Chengmin Shen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9439519/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Oleylamine as Both Reducing Agent and Stabilizer in a Facile Synthesis of Magnetite Nanoparticles. Chemistry of Materials, 2009, 21, 1778-1780.	3.2	503
2	Core-shell Fe ₃ O ₄ @SiO ₂ nanoparticles synthesized with well-dispersed hydrophilic Fe ₃ O ₄ seeds. Nanoscale, 2011, 3, 701-705.	2.8	284
3	Large-Scale Fe ₃ O ₄ Nanoparticles Soluble in Water Synthesized by a Facile Method. Journal of Physical Chemistry C, 2008, 112, 11336-11339.	1.5	264
4	Highly Ordered Self-Assembly with Large Area of Fe3O4 Nanoparticles and the Magnetic Properties. Journal of Physical Chemistry B, 2005, 109, 23233-23236.	1.2	225
5	Solvothermal-assisted exfoliation process to produce graphene with high yield and high quality. Nano Research, 2009, 2, 706-712.	5.8	224
6	Monodisperse Noble-Metal Nanoparticles and Their Surface Enhanced Raman Scattering Properties. Chemistry of Materials, 2008, 20, 6939-6944.	3.2	181
7	Controlled Synthesis of Large‣cale, Uniform, Vertically Standing Graphene for Highâ€Performance Field Emitters. Advanced Materials, 2013, 25, 250-255.	11.1	172
8	Nearly quantized conductance plateau of vortex zero mode in an iron-based superconductor. Science, 2020, 367, 189-192.	6.0	172
9	Metal-like single crystalline boron nanotubes: synthesis and in situ study on electric transport and field emission properties. Journal of Materials Chemistry, 2010, 20, 2197.	6.7	157
10	An innovative way of etching MoS2: Characterization and mechanistic investigation. Nano Research, 2013, 6, 200-207.	5.8	140
11	One-Pot Synthesis of Graphene-Supported Monodisperse Pd Nanoparticles as Catalyst for Formic Acid Electro-oxidation. Scientific Reports, 2014, 4, 4501.	1.6	127
12	Preparation and characterization of nanocrystalline Li4Ti5O12 by sol–gel method. Materials Chemistry and Physics, 2003, 78, 437-441.	2.0	115
13	Control of Superhydrophilic and Superhydrophobic Graphene Interface. Scientific Reports, 2013, 3, .	1.6	100
14	Fabrication of Vertically Aligned Singleâ€Crystalline Boron Nanowire Arrays and Investigation of Their Fieldâ€Emission Behavior. Advanced Materials, 2008, 20, 2609-2615.	11.1	99
15	Graphene nanosheets-polypyrrole hybrid material as a highly active catalyst support for formic acid electro-oxidation. Nanoscale, 2011, 3, 3277.	2.8	96
16	Synthesis and magnetic properties ofÉ›-cobalt nanoparticles. Surface and Interface Analysis, 2004, 36, 155-160.	0.8	92
17	Organic phase synthesis of monodisperse iron oxide nanocrystals using iron chloride as precursor. Nanoscale, 2010, 2, 1027.	2.8	92
18	Self-assembled synthesis of SERS-active silver dendrites and photoluminescence properties of a thin porous silicon layer. Electrochemistry Communications, 2008, 10, 625-629	2.3	89

#	Article	IF	CITATIONS
19	Self-assembly and magnetic properties of cobalt nanoparticles. Applied Physics Letters, 2003, 82, 4729-4731.	1.5	86
20	Well-aligned zinc oxide nanorods and nanowires prepared without catalyst. Journal of Crystal Growth, 2005, 274, 126-131.	0.7	81
21	Single Crystalline Boron Nanocones: Electric Transport and Field Emission Properties. Advanced Materials, 2007, 19, 4480-4485.	11.1	80
22	Novel Nanopyramid Arrays of Magnetite. Advanced Materials, 2005, 17, 1893-1897.	11.1	78
23	Preparation and electrochemistry of graphene nanosheets–multiwalled carbon nanotubes hybrid nanomaterials as Pd electrocatalyst support for formic acid oxidation. Electrochimica Acta, 2012, 62, 242-249.	2.6	76
24	Synthesis of high-ordered LiCoO2 nanowire arrays by AAO template. Solid State Ionics, 2002, 146, 81-86.	1.3	75
25	Synthesis and characterization of n-octadecayl mercaptan-protected palladium nanoparticles. Chemical Physics Letters, 2003, 373, 39-45.	1.2	72
26	One-dimensional boron nanostructures: Prediction, synthesis, characterizations, and applications. Nanoscale, 2010, 2, 1375.	2.8	71
27	Stable cobalt nanoparticles passivated with oleic acid and triphenylphosphine. Nanotechnology, 2004, 15, 70-74.	1.3	70
28	Morphologies and microstructures of nano-sized Cu2O particles using a cetyltrimethylammonium template. Nanotechnology, 2005, 16, 267-272.	1.3	63
29	Controlled synthesis of highly ordered CuO nanowire arrays by template-based sol-gel route. Transactions of Nonferrous Metals Society of China, 2007, 17, 783-786.	1.7	63
30	Quasi-2D Transport and Weak Antilocalization Effect in Few-layered VSe ₂ . Nano Letters, 2019, 19, 4551-4559.	4.5	60
31	Synthesis of Pt nanoparticles anchored on graphene-encapsulated Fe3O4 magnetic nanospheres and their use as catalysts for methanol oxidation. Carbon, 2013, 53, 112-119.	5.4	56
32	Wet chemical synthesis of gold nanoparticles using silver seeds: a shape control from nanorods to hollow spherical nanoparticles. Nanotechnology, 2007, 18, 115608.	1.3	54
33	Controllable growth of silver nanostructures by a simple replacement reaction and their SERS studies. Solid State Sciences, 2009, 11, 1088-1093.	1.5	53
34	Observation of the Kondo Effect in Multilayer Single-Crystalline VTe ₂ Nanoplates. Nano Letters, 2019, 19, 8572-8580.	4.5	52
35	Shape-Controlled Synthesis of Palladium Nanorods and Their Magnetic Properties. Journal of Physical Chemistry C, 2009, 113, 13466-13469.	1.5	50
36	Synthesis of cubic and spherical Pd nanoparticles on graphene and their electrocatalytic performance in the oxidation of formic acid. Nanoscale, 2014, 6, 13154-13162.	2.8	46

#	Article	IF	CITATIONS
37	Increase in thermal stability induced by organic coatings on nanoparticles. Physical Review B, 2004, 70,	1.1	45
38	Influence of different deposition potentials on morphology and structure of CdSe films. Applied Surface Science, 2005, 240, 34-41.	3.1	43
39	DC electrochemical deposition of CdSe nanorods array using porous anodic aluminum oxide template. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2001, 303, 19-23.	2.6	42
40	Plasmon-induced hot electron transfer in Au–ZnO heterogeneous nanorods for enhanced SERS. Nanoscale, 2019, 11, 11782-11788.	2.8	38
41	Large scale SiCâ•SiOx nanocables: Synthesis, photoluminescence, and field emission properties. Journal of Applied Physics, 2007, 102, .	1.1	35
42	Synthesis of high-ordered LiMn2O4 nanowire arrays by AAO template and its structural properties. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2002, 95, 77-82.	1.7	34
43	Boron nanowires for flexible electronics. Applied Physics Letters, 2008, 93, .	1.5	33
44	Synthesis of monodisperse palladium nanocubes and their catalytic activity for methanol electrooxidation. Chinese Physics B, 2010, 19, 106104.	0.7	33
45	Observation of magnetic adatom-induced Majorana vortex and its hybridization with field-induced Majorana vortex in an iron-based superconductor. Nature Communications, 2021, 12, 1348.	5.8	33
46	Epitaxy of Ultrathin SnSe Single Crystals on Polydimethylsiloxane: Inâ€Plane Electrical Anisotropy and Gateâ€Tunable Thermopower. Advanced Electronic Materials, 2016, 2, 1600292.	2.6	31
47	The size-dependent phonon frequency of semiconductor nanocrystals. Journal of Physics Condensed Matter, 2004, 16, 267-272.	0.7	30
48	Fabrication of gold nanorod self-assemblies from rod and sphere mixtures via shape self-selective behavior. Chemical Physics Letters, 2006, 432, 222-225.	1.2	29
49	Electrodeposition of Sb2Se3 on indium-doped tin oxides substrate: Nucleation and growth. Applied Surface Science, 2012, 258, 2169-2173.	3.1	29
50	Effect of pH on the electrochemical deposition of cadmium selenide nanocrystal films. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2001, 84, 265-270.	1.7	26
51	Impurity-induced formation of bilayered graphene on copper by chemical vapor deposition. Nano Research, 2016, 9, 2803-2810.	5.8	26
52	Controlled growth of large-scale silver nanowires. Chinese Physics B, 2005, 14, 2269-2275.	1.3	24
53	Synthesis and photoluminescence property of boron carbide nanowires. Chinese Physics B, 2008, 17, 4585-4591.	0.7	24
54	Room-Temperature, Low-Barrier Boron Doping of Graphene. Nano Letters, 2015, 15, 6464-6468.	4.5	24

#	Article	IF	CITATIONS
55	Monodispersive CoPt Nanoparticles Synthesized Using Chemical Reduction Method. Chinese Physics Letters, 2008, 25, 1479-1481.	1.3	23
56	Effect of Contact Mode on the Electrical Transport and Fieldâ€Emission Performance of Individual Boron Nanowires. Advanced Functional Materials, 2010, 20, 1994-2003.	7.8	20
57	Synthesis of highly ordered LiNiO2 nanowire arrays in AAO templates and their structural properties. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2002, 335, 260-267.	2.6	19
58	Synthesis, characterization and self-assemblies of magnetite nanoparticles. Surface and Interface Analysis, 2006, 38, 1063-1067.	0.8	19
59	Pressure-induced superconducting state in crystalline boron nanowires. Physical Review B, 2009, 79, .	1.1	18
60	Patterned boron nanowires and field emission properties. Applied Physics Letters, 2009, 94, .	1,5	17
61	Facile synthesis of hollow nano-spheres and hemispheres of cobalt by polyol reduction. Nanotechnology, 2010, 21, 375602.	1.3	17
62	The dependence of Co nanoparticle sizes on the ratio of surfactants and the influence of different crystal sizes on magnetic properties. Applied Physics A: Materials Science and Processing, 2005, 81, 569-572.	1.1	16
63	A new route to single crystalline vanadium dioxide nanoflakes via thermal reduction. Journal of Materials Research, 2007, 22, 1921-1926.	1.2	15
64	Boron Carbide and Silicon Oxide Hetero-nanonecklaces via Temperature Modulation. Crystal Growth and Design, 2008, 8, 3160-3164.	1.4	15
65	Cathodoluminescent and electrical properties of an individual ZnO nanowire with oxygen vacancies. Chinese Physics B, 2008, 17, 3444-3447.	0.7	14
66	Surface-enhanced Raman scattering properties of highly ordered self-assemblies of gold nanorods with different aspect ratios. Chinese Physics B, 2011, 20, 076103.	0.7	13
67	Synthesis of monodisperse CoPt3 nanocrystals and their catalytic behavior for growth of boron nanowires. Nano Research, 2011, 4, 780-787.	5.8	12
68	Fabrication of patterned boron carbide nanowires and their electrical, field emission, and flexibility properties. Nano Research, 2012, 5, 896-902.	5.8	12
69	Graphene–Silicon Layered Structures on Singleâ€Crystalline Ir(111) Thin Films. Advanced Materials Interfaces, 2015, 2, 1400543.	1.9	12
70	Preparation of graphene nanowalls on nickel foam as supercapacitor electrodes. Micro and Nano Letters, 2018, 13, 842-844.	0.6	12
71	From aqueous to organic: A step-by-step strategy for shape evolution of gold nanoparticles. Chemical Physics Letters, 2005, 415, 342-345.	1.2	11
72	Single crystalline boron carbide nanobelts: synthesis and characterization. Chinese Physics B, 2008, 17, 4247-4252.	0.7	11

#	Article	IF	CITATIONS
73	Anomalous aggregation growth of palladium nanosphere with SPR band in visible range. Chinese Physics B, 2008, 17, 2066-2071.	0.7	11
74	Fabrication and field emission properties of boron nanowire bundles. Ultramicroscopy, 2009, 109, 447-450.	0.8	11
75	Atomic-scale tuning of self-assembled ZnO microscopic patterns: from dendritic fractals to compact island. Nanoscale, 2010, 2, 2557.	2.8	11
76	Preparation of Î ³ -MnO2/carbon composite material by a wet chemical method. Materials Research Bulletin, 2001, 36, 541-546.	2.7	10
77	Self-assembled stripes on the anodic aluminum oxide by atomic force microscope observation. Applied Surface Science, 2003, 219, 282-289.	3.1	10
78	Synthesis and characterization of aniline ando-toluidine conducting copolymer microtubes with the template-synthesis method. Journal of Applied Polymer Science, 2005, 96, 1539-1543.	1.3	10
79	Formation and photoluminescence properties of boron nanocones. Chinese Physics B, 2008, 17, 3827-3835.	0.7	10
80	Synthesis and properties of Au–Fe ₃ O ₄ and Ag–Fe ₃ O ₄ heterodimeric nanoparticles. Chinese Physics B, 2010, 19, 066102.	0.7	10
81	Probing Field Emission from Boron Carbide Nanowires. Chinese Physics Letters, 2008, 25, 3463-3466.	1.3	9
82	A low-temperature scanning probe microscopy system with molecular beam epitaxy and optical access. Review of Scientific Instruments, 2018, 89, 113705.	0.6	9
83	Growth of Au Nanowires at the Interface of Air/Water. Journal of Physical Chemistry C, 2009, 113, 15196-15200.	1.5	7
84	Field emission properties of patterned boron nanocones. Nanotechnology, 2010, 21, 325705.	1.3	7
85	TEM study on hollow and porous Cu 2 O nanoparticles prepared from solution phase. Chinese Physics B, 2006, 15, 1290-1295.	1.3	6
86	Highly dispersed Pd nanoparticles on chemically modified graphene with aminophenyl groups for for formic acid oxidation. Chinese Physics B, 2011, 20, 113301.	0.7	6
87	A facile fabrication of Cu2O nanowire arrays on Cu substrates. Open Engineering, 2012, 2, .	0.7	5
88	Low-temperature controllable preparation of vertically standing graphene sheets on indium tin oxide glass and their field emission properties. Chemical Physics Letters, 2016, 664, 29-32.	1.2	5
89	Copper vapor-assisted growth of hexagonal graphene domains on silica islands. Applied Physics Letters, 2016, 109, .	1.5	5
90	Organic molecules modified palladium nanowires arrays prepared by high temperature liquid phase reduction. Chinese Physics B, 2008, 17, 2191-2196.	0.7	4

#	Article	IF	CITATIONS
91	Local field emission of electrons from an individual boron nanowire at nanometer electrode separation. Applied Surface Science, 2012, 258, 2149-2152.	3.1	4
92	Synthesis of graphene-supported monodisperse AuPd bimetallic nanoparticles for electrochemical oxidation of methanol. Chinese Physics B, 2015, 24, 078109.	0.7	3
93	High-quality graphene grown on polycrystalline PtRh20 alloy foils by low pressure chemical vapor deposition and its electrical transport properties. Applied Physics Letters, 2016, 108, .	1.5	3
94	Electrostatic gating of solid-ion-conductor on InSe flakes and InSe/h-BN heterostructures*. Chinese Physics B, 2020, 29, 118501.	0.7	3
95	Boron Nanowires for Flexible Electronics and Field Emission. , 2009, , .		2
96	Influence of Si Co-doping on electrical transport properties of magnesium-doped boron nanoswords. Applied Physics Letters, 2012, 100, 103112.	1.5	2
97	Modulation of field emission by small AC signals. Science China Technological Sciences, 2017, 60, 1897-1902.	2.0	2
98	Fabrication of patterned boron-based nanowires and their field emission properties. , 2015, , .		0
99	Surface atomic manipulation of low-dimensional structures. Wuli Xuebao/Acta Physica Sinica, 2022, .	0.2	Ο