## Hyunseop Lee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9439698/publications.pdf Version: 2024-02-01



HVUNSFORLEF

| #  | Article                                                                                                                                                                                 | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Approaches to Sustainability in Chemical Mechanical Polishing (CMP): A Review. International Journal of Precision Engineering and Manufacturing - Green Technology, 2022, 9, 349-367.   | 2.7 | 34        |
| 2  | Hybrid CMP Slurry Supply System Using Ionization and Atomization. Applied Sciences (Switzerland), 2021, 11, 2217.                                                                       | 1.3 | 4         |
| 3  | Contact-Area-Changeable CMP Conditioning for Enhancing Pad Lifetime. Applied Sciences<br>(Switzerland), 2021, 11, 3521.                                                                 | 1.3 | 5         |
| 4  | Electrolytically Ionized Abrasive-Free CMP (EAF-CMP) for Copper. Applied Sciences (Switzerland), 2021, 11, 7232.                                                                        | 1.3 | 5         |
| 5  | Simulation and experimental analysis of abrasive fluidized bed machining process. Journal of Mechanical Science and Technology, 2020, 34, 2153-2160.                                    | 0.7 | 4         |
| 6  | Preliminary Study on Fluidized Bed Chemical Mechanical Polishing (FB-CMP) Process for Stainless<br>Steel 304 (SS304). Micromachines, 2020, 11, 705.                                     | 1.4 | 8         |
| 7  | Preliminary Study on Polishing SLA 3D-Printed ABS-Like Resins for Surface Roughness and Glossiness Reduction. Micromachines, 2020, 11, 843.                                             | 1.4 | 13        |
| 8  | Simulation on Polishing Pad Wear in CMP Conditioning with Split Conditioner Disk. , 2020, , .                                                                                           |     | 2         |
| 9  | Effect of Frictional Characteristics on Surface Roughness and Glossiness in Polishing of ABS-Like<br>Resin. Journal of the Korean Society for Precision Engineering, 2020, 37, 797-802. | 0.1 | 0         |
| 10 | Semi-empirical Material Removal Model with Modified Real Contact Area for CMP. International<br>Journal of Precision Engineering and Manufacturing, 2019, 20, 1325-1332.                | 1.1 | 15        |
| 11 | Surface Activation by Electrolytically Ionized Slurry during Cu CMP. ECS Journal of Solid State Science and Technology, 2019, 8, P3053-P3057.                                           | 0.9 | 4         |
| 12 | Friction and Wear Characteristics of ABS-like Resin for 3D Printing Under Non-Lubricated Condition.<br>Journal of the Korean Society for Precision Engineering, 2019, 36, 1117-1124.    | 0.1 | 2         |
| 13 | Investigation of pad wear in CMP with swing-arm conditioning and uniformity of material removal.<br>Precision Engineering, 2017, 49, 85-91.                                             | 1.8 | 21        |
| 14 | Environmental impact of concentration of slurry components in thick copper CMP. International Journal of Precision Engineering and Manufacturing - Green Technology, 2017, 4, 13-18.    | 2.7 | 14        |
| 15 | Estimating the mechanical properties of polyurethane-impregnated felt pads. Journal of Mechanical<br>Science and Technology, 2017, 31, 5705-5710.                                       | 0.7 | 7         |
| 16 | Electrochemical Analysis of the Slurry Composition for Chemical Mechanical Polishing of Flexible<br>Stainless-Steel Substrates. Journal of Friction and Wear, 2017, 38, 482-489.        | 0.1 | 12        |
| 17 | Effect of Hydrogen Peroxide and Oxalic Acid on Material Removal in Al CMP. Journal of the Korean Society for Precision Engineering, 2017, 34, 307-310.                                  | 0.1 | 2         |
| 18 | Slurry components in metal chemical mechanical planarization (CMP) process: A review. International Journal of Precision Engineering and Manufacturing, 2016, 17, 1751-1762.            | 1.1 | 69        |

HYUNSEOP LEE

| #  | Article                                                                                                                                                                                                                     | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Mechanical aspects of the chemical mechanical polishing process: A review. International Journal of<br>Precision Engineering and Manufacturing, 2016, 17, 525-536.                                                          | 1.1 | 100       |
| 20 | Mathematical modeling of material removal rate in roll-type linear CMP (roll-CMP) process: Effect of polishing pad. International Journal of Precision Engineering and Manufacturing, 2016, 17, 495-501.                    | 1.1 | 6         |
| 21 | Development of green CMP by slurry reduction through controlling platen coolant temperature.<br>International Journal of Precision Engineering and Manufacturing - Green Technology, 2015, 2, 339-344.                      | 2.7 | 19        |
| 22 | The effects of a spray slurry nozzle on copper CMP for reduction in slurry consumption. Journal of Mechanical Science and Technology, 2015, 29, 5057-5062.                                                                  | 0.7 | 18        |
| 23 | A study on swing-arm conditioning for enhancing pad lifetime in CMP. , 2014, , .                                                                                                                                            |     | 0         |
| 24 | Mathematical model-based evaluation methodology for environmental burden of chemical mechanical planarization process. International Journal of Precision Engineering and Manufacturing - Green Technology, 2014, 1, 11-15. | 2.7 | 21        |
| 25 | Experimental investigation of process parameters for roll-type linear chemical mechanical polishing (Roll-CMP) system. Precision Engineering, 2014, 38, 928-934.                                                            | 1.8 | 14        |
| 26 | Preliminary study on the effect of spray slurry nozzle in CMP for environmental sustainability.<br>International Journal of Precision Engineering and Manufacturing, 2014, 15, 995-1000.                                    | 1.1 | 13        |
| 27 | Statistical Analysis on Process Variables in Linear Roll-CMP. Journal of the Korean Society of<br>Tribologists and Lubrication Engineers, 2014, 30, 139-145.                                                                | 0.1 | 2         |
| 28 | Analysis of Acoustic Emission Signal Sensitivity to Variations in Thin-film Material Properties During CMP Process. Transactions of the Korean Society of Mechanical Engineers, A, 2014, 38, 863-867.                       | 0.1 | 0         |
| 29 | Evaluation of environmental impacts during chemical mechanical polishing (CMP) for sustainable manufacturing. Journal of Mechanical Science and Technology, 2013, 27, 511-518.                                              | 0.7 | 20        |
| 30 | Effect of wafer size on material removal rate and its distribution in chemical mechanical polishing of silicon dioxide film. Journal of Mechanical Science and Technology, 2013, 27, 2911-2916.                             | 0.7 | 18        |
| 31 | Effect of contact angle between retaining ring and polishing pad on material removal uniformity in<br>CMP process. International Journal of Precision Engineering and Manufacturing, 2013, 14, 1513-1518.                   | 1.1 | 11        |
| 32 | Effect of heat according to wafer size on the removal rate and profile in CMP process. Electronic<br>Materials Letters, 2013, 9, 755-758.                                                                                   | 1.0 | 3         |
| 33 | Semi-empirical material removal rate distribution model for SiO2 chemical mechanical polishing (CMP) processes. Precision Engineering, 2013, 37, 483-490.                                                                   | 1.8 | 81        |
| 34 | Effect of Process Parameters on Particle Removal Efficiency in Poly(vinyl alcohol) Brush Scrubber<br>Cleaning. Japanese Journal of Applied Physics, 2012, 51, 026501.                                                       | 0.8 | 7         |
| 35 | Macroscopic and Microscopic Investigation on Chemical Mechanical Polishing of Sapphire Wafer.<br>Journal of Nanoscience and Nanotechnology, 2012, 12, 1256-1259.                                                            | 0.9 | 26        |
| 36 | Prediction of Real Contact Area from Microtopography on CMP Pad. Journal of Advanced Mechanical Design, Systems and Manufacturing, 2012, 6, 113-120.                                                                        | 0.3 | 12        |

HYUNSEOP LEE

| #  | Article                                                                                                                                                                                                                                 | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Effect of pad groove geometry on material removal characteristics in chemical mechanical polishing.<br>International Journal of Precision Engineering and Manufacturing, 2012, 13, 303-306.                                             | 1.1 | 24        |
| 38 | Temperature distribution in polishing pad during CMP process: Effect of retaining ring. International Journal of Precision Engineering and Manufacturing, 2012, 13, 25-31.                                                              | 1.1 | 14        |
| 39 | Effect of Process Parameters on Particle Removal Efficiency in Poly(vinyl alcohol) Brush Scrubber<br>Cleaning. Japanese Journal of Applied Physics, 2012, 51, 026501.                                                                   | 0.8 | 6         |
| 40 | A wafer-scale material removal rate profile model for copper chemical mechanical planarization.<br>International Journal of Machine Tools and Manufacture, 2011, 51, 395-403.                                                           | 6.2 | 58        |
| 41 | Chemical mechanical planarization of copper bumps on printed circuit board. International Journal of<br>Precision Engineering and Manufacturing, 2011, 12, 149-152.                                                                     | 1.1 | 9         |
| 42 | Application of electrolytic in-process dressing (ELID) grinding and chemical mechanical polishing<br>(CMP) process for emerging hard–brittle materials used in light-emitting diodes. Journal of Crystal<br>Growth, 2011, 326, 140-146. | 0.7 | 35        |
| 43 | Research on CMP Characteristics Attribute to Groove Size. Advanced Materials Research, 2011, 189-193, 4112-4115.                                                                                                                        | 0.3 | 2         |
| 44 | Effect of additives for higher removal rate in lithium niobate chemical mechanical planarization.<br>Applied Surface Science, 2010, 256, 1683-1688.                                                                                     | 3.1 | 11        |
| 45 | Effect of mechanical factor in uniformity for electrochemical mechanical planarization. Sensors and Actuators A: Physical, 2010, 163, 433-439.                                                                                          | 2.0 | 6         |
| 46 | Hybrid polishing mechanism of single crystal SiC using mixed abrasive slurry (MAS). CIRP Annals -<br>Manufacturing Technology, 2010, 59, 333-336.                                                                                       | 1.7 | 71        |
| 47 | Chemical Mechanical Polishing of a Ti-Si-N Nanocomposite and AFM Study on Its Nanostructure.<br>Journal of the Korean Physical Society, 2010, 57, 845-849.                                                                              | 0.3 | 6         |
| 48 | Experimental Investigation of Material Removal Characteristics in Silicon Chemical Mechanical<br>Polishing. Japanese Journal of Applied Physics, 2009, 48, 116505.                                                                      | 0.8 | 17        |
| 49 | Mechanical effect of process condition and abrasive concentration on material removal rate profile<br>in copper chemical mechanical planarization. Journal of Materials Processing Technology, 2009, 209,<br>1729-1735.                 | 3.1 | 26        |
| 50 | Mechanical effect of colloidal silica in copper chemical mechanical planarization. Journal of<br>Materials Processing Technology, 2009, 209, 6134-6139.                                                                                 | 3.1 | 50        |
| 51 | Chemical and mechanical balance in polishing of electronic materials for defect-free surfaces. CIRP<br>Annals - Manufacturing Technology, 2009, 58, 485-490.                                                                            | 1.7 | 75        |
| 52 | Influence of slurry components on uniformity in copper chemical mechanical planarization.<br>Microelectronic Engineering, 2008, 85, 689-696.                                                                                            | 1.1 | 44        |
| 53 | Pad roughness variation and its effect on material removal profile in ceria-based CMP slurry. Journal of Materials Processing Technology, 2008, 203, 287-292.                                                                           | 3.1 | 36        |
| 54 | Effect of Process Parameters on Friction Force and Material Removal in Oxide Chemical Mechanical<br>Polishing. Japanese Journal of Applied Physics, 2008, 47, 8771-8778.                                                                | 0.8 | 17        |

HYUNSEOP LEE

| #  | Article                                                                                                                                                                                                                    | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Chemical Mechanical Planarization Method for Thick Copper Films of Micro-Electro-Mechanical Systems and Integrated Circuits. Japanese Journal of Applied Physics, 2008, 47, 5708.                                          | 0.8 | 15        |
| 56 | The Characteristics of Frictional Behaviour in CMP Using an Integrated Monitoring System. Key Engineering Materials, 2007, 339, 152-157.                                                                                   | 0.4 | 6         |
| 57 | A Study on Frictional Characteristics and Polishing Result of SiO <sub>2</sub> Slurry in CMP.<br>Transactions of the Korean Society of Mechanical Engineers, A, 2005, 29, 983-989.                                         | 0.1 | 2         |
| 58 | Tribological Effect of Abrasives on Material Removal in Oxide CMP(Surface and edge finishing).<br>Proceedings of International Conference on Leading Edge Manufacturing in 21st Century LEM21, 2005,<br>2005.3, 1205-1209. | 0.0 | 0         |
| 59 | The Effect of Mixed Abrasive Slurry on CMP of 6H-SiC Substrate. Materials Science Forum, 0, 569, 133-136.                                                                                                                  | 0.3 | 7         |
| 60 | The Effect of PVA Brush Scrubbing on Post CMP Cleaning Process for Damascene Cu Interconnection.<br>Solid State Phenomena, 0, 145-146, 367-370.                                                                            | 0.3 | 8         |
| 61 | Effect of Citric Acid in Chemical Mechanical Polishing (CMP) for Lithium Tantalate<br>(LiTaO <sub>3</sub> ) Wafer. Advanced Materials Research, 0, 1136, 305-310.<br>                                                      | 0.3 | 5         |
| 62 | Material Removal Model of Lap Grinding for Sapphire Substrate Based on Roughness Parameters.<br>Materials Science Forum, 0, 890, 384-387.                                                                                  | 0.3 | 0         |