Molecules</i> , 2022 , 27, 3050	4.8	1
148	Adsorption of acid fuchsine dye from wastewater by Mg-ferrite particles. <i>Journal of Environmental Management</i> , 2022 , 317, 115427	7.9	1

147	Electrochemical Advanced Oxidation of Carbamazepine: Mechanism and optimal operating conditions. <i>Chemical Engineering Journal</i> , 2022 , 446, 137114	14.7	О
146	Performance assessment of ultrasonic sludge disintegration in activated sludge wastewater treatment plants under nutrient-deficient conditions. <i>Chemical Engineering Journal</i> , 2021 , 431, 133979	14.7	1
145	Degradation of ciprofloxacin using UV-based advanced removal processes: Comparison of persulfate-based advanced oxidation and sulfite-based advanced reduction processes. <i>Science of the Total Environment</i> , 2021 , 764, 144510	10.2	22
144	Advances in rigid porous high temperature filters. <i>Renewable and Sustainable Energy Reviews</i> , 2021 , 139, 110713	16.2	15
143	Hydrophobic-modified metal-hydroxide nanoflocculants enable one-step removal of multi-contaminants for drinking water production. <i>IScience</i> , 2021 , 24, 102491	6.1	3
142	Pilot-scale evaluation of ozone as a polishing step for the removal of nonylphenol from tank truck cleaning wastewater. <i>Journal of Environmental Management</i> , 2021 , 288, 112396	7.9	O
141	Thermo-chemical water splitting: Selection of priority reversible redox reactions by multi-attribute decision making. <i>Renewable Energy</i> , 2021 , 170, 800-810	8.1	7
140	A critical review of ammonia recovery from anaerobic digestate of organic wastes via stripping. <i>Renewable and Sustainable Energy Reviews</i> , 2021 , 143, 110903	16.2	13
139	Photocatalytic reduction of Cr(VI) from aqueous solution by visible light/CuO-Kaolin: Optimization and modeling of key parameters using central composite design (CCD). <i>Separation Science and Technology</i> , 2021 , 56, 1253-1271	2.5	3
138	Application of UV/chlorine pretreatment for controlling ultrafiltration (UF) membrane fouling caused by different natural organic fractions. <i>Chemosphere</i> , 2021 , 263, 127993	8.4	11
137	11CO2 positron emission imaging reveals the in-situ gas concentration profile as function of time and position in opaque gas-solid contacting systems. <i>Chemical Engineering Journal</i> , 2021 , 404, 126507	14.7	4
136	Efficient reduction of carbamazepine using UV-activated sulfite: Assessment of critical process parameters and elucidation of radicals involved. <i>Chemical Engineering Journal</i> , 2021 , 404, 126403	14.7	11
135	Synergistic effects of the combined use of ozone and sodium percarbonate for the oxidative degradation of dichlorvos. <i>Journal of Water Process Engineering</i> , 2021 , 39, 101721	6.7	2
134	Advanced oxidation of benzalkonium chloride in aqueous media under ozone and ozone/UV systems Degradation kinetics and toxicity evaluation. <i>Chemical Engineering Journal</i> , 2021 , 413, 127431	14.7	9
133	Artificial intelligence as a sustainable tool in wastewater treatment using membrane bioreactors. <i>Chemical Engineering Journal</i> , 2021 , 417, 128070	14.7	8
132	Adsorption of phosphate on iron-coated sand granules as a robust end-of-pipe purification strategy in the horticulture sector. <i>Chemosphere</i> , 2021 , 267, 129276	8.4	3
131	Post-combustion carbon capture. Renewable and Sustainable Energy Reviews, 2021, 138, 110490	16.2	37
130	Reviewing the thermo-chemical recycling of waste polyurethane foam. <i>Journal of Environmental Management</i> , 2021 , 278, 111527	7.9	22

129	Green development challenges within the environmental management framework. <i>Journal of Environmental Management</i> , 2021 , 277, 111477	7.9	6
128	The Direct Reduction of Iron Ore with Hydrogen. Sustainability, 2021, 13, 8866	3.6	9
127	The Need to Accurately Define and Measure the Properties of Particles. <i>Standards</i> , 2021 , 1, 19-38		2
126	Biochar and urease inhibitor mitigate NH and NO emissions and improve wheat yield in a urea fertilized alkaline soil. <i>Scientific Reports</i> , 2021 , 11, 17413	4.9	17
125	Nanostructured materials via green sonochemical routes - Sustainability aspects. <i>Chemosphere</i> , 2021 , 276, 130146	8.4	11
124	Efficiency and mechanism of 2,4-dichlorophenol degradation by the UV/IO process. <i>Science of the Total Environment</i> , 2021 , 782, 146781	10.2	8
123	Dense upflow fluidized bed (DUFB) solar receivers of high aspect ratio: Different fluidization modes through inserting bubble rupture promoters. <i>Chemical Engineering Journal</i> , 2021 , 418, 129376	14.7	8
122	Heavy metals immobilization and improvement in maize (Zea mays L.) growth amended with biochar and compost. <i>Scientific Reports</i> , 2021 , 11, 18416	4.9	18
121	Biochar in water and wastewater treatment - a sustainability assessment. <i>Chemical Engineering Journal</i> , 2021 , 420, 129946	14.7	33
120	Role of process parameters in the degradation of sulfamethoxazole by heat-activated peroxymonosulfate oxidation: Radical identification and elucidation of the degradation mechanism. <i>Chemical Engineering Journal</i> , 2021 , 422, 130457	14.7	25
119	Removal of sulfamethoxazole by ferrous iron activation of persulfate: Optimization of dosing strategy and degradation mechanism. <i>Science of the Total Environment</i> , 2021 , 799, 149159	10.2	2
118	Electrochemical degradation of antivirus drug lamivudine formulation: photoelectrocoagulation, peroxi-electrocoagulation, and peroxi-photoelectrocoagulation processes. <i>Journal of Applied Electrochemistry</i> , 2021 , 51, 607-618	2.6	4
117	The Bcreening IndexIto Select Building-Scale Heating Systems. IOP Conference Series: Earth and Environmental Science, 2020, 586, 012004	0.3	1
116	Identification of Commercial Oxo-Biodegradable Plastics: Study of UV Induced Degradation in an Effort to Combat Plastic Waste Accumulation. <i>Journal of Polymers and the Environment</i> , 2020 , 28, 2364-	2376	5
115	Predicting Residual Adsorbable Organic Halides Concentrations in Industrial Wastewater Using Typical Wastewater Parameters. <i>Water (Switzerland)</i> , 2020 , 12, 1653	3	1
114	How Photocatalyst Dosage and Ultrasound Application Influence the Photocatalytic Degradation Rate of Phenol in Water: Elucidating the Mechanisms Behind. <i>Water (Switzerland)</i> , 2020 , 12, 1672	3	5
113	Reviewing the potential of bio-hydrogen production by fermentation. <i>Renewable and Sustainable Energy Reviews</i> , 2020 , 131, 110023	16.2	61
112	Scientometric analysis and scientific trends on biochar application as soil amendment. <i>Chemical Engineering Journal</i> , 2020 , 395, 125128	14.7	19

(2018-2020)

111	Influence of electrochemical advanced oxidation on the long-term operation of an Upflow Anaerobic Sludge Blanket (UASB) reactor treating 4-chlorophenol containing wastewater. <i>Renewable Energy</i> , 2020 , 159, 683-692	8.1	2
110	Ultrasound-assisted digestate treatment of manure digestate for increased biogas production in small pilot scale anaerobic digesters. <i>Renewable Energy</i> , 2020 , 152, 664-673	8.1	5
109	Simultaneous production of 5-hydroxymethylfurfural and furfural from bamboo (Phyllostachys nigra B oryana) in a biphasic reaction system. <i>Chemical Engineering Journal</i> , 2020 , 386, 123957	14.7	18
108	Environmental problems arising from the sustainable development of energy, water and environment system. <i>Journal of Environmental Management</i> , 2020 , 259, 109666	7.9	12
107	Effect of ozonation as pre-treatment and polishing step on removal of ecotoxicity and alkylphenol ethoxylates from tank truck cleaning wastewater. <i>Journal of Water Process Engineering</i> , 2020 , 37, 10144	£6.7	4
106	Degradation of sulfamethoxazole by heat-activated persulfate oxidation: Elucidation of the degradation mechanism and influence of process parameters. <i>Chemical Engineering Journal</i> , 2020 , 379, 122234	14.7	44
105	Advances in ozonation and biodegradation processes to enhance chlorophenol abatement in multisubstrate wastewaters: a review. <i>Environmental Science: Water Research and Technology</i> , 2019 , 5, 444-481	4.2	29
104	Efficiency and mechanism of diclofenac degradation by sulfite/UV advanced reduction processes (ARPs). Science of the Total Environment, 2019 , 688, 65-74	10.2	35
103	Biomass-derived aviation fuels: Challenges and perspective. <i>Progress in Energy and Combustion Science</i> , 2019 , 74, 31-49	33.6	93
102	A chemically assembled anion exchange membrane surface for monovalent anion selectivity and fouling reduction. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 6348-6356	13	43
101	Particles in a circulation loop for solar energy capture and storage. <i>Particuology</i> , 2019 , 43, 149-156	2.8	27
100	Pharmaceuticals in freshwater aquatic environments: A comparison of the African and European challenge. <i>Science of the Total Environment</i> , 2019 , 654, 324-337	10.2	199
99	Troubleshooting the problems arising from sustainable development. <i>Journal of Environmental Management</i> , 2019 , 232, 52-57	7.9	16
98	Isolation and screening of bacterial isolates from wastewater treatment plants to decolorize azo dyes. <i>Journal of Bioscience and Bioengineering</i> , 2018 , 125, 448-456	3.3	62
97	Energy analysis of a particle suspension solar combined cycle power plant. <i>Energy Conversion and Management</i> , 2018 , 163, 292-303	10.6	39
96	A microwave-assisted process for the in-situ production of 5-hydroxymethylfurfural and furfural from lignocellulosic polysaccharides in a biphasic reaction system. <i>Journal of Cleaner Production</i> , 2018 , 187, 1014-1024	10.3	55
95	Production of Levulinic Acid and Furfural by Microwave-Assisted Hydrolysis from Model Compounds: Effect of Temperature, Acid Concentration and Reaction Time. <i>Waste and Biomass Valorization</i> , 2018 , 9, 343-355	3.2	13
94	Degradation of 4-Chlorophenol by Microwave-Enhanced Advanced Oxidation Processes: Kinetics and Influential Process Parameters. <i>Water (Switzerland)</i> , 2018 , 10, 247	3	4

93	Electrochemical oxidation of key pharmaceuticals using a boron doped diamond electrode. Separation and Purification Technology, 2018 , 195, 184-191	8.3	60
92	Effects of process variables and kinetics on the degradation of 2,4-dichlorophenol using advanced reduction processes (ARP). <i>Journal of Hazardous Materials</i> , 2018 , 357, 81-88	12.8	41
91	Microwave effects in the dilute acid hydrolysis of cellulose to 5-hydroxymethylfurfural. <i>Scientific Reports</i> , 2018 , 8, 7719	4.9	50
90	Chemo-enzymatic epoxidation of Sapindus mukurossi fatty acids catalyzed with Candida sp. 99🛭 25 lipase in a solvent-free system. <i>Industrial Crops and Products</i> , 2017 , 98, 10-18	5.9	20
89	Effect of Sludge Retention Time on the Efficiency of Excess Sludge Reduction by Ultrasonic Disintegration. <i>Lecture Notes in Civil Engineering</i> , 2017 , 131-137	0.3	
88	New perspectives for Advanced Oxidation Processes. <i>Journal of Environmental Management</i> , 2017 , 195, 93-99	7.9	295
87	A pilot-scale coupling of ozonation and biodegradation of 2,4-dichlorophenol-containing wastewater: The effect of biomass acclimation towards chlorophenol and intermediate ozonation products. <i>Journal of Cleaner Production</i> , 2017 , 161, 1432-1441	10.3	26
86	Selective electrochemical degradation of 4-chlorophenol at a Ti/RuO-IrO anode in chloride rich wastewater. <i>Journal of Environmental Management</i> , 2017 , 190, 61-71	7.9	16
85	Comparing glow discharge plasma and ultrasound treatment for improving aerobic respiration of activated sludge. <i>Water Research</i> , 2017 , 122, 207-215	12.5	10
84	Evaluation of the effects of low energetic microwave irradiation on anaerobic digestion. <i>Journal of Environmental Management</i> , 2017 , 202, 69-83	7.9	6
83	Decolorization of reactive azo dyes using a sequential chemical and activated sludge treatment. Journal of Bioscience and Bioengineering, 2017 , 124, 668-673	3.3	34
82	Assessing the composition of microbial communities in textile wastewater treatment plants in comparison with municipal wastewater treatment plants. <i>MicrobiologyOpen</i> , 2017 , 6, e00413	3.4	28
81	Respirometric Evaluation of Toxicity of 2,4-Dichlorophenol Towards Activated Sludge and the Ability of Biomass Acclimation. <i>Lecture Notes in Civil Engineering</i> , 2017 , 60-67	0.3	1
80	Integrating ultrasonic disintegration in activated sludge wastewater treatment plant modeling. Desalination and Water Treatment, 2016 , 57, 10200-10209		
79	Microwave and ultrasound pre-treatments influence microbial community structure and digester performance in anaerobic digestion of waste activated sludge. <i>Applied Microbiology and Biotechnology</i> , 2016 , 100, 5339-52	5.7	27
78	The production of bio-energy by microbial (biogas through anaerobic digestion) or thermal (pyrolysis) processes. <i>Renewable Energy</i> , 2016 , 96, 1055	8.1	7
77	High-resolution MS and MS(n) investigation of ozone oxidation products from phenazone-type pharmaceuticals and metabolites. <i>Chemosphere</i> , 2015 , 136, 32-41	8.4	29
76	The effect of ozonation on the toxicity and biodegradability of 2,4-dichlorophenol-containing wastewater. <i>Chemical Engineering Journal</i> , 2015 , 280, 728-736	14.7	58

(2014-2015)

75	Siloxane removal and sludge disintegration using thermo-alkaline treatments with air stripping prior to anaerobic sludge digestion. <i>Energy Conversion and Management</i> , 2015 , 96, 384-391	10.6	11
74	Operation Diagram of Circulating Fluidized Beds (CFBs). <i>Procedia Engineering</i> , 2015 , 102, 1092-1103		18
73	Challenges and opportunities in improving the production of bio-ethanol. <i>Progress in Energy and Combustion Science</i> , 2015 , 47, 60-88	33.6	373
72	Energy potential for combustion and anaerobic digestion of biomass from low-input high-diversity systems in conservation areas. <i>GCB Bioenergy</i> , 2015 , 7, 888-898	5.6	26
71	The Voidage in a CFB Riser as Function of Solids Flux and Gas Velocity. <i>Procedia Engineering</i> , 2015 , 102, 1112-1122		17
7°	Biomass of invasive plant species as a potential feedstock for bioenergy production. <i>Biofuels, Bioproducts and Biorefining</i> , 2015 , 9, 273-282	5.3	26
69	Wall-to-Suspension Heat Transfer in a CFB Downcomer. <i>Journal of Powder Technology</i> , 2015 , 2015, 1-9		2
68	Hybrid operation of the bio-ethanol fermentation. <i>Separation and Purification Technology</i> , 2015 , 149, 322-330	8.3	32
67	A novel sintered metal fiber microfiltration of bio-ethanol fermentation broth. <i>Korean Journal of Chemical Engineering</i> , 2015 , 32, 1625-1633	2.8	8
66	Ultrasonic Treatment of Waste Sludge: A Review on Mechanisms and Applications. <i>Critical Reviews in Environmental Science and Technology</i> , 2014 , 44, 1220-1288	11.1	125
65	Comparing the influence of low power ultrasonic and microwave pre-treatments on the solubilisation and semi-continuous anaerobic digestion of waste activated sludge. <i>Bioresource Technology</i> , 2014 , 171, 44-9	11	101
64	Hydrophilic membranes to replace molecular sieves in dewatering the bio-ethanol/water azeotropic mixture. <i>Separation and Purification Technology</i> , 2014 , 136, 144-149	8.3	49
63	Modelling of the ultrasonic disintegration of activated sludge. <i>IFAC Postprint Volumes IPPV / International Federation of Automatic Control</i> , 2014 , 47, 7122-7127		
62	The design of cyclonic pre-heaters in suspension cement kilns. <i>International Journal of Sustainable Engineering</i> , 2014 , 7, 307-312	3.1	12
61	Bioethanol from lignocellulosic biomass: current findings determine research priorities. <i>Scientific World Journal, The</i> , 2014 , 2014, 298153	2.2	131
60	Wall-to-Bed Heat Transfer at Minimum Gas-Solid Fluidization. <i>Journal of Powder Technology</i> , 2014 , 2014, 1-8		3
59	Methane and nitrous oxide emissions following anaerobic digestion of sludge in Japanese sewage treatment facilities. <i>Bioresource Technology</i> , 2014 , 171, 175-81	11	19
58	The convection heat transfer coefficient in a Circulating Fluidized Bed (CFB). <i>Advanced Powder Technology</i> , 2014 , 25, 710-715	4.6	24

57	A field study of the effectiveness of sacrificial anodes in ballast tanks of merchant ships. <i>Journal of Marine Science and Technology</i> , 2014 , 19, 116-123	1.7	2
56	Energy-Efficient Production of Cassava-Based Bio-Ethanol. <i>Advances in Bioscience and Biotechnology (Print)</i> , 2014 , 05, 925-939	0.9	35
55	Influence of microwave pre-treatment on sludge solubilization and pilot scale semi-continuous anaerobic digestion. <i>Bioresource Technology</i> , 2013 , 128, 598-603	11	122
54	Addition of polyaluminiumchloride (PACl) to waste activated sludge to mitigate the negative effects of its sticky phase in dewatering-drying operations. <i>Water Research</i> , 2013 , 47, 3600-9	12.5	42
53	Heat transfer to the riser-wall of a circulating fluidised bed (CFB). Energy, 2013, 50, 493-500	7.9	23
52	Mathematical modelling of anaerobic digestion of biomass and waste: Power and limitations. <i>Progress in Energy and Combustion Science</i> , 2013 , 39, 383-402	33.6	116
51	Gasification of plastic waste as waste-to-energy or waste-to-syngas recovery route. <i>Natural Science</i> , 2013 , 05, 695-704	0.5	18
50	Simulating ultrasonic activated sludge disintegration for excess sludge reduction in SBR systems. <i>IFAC Postprint Volumes IPPV / International Federation of Automatic Control</i> , 2013 , 46, 12-17		
49	Fluidized bed waste incinerators: Design, operational and environmental issues. <i>Progress in Energy and Combustion Science</i> , 2012 , 38, 551-582	33.6	144
48	Improved process control of an industrial sludge centrifuge-dryer installation through binary logistic regression modeling of the fouling issues. <i>Journal of Process Control</i> , 2012 , 22, 1387-1396	3.9	9
47	Effects of ultrasonic pre-treatment on sludge characteristics and anaerobic digestion. <i>Water Science and Technology</i> , 2012 , 66, 2284-90	2.2	25
46	Evaluation of peroxide based advanced oxidation processes (AOPs) for the degradation of ibuprofen in water. <i>Desalination and Water Treatment</i> , 2012 , 50, 189-197		13
45	Oxidizing Agents and Organic Solvents as Pretreatment for Anaerobic Digestion 2012 , 199-214		4
44	Recycling and recovery of post-consumer plastic solid waste in a European context. <i>Thermal Science</i> , 2012 , 16, 669-685	1.2	103
43	THEORY AND EXPERIMENTS FOR DISSOLVING SOLIDS IN WATER. <i>Chemical Engineering Communications</i> , 2012 , 199, 335-353	2.2	1
42	Simulation of the Anaerobic Digestion of Microwave Pre-Treated Waste Activated Sludge with ADM1. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2012, 45, 677-682		2
41	Anaerobic digestion of biomass and waste: current trends in mathematical modeling. <i>IFAC Postprint Volumes IPPV / International Federation of Automatic Control</i> , 2011 , 44, 5024-5033		4
40	Anaerobic digestion in global bio-energy production: Potential and research challenges. <i>Renewable and Sustainable Energy Reviews</i> , 2011 , 15, 4295-4301	16.2	578

39	Quantification of the exchangeable calcium in activated sludge flocs and its implication to sludge settleability. <i>Separation and Purification Technology</i> , 2011 , 83, 1-8	8.3	27
38	Peracetic acid oxidation as an alternative pre-treatment for the anaerobic digestion of waste activated sludge. <i>Bioresource Technology</i> , 2011 , 102, 4124-30	11	135
37	Parameter identification and modeling of the biochemical methane potential of waste activated sludge. <i>Environmental Science & Environmental Science &</i>	10.3	33
36	Reply to Comment on P arameter Identification and Modeling of the Biochemical Methane Potential of Waste Activated Sludge[[Environmental Science & 2011, 45, 7598-7599]	10.3	
35	Thermogravimetric pyrolysis of waste polyethylene-terephthalate and polystyrene: A critical assessment of kinetics modelling. <i>Resources, Conservation and Recycling</i> , 2011 , 55, 772-781	11.9	83
34	Selected Proceedings from the Sixth European Meeting on Chemical Industry and Environment (EMChIE VI)Mechelen, Belgium, May 17¶9, 2010Environmental Issues in Chemical Industry. <i>Environmental Engineering Science</i> , 2011 , 28, 755-755	2	
33	Using a Shear Test-Based Lab Protocol to Map the Sticky Phase of Activated Sludge. <i>Environmental Engineering Science</i> , 2011 , 28, 81-85	2	21
32	Polyelectrolyte Flocculation of Waste Activated Sludge in Decanter Centrifuge Applications: Lab Evaluation by a Centrifugal Compaction Test. <i>Environmental Engineering Science</i> , 2011 , 28, 765-773	2	9
31	Polymeric cracking of waste polyethylene terephthalate to chemicals and energy. <i>Journal of the Air and Waste Management Association</i> , 2011 , 61, 721-31	2.4	82
30	Recovery and recycling of post-consumer waste materials. Part 1. Generalities and target wastes (paper, cardboard and aluminium cans). <i>International Journal of Sustainable Engineering</i> , 2010 , 3, 148-15	58 ^{3.1}	12
29	Recovery and recycling of post-consumer waste materials. Part 2. Target wastes (glass beverage bottles, plastics, scrap metal and steel cans, end-of-life tyres, batteries and household hazardous waste). <i>International Journal of Sustainable Engineering</i> , 2010 , 3, 232-245	3.1	27
28	MODELING OF THE FOULING PROBABILITY OF AN ACTIVATED SLUDGE DRYER. <i>IFAC Postprint Volumes IPPV / International Federation of Automatic Control</i> , 2010 , 43, 643-648		2
27	Fundamentals, kinetics and endothermicity of the biomass pyrolysis reaction. <i>Renewable Energy</i> , 2010 , 35, 232-242	8.1	385
26	Influence of low temperature thermal pre-treatment on sludge solubilisation, heavy metal release and anaerobic digestion. <i>Bioresource Technology</i> , 2010 , 101, 5743-8	11	282
25	Evolution of the Total Sulphur Content in Full-Scale Wastewater Sludge Treatment. <i>Environmental Engineering Science</i> , 2009 , 26, 867-872	2	15
24	Towards safety, hygiene and environmental (SHE) management in African small and medium companies. <i>Journal of Environmental Management</i> , 2009 , 90, 1463-8	7.9	10
23	CeO2 Nanocrystalline-Supported Palladium Chloride: An Effective Catalyst for Selective Oxidation of Alcohols by Oxygen. <i>Catalysis Letters</i> , 2009 , 130, 448-454	2.8	10
22	REMOVING POLYCYCLIC AROMATIC HYDROCARBONS FROM WATER BY ADSORPTION ON SILICAGEL. <i>Polycyclic Aromatic Compounds</i> , 2009 , 29, 160-183	1.3	43

21	Siloxane removal from biosolids by peroxidation. Energy Conversion and Management, 2008, 49, 2859-2	2 864 .6	46
20	Distribution of Sulphur Compounds in Sewage Sludge Treatment. <i>Environmental Engineering Science</i> , 2008 , 25, 879-886	2	38
19	Ultrasonically enhanced anaerobic digestion of waste activated sludge. <i>International Journal of Sustainable Engineering</i> , 2008 , 1, 94-104	3.1	32
18	CFB cyclones at high temperature: Operational results and design assessment. <i>Particuology</i> , 2008 , 6, 149-156	2.8	18
17	Principles and potential of the anaerobic digestion of waste-activated sludge. <i>Progress in Energy and Combustion Science</i> , 2008 , 34, 755-781	33.6	1880
16	The distribution of heavy metals during fluidized bed combustion of sludge (FBSC). <i>Journal of Hazardous Materials</i> , 2008 , 151, 96-102	12.8	110
15	Enhancing the use of waste activated sludge as bio-fuel through selectively reducing its heavy metal content. <i>Journal of Hazardous Materials</i> , 2007 , 144, 703-7	12.8	64
14	Peroxidation enhances the biogas production in the anaerobic digestion of biosolids. <i>Journal of Hazardous Materials</i> , 2007 , 146, 577-81	12.8	75
13	The analysis of volatile siloxanes in waste activated sludge. <i>Talanta</i> , 2007 , 74, 14-9	6.2	76
12	Energy use of biogas hampered by the presence of siloxanes. <i>Energy Conversion and Management</i> , 2006 , 47, 1711-1722	10.6	228
11	The Use of Ultrasonics in the Treatment of Waste Activated Sludge. Chinese Journal of Chemical		
	Engineering, 2006 , 14, 105-113	3.2	50
10	Ultrasonic treatment of waste activated sludge. <i>Environmental Progress</i> , 2006 , 25, 121-128	3.2	88
10		3.2	
	Ultrasonic treatment of waste activated sludge. <i>Environmental Progress</i> , 2006 , 25, 121-128 The Analysis of the Total Sulphur Content of Wastewater Treatment Sludge by ICP-OES.		88
9	Ultrasonic treatment of waste activated sludge. <i>Environmental Progress</i> , 2006 , 25, 121-128 The Analysis of the Total Sulphur Content of Wastewater Treatment Sludge by ICP-OES. <i>Environmental Engineering Science</i> , 2006 , 23, 904-907 Reducing the Heavy Metal Content of Sewage Sludge by Advanced Sludge Treatment Methods.	2	88
9	Ultrasonic treatment of waste activated sludge. <i>Environmental Progress</i> , 2006 , 25, 121-128 The Analysis of the Total Sulphur Content of Wastewater Treatment Sludge by ICP-OES. <i>Environmental Engineering Science</i> , 2006 , 23, 904-907 Reducing the Heavy Metal Content of Sewage Sludge by Advanced Sludge Treatment Methods. <i>Environmental Engineering Science</i> , 2006 , 23, 994-999 Theoretical assessment of the catalytic (Pt/TiO2) oxidation of formaldehyde at ambient	2	88 9 33
9 8 7	Ultrasonic treatment of waste activated sludge. Environmental Progress, 2006, 25, 121-128 The Analysis of the Total Sulphur Content of Wastewater Treatment Sludge by ICP-OES. Environmental Engineering Science, 2006, 23, 904-907 Reducing the Heavy Metal Content of Sewage Sludge by Advanced Sludge Treatment Methods. Environmental Engineering Science, 2006, 23, 994-999 Theoretical assessment of the catalytic (Pt/TiO2) oxidation of formaldehyde at ambient temperature. Catalysis Communications, 2005, 6, 793-795 An analysis of the environmental management elements related to the improvements of the drying kinetics of waste activated sludge by Fenton peroxidation. International Journal of Environmental	2 2 3.2	88 9 33

LIST OF PUBLICATIONS

3	Bio-energy Carriers as Back-up Fuel in Hybrid Solar Power Plants. <i>IOP Conference Series: Earth and Environmental Science</i> ,544, 012012	0.3	1
2	Reviewing Fundamental CO2 Adsorption Characteristics of Zeolite and Activated Carbon by In-situ Measurements With Radioactively Labelled CO2. <i>Separation and Purification Reviews</i> ,1-12	7.3	2
1	Efficient microwave-assisted production of furanics and hydrochar from bamboo (Phyllostachys nigra B oryana) in a biphasic reaction system: effect of inorganic salts. <i>Biomass Conversion and Biorefinery</i> ,1	2.3	2