
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9439016/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Vapor deposition rate modifies anisotropic glassy structure of an anthracene-based organic semiconductor. Journal of Chemical Physics, 2022, 156, 014504.	1.2	8
2	A liquid with distinct metastable structures: Supercooled butyronitrile. Journal of Chemical Physics, 2022, 156, 044501.	1.2	3
3	Characterization of the Interfacial Orientation and Molecular Conformation in a Glass-Forming Organic Semiconductor. ACS Applied Materials & amp; Interfaces, 2022, 14, 3455-3466.	4.0	5
4	Surface diffusion of a glassy discotic organic semiconductor and the surface mobility gradient of molecular glasses. Journal of Chemical Physics, 2022, 156, 094710.	1.2	7
5	Surface Diffusion Is Controlled by Bulk Fragility across All Glass Types. Physical Review Letters, 2022, 128, 075501.	2.9	13
6	Polyamorphism in vapor-deposited 2-methyltetrahydrofuran: A broadband dielectric relaxation study. Journal of Chemical Physics, 2021, 154, 024502.	1.2	8
7	Surface mobility in amorphous selenium and comparison with organic molecular glasses. Journal of Chemical Physics, 2021, 154, 074703.	1.2	8
8	Varying kinetic stability, icosahedral ordering, and mechanical properties of a model Zr-Cu-Al metallic glass by sputtering. Physical Review Materials, 2021, 5, .	0.9	3
9	Using Deposition Rate and Substrate Temperature to Manipulate Liquid Crystal-Like Order in a Vapor-Deposited Hexagonal Columnar Glass. Journal of Physical Chemistry B, 2021, 125, 2761-2770.	1.2	17
10	Controlling the Columnar Order in a Discotic Liquid Crystal by Kinetic Arrest of Disc Tumbling. Chemistry of Materials, 2021, 33, 4757-4764.	3.2	13
11	Glass Dynamics Deep in the Energy Landscape. Journal of Physical Chemistry B, 2021, 125, 9052-9068.	1.2	8
12	Stable Glasses of Organic Semiconductor Resist Crystallization. Journal of Physical Chemistry B, 2021, 125, 461-466.	1.2	7
13	Surface equilibration mechanism controls the molecular packing of glassy molecular semiconductors at organic interfaces. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	11
14	Activation Entropy as a Key Factor Controlling the Memory Effect in Glasses. Physical Review Letters, 2020, 125, 135501.	2.9	25
15	JCP Emerging Investigator Special Collection 2019. Journal of Chemical Physics, 2020, 153, 110402.	1.2	2
16	Molecular Orientation Depth Profiles in Organic Glasses Using Polarized Resonant Soft X-ray Reflectivity. Chemistry of Materials, 2020, 32, 6295-6309.	3.2	10
17	Controlling Structure and Properties of Vapor-Deposited Glasses of Organic Semiconductors: Recent Advances and Challenges. Journal of Physical Chemistry Letters, 2020, 11, 6935-6945.	2.1	38
18	How to "measure―a structural relaxation time that is too long to be measured?. Journal of Chemical Physics, 2020, 153, 044501.	1.2	22

#	Article	IF	CITATIONS
19	Physical vapor deposition of a polyamorphic system: Triphenyl phosphite. Journal of Chemical Physics, 2020, 153, 124511.	1.2	7
20	Rejuvenation Versus Overaging: The Effect of Cyclic Loading/Unloading on the Segmental Dynamics of Poly(methyl methacrylate) Glasses. Macromolecules, 2020, 53, 8467-8475.	2.2	6
21	Over What Length Scale Does an Inorganic Substrate Perturb the Structure of a Glassy Organic Semiconductor?. ACS Applied Materials & amp; Interfaces, 2020, 12, 26717-26726.	4.0	22
22	Surface diffusion in glasses of rod-like molecules posaconazole and itraconazole: effect of interfacial molecular alignment and bulk penetration. Soft Matter, 2020, 16, 5062-5070.	1.2	33
23	Extreme Elasticity Anisotropy: Extreme Elasticity Anisotropy in Molecular Glasses (Adv. Funct. Mater.) Tj ETQq1	1 0,78431	.4 rgBT /Over
24	Molecular Orientation for Vapor-Deposited Organic Glasses Follows Rate-Temperature Superposition: The Case of Posaconazole. Journal of Physical Chemistry B, 2020, 124, 2505-2513.	1.2	19
25	Extreme Elasticity Anisotropy in Molecular Glasses. Advanced Functional Materials, 2020, 30, 2001481.	7.8	12
26	<i>In situ</i> observation of fast surface dynamics during the vapor-deposition of a stable organic glass. Soft Matter, 2020, 16, 10860-10864.	1.2	11
27	Enhanced Segmental Dynamics of Poly(lactic acid) Glasses during Constant Strain Rate Deformation. Macromolecules, 2019, 52, 6428-6437.	2.2	10
28	Vapor-Deposited Ethylbenzene Glasses Approach "ldeal Glass―Density. Journal of Physical Chemistry Letters, 2019, 10, 4069-4075.	2.1	29
29	Vapor deposition of a nonmesogen prepares highly structured organic glasses. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 21421-21426.	3.3	30
30	Relationship between aged and vapor-deposited organic glasses: Secondary relaxations in methyl- <i>m</i> -toluate. Journal of Chemical Physics, 2019, 151, 144502.	1.2	10
31	Linear Stress Relaxation and Probe Reorientation: Comparison of the Segmental Dynamics of Two Glassy Polymers during Physical Aging. Macromolecules, 2019, 52, 8177-8186.	2.2	8
32	Dielectric properties of vapor-deposited propylbenzenes. Journal of Chemical Physics, 2019, 151, 174503.	1.2	3
33	Generic packing motifs in vapor-deposited glasses of organic semiconductors. Soft Matter, 2019, 15, 7590-7595.	1.2	14
34	Anisotropic Vapor-Deposited Glasses: Hybrid Organic Solids. Accounts of Chemical Research, 2019, 52, 407-414.	7.6	67
35	Vapor-Deposited Glass Structure Determined by Deposition Rate–Substrate Temperature Superposition Principle. Journal of Physical Chemistry Letters, 2019, 10, 3536-3542.	2.1	33
36	Ultrastable and polyamorphic states of vapor-deposited 2-methyltetrahydrofuran. Journal of Chemical Physics, 2019, 150, 214502.	1.2	12

#	Article	IF	CITATIONS
37	Dense Glass Packing Can Slow Reactions with an Atmospheric Gas. Journal of Physical Chemistry B, 2019, 123, 10124-10130.	1.2	7
38	Origin of Anisotropic Molecular Packing in Vapor-Deposited Alq3 Glasses. Journal of Physical Chemistry Letters, 2019, 10, 164-170.	2.1	49
39	Effect of molecular size and hydrogen bonding on three surface-facilitated processes in molecular glasses: Surface diffusion, surface crystal growth, and formation of stable glasses by vapor deposition. Journal of Chemical Physics, 2019, 150, 024502.	1.2	19
40	Organic Glasses with Tunable Liquid-Crystalline Order. Physical Review Letters, 2018, 120, 055502.	2.9	38
41	Glasses of three alkyl phosphates show a range of kinetic stabilities when prepared by physical vapor deposition. Journal of Chemical Physics, 2018, 148, 174503.	1.2	12
42	Vapor-deposited organic glasses exhibit enhanced stability against photodegradation. Soft Matter, 2018, 14, 2827-2834.	1.2	10
43	Anisotropic organic glasses. Current Opinion in Solid State and Materials Science, 2018, 22, 49-57.	5.6	27
44	Tenfold increase in the photostability of an azobenzene guest in vapor-deposited glass mixtures. Journal of Chemical Physics, 2018, 149, 204503.	1.2	16
45	Direct Comparison of Probe Reorientation and Linear Mechanical Measurements of Segmental Dynamics in Glassy Poly(methyl methacrylate). Macromolecules, 2018, 51, 7785-7793.	2.2	8
46	Glass Structure Controls Crystal Polymorph Selection in Vapor-Deposited Films of 4,4′-Bis(<i>N</i> -carbazolyl)-1,1′-biphenyl. Crystal Growth and Design, 2018, 18, 5800-5807.	1.4	13
47	Reversing Strain Deformation Probes Mechanisms for Enhanced Segmental Mobility of Polymer Glasses. Macromolecules, 2017, 50, 1016-1026.	2.2	20
48	Highly Organized Smectic-like Packing in Vapor-Deposited Glasses of a Liquid Crystal. Chemistry of Materials, 2017, 29, 849-858.	3.2	30
49	Influence of Hydrogen Bonding on the Kinetic Stability of Vapor-Deposited Glasses of Triazine Derivatives. Journal of Physical Chemistry B, 2017, 121, 2350-2358.	1.2	28
50	Nematic-like stable glasses without equilibrium liquid crystal phases. Journal of Chemical Physics, 2017, 146, 054503.	1.2	18
51	Influence of Vapor Deposition on Structural and Charge Transport Properties of Ethylbenzene Films. ACS Central Science, 2017, 3, 415-424.	5.3	21
52	Preface: Special Topic on Dynamics of Polymer Materials in Thin Films and Related Geometries. Journal of Chemical Physics, 2017, 146, 203001.	1.2	0
53	Surface transport mechanisms in molecular glasses probed by the exposure of nano-particles. Journal of Chemical Physics, 2017, 146, 203324.	1.2	3
54	Limited surface mobility inhibits stable glass formation for 2-ethyl-1-hexanol. Journal of Chemical Physics, 2017, 146, 203317.	1.2	21

MARK D EDIGER

#	Article	IF	CITATIONS
55	Vapor-Deposited Glasses with Long-Range Columnar Liquid Crystalline Order. Chemistry of Materials, 2017, 29, 9110-9119.	3.2	25
56	Modifying hydrogen-bonded structures by physical vapor deposition: 4-methyl-3-heptanol. Journal of Chemical Physics, 2017, 147, 194504.	1.2	9
57	Perspective: Highly stable vapor-deposited glasses. Journal of Chemical Physics, 2017, 147, 210901.	1.2	167
58	Influence of Molecular Shape on the Thermal Stability and Molecular Orientation of Vapor-Deposited Organic Semiconductors. Journal of Physical Chemistry Letters, 2017, 8, 3380-3386.	2.1	62
59	Dynamics of supercooled liquid and plastic crystalline ethanol: Dielectric relaxation and AC nanocalorimetry distinguish structural <i>α</i> and Debye relaxation processes. Journal of Chemical Physics, 2017, 147, 014502.	1.2	23
60	Influence of Hydrogen Bonding on the Surface Diffusion of Molecular Glasses: Comparison of Three Triazines. Journal of Physical Chemistry B, 2017, 121, 7221-7227.	1.2	16
61	Comparison of mechanical and molecular measures of mobility during constant strain rate deformation of a PMMA glass. Journal of Polymer Science, Part B: Polymer Physics, 2016, 54, 1957-1967.	2.4	19
62	Fluctuation Electron Microscopy and Computational Structure Refinement for the Structure of Amorphous Materials. Microscopy and Microanalysis, 2016, 22, 486-487.	0.2	1
63	Glass transition and stable glass formation of tetrachloromethane. Journal of Chemical Physics, 2016, 144, 244503.	1.2	23
64	Facets of glass physics. Physics Today, 2016, 69, 40-46.	0.3	132
65	Surface diffusion and surface crystal growth of <i>tris</i> -naphthyl benzene glasses. Journal of Chemical Physics, 2016, 145, .	1.2	32
66	Vapor-deposited alcohol glasses reveal a wide range of kinetic stability. Journal of Chemical Physics, 2016, 145, 174506.	1.2	38
67	Photostability Can Be Significantly Modulated by Molecular Packing in Glasses. Journal of the American Chemical Society, 2016, 138, 11282-11289.	6.6	41
68	Age and structure of a model vapour-deposited glass. Nature Communications, 2016, 7, 13062.	5.8	39
69	Increasing the kinetic stability of bulk metallic glasses. Acta Materialia, 2016, 104, 25-32.	3.8	86
70	Vapor deposition of a smectic liquid crystal: highly anisotropic, homogeneous glasses with tunable molecular orientation. Soft Matter, 2016, 12, 2942-2947.	1.2	32
71	Substrate temperature controls molecular orientation in two-component vapor-deposited glasses. Soft Matter, 2016, 12, 3265-3270.	1.2	41
72	A molecular perspective on the yield and flow of polymer glasses: The role of enhanced segmental dynamics during active deformation. , 2016, , 357-374.		3

#	Article	IF	CITATIONS
73	Suppression of <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mi>β</mml:mi></mml:math> Relaxation in Vapor-Deposited Ultrastable Glasses. Physical Review Letters, 2015, 115, 185501.	2.9	114
74	Vapor-deposited glasses of methyl- <i>m</i> -toluate: How uniform is stable glass transformation?. Journal of Chemical Physics, 2015, 143, 244509.	1.2	26
75	Structural Characterization of Vapor-Deposited Glasses of an Organic Hole Transport Material with X-ray Scattering. Chemistry of Materials, 2015, 27, 3341-3348.	3.2	78
76	Influence of Substrate Temperature on the Transformation Front Velocities That Determine Thermal Stability of Vapor-Deposited Glasses. Journal of Physical Chemistry B, 2015, 119, 3875-3882.	1.2	22
77	Fluctuation Electron Microscopy Study of Medium-Range Packing Order in Ultrastable Indomethacin Glass Thin Films. Materials Research Society Symposia Proceedings, 2015, 1757, 32.	0.1	0
78	Tunable molecular orientation and elevated thermal stability of vapor-deposited organic semiconductors. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 4227-4232.	3.3	188
79	Photopatterning of Indomethacin Thin Films: a Solvent-Free Vapor-Deposited Photoresist. ACS Applied Materials & Interfaces, 2015, 7, 23398-23401.	4.0	2
80	How much time is needed to form a kinetically stable glass? AC calorimetric study of vapor-deposited glasses of ethylcyclohexane. Journal of Chemical Physics, 2015, 142, 054506.	1.2	60
81	Thermal stability of vapor-deposited stable glasses of an organic semiconductor. Journal of Chemical Physics, 2015, 142, 134504.	1.2	49
82	Effect of Temperature on Postyield Segmental Dynamics of Poly(methyl methacrylate) Glasses: Thermally Activated Transitions Are Important. Macromolecules, 2015, 48, 6736-6744.	2.2	22
83	Kinetic stability and heat capacity of vapor-deposited glasses of <i>o</i> -terphenyl. Journal of Chemical Physics, 2015, 143, 084511.	1.2	34
84	Fast Crystal Growth in <i>o</i> -Terphenyl Glasses: A Possible Role for Fracture and Surface Mobility. Journal of Physical Chemistry B, 2015, 119, 10124-10130.	1.2	46
85	Orientational anisotropy in simulated vapor-deposited molecular glasses. Journal of Chemical Physics, 2015, 143, 094502.	1.2	59
86	Vapor-deposited glasses provide clearer view of two-level systems. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 11232-11233.	3.3	14
87	Molecular modeling of vapor-deposited polymer glasses. Journal of Chemical Physics, 2014, 140, 204504.	1.2	32
88	Dynamics near Free Surfaces and the Glass Transition in Thin Polymer Films: A View to the Future. Macromolecules, 2014, 47, 471-478.	2.2	424
89	Measurement of Segmental Mobility during Constant Strain Rate Deformation of a Poly(methyl) Tj ETQq1 1 C	.784314 rgB 2.2	T /Qyerlock
90	Termination of Solid-State Crystal Growth in Molecular Glasses by Fluidity. Journal of Physical	2.1	32

Chemistry Letters, 2014, 5, 1705-1710.

#	Article	IF	CITATIONS
91	Fast Crystal Growth from Organic Glasses: Comparison of <i>o</i> -Terphenyl with its Structural Analogs. Journal of Physical Chemistry B, 2014, 118, 8203-8209.	1.2	20
92	Role of Fragility in the Formation of Highly Stable Organic Glasses. Physical Review Letters, 2014, 113, 045901.	2.9	66
93	Ultrastable glasses from in silico vapour deposition. Nature Materials, 2013, 12, 139-144.	13.3	213
94	<i>In situ</i> investigation of vapor-deposited glasses of toluene and ethylbenzene via alternating current chip-nanocalorimetry. Journal of Chemical Physics, 2013, 138, 024501.	1.2	65
95	Dynamics of glass-forming liquids. XVI. Observation of ultrastable glass transformation via dielectric spectroscopy. Journal of Chemical Physics, 2013, 138, 12A519.	1.2	35
96	Highly Stable Glasses of <i>cis</i> -Decalin and <i>cis</i> / <i>trans</i> -Decalin Mixtures. Journal of Physical Chemistry B, 2013, 117, 12724-12733.	1.2	46
97	High-Throughput Ellipsometric Characterization of Vapor-Deposited Indomethacin Glasses. Journal of Physical Chemistry B, 2013, 117, 15415-15425.	1.2	93
98	Model vapor-deposited glasses: Growth front and composition effects. Journal of Chemical Physics, 2013, 139, 144505.	1.2	79
99	Manipulating the properties of stable organic glasses using kinetic facilitation. Journal of Chemical Physics, 2013, 138, 12A517.	1.2	43
100	Molecular packing in highly stable glasses of vapor-deposited tris-naphthylbenzene isomers. Journal of Chemical Physics, 2012, 136, 094505.	1.2	62
101	Density and birefringence of a highly stable α,α,β-trisnaphthylbenzene glass. Journal of Chemical Physics, 2012, 136, 204501.	1.2	60
102	Vapor-deposited α,α,β-tris-naphthylbenzene glasses with low heat capacity and high kinetic stability. Journal of Chemical Physics, 2012, 137, 154502.	1.2	21
103	Stable glasses of indomethacin and α,α,β-tris-naphthylbenzene transform into ordinary supercooled liquids. Journal of Chemical Physics, 2012, 137, 204508.	1.2	49
104	Differential alternating current chip calorimeter for <i>in situ</i> investigation of vapor-deposited thin films. Review of Scientific Instruments, 2012, 83, 033902.	0.6	35
105	Comparing surface and bulk flow of a molecular glass former. Soft Matter, 2012, 8, 2206.	1.2	84
106	Molecular mobility in supported thin films of polystyrene, poly(methyl methacrylate), and poly(2-vinyl) Tj ETQq0	0 0 rgBT /0 1.2	Overlock 10 7
	Molecular Orientation in Stable Classes of Indomethacin, Journal of Physical Chemistry Letters, 2012		

107	3, 1229-1233.	2.1	84
108	From gas to nanoglobular glass. Nature Materials, 2012, 11, 267-268.	13.3	9

#	Article	IF	CITATIONS
109	Fast Crystal Growth Induces Mobility and Tension in Supercooled <i>o</i> -Terphenyl. Journal of Physical Chemistry Letters, 2012, 3, 2562-2567.	2.1	16
110	Perspective: Supercooled liquids and glasses. Journal of Chemical Physics, 2012, 137, 080901.	1.2	427
111	Dielectric spectroscopy of thin films by dual-channel impedance measurements on differential interdigitated electrode arrays. European Physical Journal B, 2012, 85, 1.	0.6	21
112	Molecular Motion in Free-Standing Thin Films of Poly(methyl methacrylate), Poly(4- <i>tert</i> -butylstyrene), Poly(α-methylstyrene), and Poly(2-vinylpyridine). Macromolecules, 2011, 44, 7034-7042.	2.2	105
113	Segmental Dynamics of Dilute Poly(ethylene oxide) in Low and High Molecular Weight Glass-Formers. Macromolecules, 2011, 44, 9046-9053.	2.2	8
114	Highly Stable Vapor-Deposited Glasses of Four Tris-naphthylbenzene Isomers. Journal of Physical Chemistry Letters, 2011, 2, 2683-2687.	2.1	37
115	Structural Variations of an Organic Glassformer Vapor-Deposited onto a Temperature Gradient Stage. Journal of Physical Chemistry Letters, 2011, 2, 423-427.	2.1	50
116	Evolution of glassy gratings with variable aspect ratios under surface diffusion. Journal of Chemical Physics, 2011, 134, 194704.	1.2	41
117	Self-diffusion of the amorphous pharmaceutical indomethacin near Tg. Soft Matter, 2011, 7, 10339.	1.2	79
118	Anisotropic Structure and Transformation Kinetics of Vapor-Deposited Indomethacin Glasses. Journal of Physical Chemistry B, 2011, 115, 455-463.	1.2	85
119	Direct Measurement of Molecular Motion in Freestanding Polystyrene Thin Films. Journal of the American Chemical Society, 2011, 133, 8444-8447.	6.6	310
120	Temperature-ramping measurement of dye reorientation to probe molecular motion in polymer glasses. Journal of Chemical Physics, 2011, 134, 024901.	1.2	31
121	Surface Self-Diffusion of an Organic Glass. Physical Review Letters, 2011, 106, 256103.	2.9	244
122	Glasses crystallize rapidly at free surfaces by growing crystals upward. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 5990-5995.	3.3	120
123	Highâ€Modulus Organic Glasses Prepared by Physical Vapor Deposition. Advanced Materials, 2010, 22, 39-42.	11.1	106
124	Observation of low heat capacities for vapor-deposited glasses of indomethacin as determined by AC nanocalorimetry. Journal of Chemical Physics, 2010, 133, 014702.	1.2	60
125	Interaction between physical aging, deformation, and segmental mobility in poly(methyl methacrylate) glasses. Journal of Chemical Physics, 2010, 133, 014901.	1.2	34
126	Does Brillouin light scattering probe the primary glass transition process at temperatures well above glass transition?. Journal of Chemical Physics, 2010, 132, 074906.	1.2	23

#	Article	IF	CITATIONS
127	Mechanical Rejuvenation in Poly(methyl methacrylate) Glasses? Molecular Mobility after Deformation. Macromolecules, 2010, 43, 5863-5873.	2.2	58
128	One Micrometer Length Scale Controls Kinetic Stability of Low-Energy Glasses. Journal of Physical Chemistry Letters, 2010, 1, 388-392.	2.1	79
129	Transformation of Stable Glasses into Supercooled Liquids: Growth Fronts and Anomalously Fast Liquid Diffusion. Journal of Physical Chemistry B, 2010, 114, 2635-2643.	1.2	42
130	Heterogeneous dynamics during deformation of a polymer glass. Soft Matter, 2010, 6, 287-291.	1.2	96
131	Diffusion-controlled and "diffusionless―crystal growth near the glass transition temperature: Relation between liquid dynamics and growth kinetics of seven ROY polymorphs. Journal of Chemical Physics, 2009, 131, 074506.	1.2	43
132	Physical vapor deposition as a route to hidden amorphous states. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 15165-15170.	3.3	82
133	Molecular mobility of poly(methyl methacrylate) glass during uniaxial tensile creep deformation. Journal of Polymer Science, Part B: Polymer Physics, 2009, 47, 1713-1727.	2.4	67
134	Self-Diffusion of Supercooled Tris-naphthylbenzene. Journal of Physical Chemistry B, 2009, 113, 4600-4608.	1.2	84
135	Highly Stable Indomethacin Glasses Resist Uptake of Water Vapor. Journal of Physical Chemistry B, 2009, 113, 2422-2427.	1.2	62
136	Direct Measurement of Molecular Mobility in Actively Deformed Polymer Glasses. Science, 2009, 323, 231-234.	6.0	254
137	Deformation-Induced Mobility in Polymer Glasses during Multistep Creep Experiments and Simulations. Macromolecules, 2009, 42, 4328-4336.	2.2	108
138	Two DSC Glass Transitions in Miscible Blends of Polyisoprene/Poly(4- <i>tert</i> butylstyrene). Macromolecules, 2009, 42, 6777-6783.	2.2	62
139	Calorimetric Evidence for Two Distinct Molecular Packing Arrangements in Stable Glasses of Indomethacin. Journal of Physical Chemistry B, 2009, 113, 1579-1586.	1.2	38
140	Stable Glass Transformation to Supercooled Liquid via Surface-Initiated Growth Front. Physical Review Letters, 2009, 102, 065503.	2.9	86
141	Crystallization near Glass Transition:  Transition from Diffusion-Controlled to Diffusionless Crystal Growth Studied with Seven Polymorphs. Journal of Physical Chemistry B, 2008, 112, 5594-5601.	1.2	116
142	Hiking down the Energy Landscape:  Progress Toward the Kauzmann Temperature via Vapor Deposition. Journal of Physical Chemistry B, 2008, 112, 4934-4942.	1.2	192
143	Glass Surfaces Not So Glassy. Science, 2008, 319, 577-578.	6.0	32
144	Poly(ethylene oxide) Dynamics in Blends with Poly(vinyl acetate): Comparison of Segmental and Terminal Dynamics. Macromolecules, 2008, 41, 8030-8037.	2.2	18

#	Article	IF	CITATIONS
145	Diffusionless Crystal Growth from Glass Has Precursor in Equilibrium Liquid. Journal of Physical Chemistry B, 2008, 112, 661-664.	1.2	58
146	Crystal growth kinetics exhibit a fragility-dependent decoupling from viscosity. Journal of Chemical Physics, 2008, 128, 034709.	1.2	272
147	Dye reorientation as a probe of stress-induced mobility in polymer glasses. Journal of Chemical Physics, 2008, 128, 134902.	1.2	68
148	Molecular view of the isothermal transformation of a stable glass to a liquid. Journal of Chemical Physics, 2008, 128, 214514.	1.2	45
149	Extraordinarily Stable Organic Glasses Prepared by Vapor Deposition: Dependence of Stability and Dynamics upon Deposition Temperature. AIP Conference Proceedings, 2008, , .	0.3	2
150	Organic Glass-Forming Materials:  1,3,5-Tris(naphthyl)benzene Derivatives. Journal of Organic Chemistry, 2007, 72, 10051-10057.	1.7	32
151	Organic Glasses with Exceptional Thermodynamic and Kinetic Stability. Science, 2007, 315, 353-356.	6.0	647
152	Free Volume and Finite-Size Effects in a Polymer Glass under Stress. Physical Review Letters, 2007, 99, 215501.	2.9	106
153	Influence of substrate temperature on the stability of glasses prepared by vapor deposition. Journal of Chemical Physics, 2007, 127, 154702.	1.2	165
154	Molecular weight dependence of polystyrene segmental dynamics in dilute blends with poly(vinyl) Tj ETQq0 0 0 i	gBT /Over 2.4	loçk 10 Tf 50
155	Self-Diffusion of Supercooledo-Terphenyl near the Glass Transition Temperature. Journal of Physical Chemistry B, 2006, 110, 507-511.	1.2	205
156	Dynamics in glass-forming mixtures: Comparison of behavior of polymeric and non-polymeric components. Journal of Non-Crystalline Solids, 2006, 352, 4718-4723.	1.5	24
157	Isothermal desorption measurements of self-diffusion in supercooled o-terphenyl. Journal of Chemical Physics, 2006, 124, 054710.	1.2	28
158	Neutron reflectivity measurements of the translational motion of tris(naphthylbenzene) at the glass transition temperature. Journal of Chemical Physics, 2006, 124, 184501.	1.2	23
159	Miscible Polyisoprene/Polystyrene Blends:Â Distinct Segmental Dynamics but Homogeneous Terminal Dynamics. Macromolecules, 2005, 38, 6216-6226.	2.2	32
160	Segmental Dynamics of Dilute Polystyrene Chains in Miscible Blends and Solutions. Macromolecules, 2005, 38, 9826-9835.	2.2	42
161	Self-diffusion and Spatially Heterogeneous Dynamics in Supercooled Liquids Near Tg. AIP Conference Proceedings, 2004, , .	0.3	1
162	Self-Diffusion and Viscosity of Low Molecular Weight Polystyrene over a Wide Temperature Range. Macromolecules, 2004, 37, 1558-1564.	2.2	55

#	Article	IF	CITATIONS
163	Comparison of the Composition and Temperature Dependences of Segmental and Terminal Dynamics in Polybutadiene/Poly(vinyl ethylene) Blends. Macromolecules, 2004, 37, 9889-9898.	2.2	36
164	Dilute Polymer Blends:Â Are the Segmental Dynamics of Isolated Polyisoprene Chains Slaved to the Dynamics of the Host Polymer?. Macromolecules, 2004, 37, 6440-6448.	2.2	47
165	NMR Experiments and Molecular Dynamics Simulations of the Segmental Dynamics of Polystyrene. Macromolecules, 2004, 37, 5032-5039.	2.2	58
166	Enhanced translational diffusion of rubrene and tetracene in polysulfone. Journal of Polymer Science, Part B: Polymer Physics, 2003, 34, 2853-2861.	2.4	28
167	Prediction of Segmental and Global Dynamics in Disordered Styreneâ^'Isoprene Tetrablock Copolymers. Macromolecules, 2003, 36, 9170-9175.	2.2	17
168	NMR Investigation of Segmental Dynamics in Disordered Styreneâ^'Isoprene Tetrablock Copolymers. Macromolecules, 2003, 36, 8040-8048.	2.2	24
169	Composition and Temperature Dependence of Terminal and Segmental Dynamics in Polyisoprene/Poly(vinylethylene) Blends. Macromolecules, 2003, 36, 6142-6151.	2.2	116
170	Rapid Poly(ethylene oxide) Segmental Dynamics in Blends with Poly(methyl methacrylate). Macromolecules, 2003, 36, 1724-1730.	2.2	140
171	Segmental and terminal dynamics in miscible polymer mixtures: Tests of the Lodge–McLeish model. Journal of Chemical Physics, 2003, 119, 9956-9965.	1.2	115
172	Glass transition of small polystyrene spheres in aqueous suspensions. Journal of Chemical Physics, 2003, 119, 8730-8735.	1.2	100
173	Change in the temperature dependence of segmental dynamics in deeply supercooled polycarbonate. Journal of Chemical Physics, 2003, 118, 1996-2004.	1.2	42
174	Self-Diffusion oftris-Naphthylbenzene near the Glass Transition Temperature. Physical Review Letters, 2003, 90, 015901.	2.9	226
175	Length Scale of Dynamic Heterogeneity in Supercooledd-Sorbitol:Â Comparison to Model Predictions. Journal of Physical Chemistry B, 2003, 107, 459-464.	1.2	123
176	Influence of spatially heterogeneous dynamics on physical aging of polystyrene. Journal of Chemical Physics, 2002, 116, 9089-9099.	1.2	60
177	Segmental dynamics in a blend of alkanes: Nuclear magnetic resonance experiments and molecular dynamics simulation. Journal of Chemical Physics, 2002, 116, 8209-8217.	1.2	18
178	Entanglement Effects in Polyethylene Melts:Â13C NMR Relaxation Experimentsâ€. Macromolecules, 2002, 35, 1691-1698.	2.2	6
179	Spatially heterogeneous dynamics during physical aging far below the glass transition temperature. Journal of Polymer Science, Part B: Polymer Physics, 2002, 40, 2463-2472.	2.4	23
180	Chiral Studies in Amorphous Solids:Â The Effect of the Polymeric Glassy State on the Racemization Kinetics of Bridged Paddled Binaphthyls. Journal of the American Chemical Society, 2001, 123, 49-56.	6.6	59

#	Article	IF	CITATIONS
181	Temperature Dependence of Segmental and Terminal Relaxation in Atactic Polypropylene Melts. Macromolecules, 2001, 34, 6159-6160.	2.2	94
182	Component Dynamics in Polyisoprene/Polyvinylethylene Blends Well aboveTg. Macromolecules, 2001, 34, 4466-4475.	2.2	65
183	13C NMR Spinâ 'Lattice Relaxation and Conformational Dynamics in a 1,4-Polybutadiene Melt. Macromolecules, 2001, 34, 5192-5199.	2.2	74
184	Effect of tacticity on the segmental dynamics of polypropylene melts investigated by 13C nuclear magnetic resonance. Journal of Chemical Physics, 2001, 115, 4961-4965.	1.2	13
185	Length scale of dynamic heterogeneity in supercooled glycerol near Tg. Journal of Chemical Physics, 2001, 114, 7299-7302.	1.2	173
186	PHYSICAL CHEMISTRY: Single Molecules Rock and Roll Near the Glass Transition. Science, 2001, 292, 233-234.	6.0	14
187	Molecular motion during physical aging in polystyrene: Investigation using probe reorientation. Journal of Polymer Science, Part B: Polymer Physics, 2000, 38, 68-79.	2.4	21
188	Spatially heterogeneous dynamics in thermoset resins below the glass-transition temperature. Journal of Polymer Science, Part B: Polymer Physics, 2000, 38, 2232-2239.	2.4	7
189	Branching effects on the segmental dynamics of polyethylene melts. Journal of Polymer Science, Part B: Polymer Physics, 2000, 38, 2634-2643.	2.4	13
190	Lifetime of spatially heterogeneous dynamic domains in polystyrene melts. Journal of Chemical Physics, 2000, 112, 6933-6937.	1.2	62
191	Local and global dynamics of atactic polypropylene melts by multiple field 13C nuclear magnetic resonance. Journal of Chemical Physics, 2000, 113, 2918-2926.	1.2	35
192	SPATIALLYHETEROGENEOUSDYNAMICS INSUPERCOOLEDLIQUIDS. Annual Review of Physical Chemistry, 2000, 51, 99-128.	4.8	2,135
193	MATERIALS SCIENCE: Movies of the Glass Transition. Science, 2000, 287, 604-605.	6.0	16
194	Anomalous Translational Diffusion:  A New Constraint for Models of Molecular Motion Near the Glass Transition Temperature. Journal of Physical Chemistry B, 2000, 104, 1724-1728.	1.2	32
195	13C NMR Study of Segmental Dynamics of Atactic Polypropylene Melts. Macromolecules, 2000, 33, 2145-2152.	2.2	44
196	Local and Global Dynamics of Unentangled Polyethylene Melts by13C NMR. Macromolecules, 2000, 33, 490-498.	2.2	43
197	Molecular motion during physical aging in polystyrene: Investigation using probe reorientation. , 2000, 38, 68.		3

Branching effects on the segmental dynamics of polyethylene melts. , 2000, 38, 2634.

#	Article	IF	CITATIONS
199	Calculation of the coherent dynamic structure factor of polyisoprene from molecular dynamics simulations. Physical Review E, 1999, 59, 623-630.	0.8	34
200	How Long Do Regions of Different Dynamics Persist in Supercooledo-Terphenyl?. Journal of Physical Chemistry B, 1999, 103, 4177-4184.	1.2	110
201	Molecular Dynamics of a 1,4-Polybutadiene Melt. Comparison of Experiment and Simulation. Macromolecules, 1999, 32, 8857-8865.	2.2	104
202	Spatially heterogeneous dynamics in deeply supercooled liquids. , 1999, , .		1
203	Polyisoprene local dynamics in solution: Comparison between molecular dynamics simulations and optimized Rouse–Zimm local dynamics. Journal of Chemical Physics, 1998, 108, 1245-1252.	1.2	9
204	Local Dynamics of Poly(ethylene oxide) in Solution. 1. Localization of Chain Motion. Macromolecules, 1997, 30, 5704-5713.	2.2	15
205	Viscosity Dependence of Polystyrene Local Dynamics in Dilute Solution. Macromolecules, 1997, 30, 1205-1210.	2.2	27
206	Enhanced Translational Diffusion of 9,10-Bis(phenylethynyl)anthracene (BPEA) in Polystyrene. Macromolecules, 1997, 30, 4770-4771.	2.2	37
207	Local Dynamics of Poly(ethylene oxide) in Solution. 2. Vector Autocorrelation Functions and Motional Anisotropy. Macromolecules, 1997, 30, 5714-5720.	2.2	13
208	Translational Diffusion on Heterogeneous Lattices:  A Model for Dynamics in Glass Forming Materials. Journal of Physical Chemistry B, 1997, 101, 8727-8734.	1.2	109
209	Translational diffusion of rubrene and tetracene in polyisobutylene. Rheologica Acta, 1997, 36, 209-216.	1.1	26
210	Polystyrene local dynamics in dilute solution: Temperature and solvent dependence of C-D vector correlation function shape. Journal of Polymer Science, Part B: Polymer Physics, 1997, 35, 1241-1250.	2.4	4
211	Translational diffusion of rubrene and tetracene in polyisobutylene. Rheologica Acta, 1997, 36, 209-216.	1.1	3
212	Supercooled Liquids and Glasses. The Journal of Physical Chemistry, 1996, 100, 13200-13212.	2.9	1,893
213	Computer Simulations of Polyisoprene Local Dynamics in Vacuum, Solution, and the Melt:Â Are Conformational Transitions Always Important?. Macromolecules, 1996, 29, 5484-5492.	2.2	56
214	Probe rotation near and below the glass transition temperature: Relationship to viscoelasticity and physical aging. Macromolecular Symposia, 1996, 101, 139-146.	0.4	8
215	Translational and Rotational Motion of Probes in Supercooled 1,3,5-Tris(naphthyl)benzene. The Journal of Physical Chemistry, 1996, 100, 18249-18257.	2.9	106
216	Enhanced translation of probe molecules in supercooled oâ€ŧerphenyl: Signature of spatially heterogeneous dynamics?. Journal of Chemical Physics, 1996, 104, 7210-7218.	1.2	420

MARK D EDIGER

#	Article	IF	CITATIONS
217	How do molecules move near Tg? Molecular rotation of six probes in oâ€terphenyl across 14 decades in time. Journal of Chemical Physics, 1995, 102, 471-479.	1.2	354
218	Deuterium NMR Characterization of 1,2-Polybutadiene Local Dynamics in Dilute Solution. Macromolecules, 1995, 28, 7549-7557.	2.2	23
219	Molecular Motions and Viscoelasticity of Amorphous Polymers near Tg. Macromolecules, 1995, 28, 3425-3433.	2.2	94
220	Anomalous Diffusion of Probe Molecules in Polystyrene: Evidence for Spatially Heterogeneous Segmental Dynamics. Macromolecules, 1995, 28, 8224-8232.	2.2	240
221	Molecular Dynamics Computer Simulation of Polyisoprene Local Dynamics in Dilute Toluene Solution. Macromolecules, 1995, 28, 2329-2338.	2.2	53
222	Relaxation of spatially heterogeneous dynamic domains in supercooled orthoâ€ŧerphenyl. Journal of Chemical Physics, 1995, 103, 5684-5692.	1.2	348
223	Carbon-13 NMR measurments of polybutadiene local dynamics in dilute solution: Further evidence for non-Kramers' behavior. Journal of Polymer Science, Part B: Polymer Physics, 1994, 32, 2251-2262.	2.4	12
224	Temperature dependence of molecular motions in bulk polystyrene. Journal of Polymer Science, Part B: Polymer Physics, 1994, 32, 2595-2604.	2.4	13
225	Comparison of Equilibrium and Dynamic Properties of Polymethylene Melts of n-C44H90 Chains from Simulations and Experiments. Macromolecules, 1994, 27, 5563-5569.	2.2	70
226	Comparison of various measurements of microscopic friction in polymer solutions. Macromolecules, 1993, 26, 512-519.	2.2	40
227	Photobleaching technique for measuring ultraslow reorientation near and below the glass transition: tetracene in o-terphenyl. The Journal of Physical Chemistry, 1993, 97, 10489-10497.	2.9	91
228	A new technique for measuring ultraslow molecular reorientation near and below the glass transition. Journal of Chemical Physics, 1992, 97, 2156-2159.	1.2	25
229	Cooperativity of local conformational dynamics in simulations of polyisoprene and polyethylene. Macromolecules, 1992, 25, 1074-1078.	2.2	43
230	Local polymer and solvent dynamics in Aroclor solutions: implications for solvent modification. Macromolecules, 1992, 25, 1284-1293.	2.2	31
231	Viscosity dependence of the local segmental dynamics of anthracene-labeled polyisoprene in dilute solution. Macromolecules, 1992, 25, 867-872.	2.2	58
232	Concentration and temperature dependence of local motions in polyisoprene/tetrahydrofuran. Macromolecules, 1992, 25, 873-879.	2.2	12
233	Brownian dynamics simulations of local motions in polyisoprene. Macromolecules, 1991, 24, 5834-5842.	2.2	57
234	Viscosity dependence of the local segmental dynamics of anthracene-labeled polystyrene in dilute solution. Macromolecules, 1991, 24, 3147-3153.	2.2	62

#	Article	IF	CITATIONS
235	Local dynamics of polyisoprene in toluene. Macromolecules, 1991, 24, 4270-4277.	2.2	71
236	Time-Resolved Optical Studies of Local Polymer Dynamics. Annual Review of Physical Chemistry, 1991, 42, 225-250.	4.8	81
237	Rotational dynamics of anthracene and 9,10â€dimethylanthracene in polyisoprene. Journal of Chemical Physics, 1990, 92, 1036-1044.	1.2	48
238	Nanosecond and microsecond study of probe reorientation in orthoterphenyl. Journal of Chemical Physics, 1990, 93, 2274-2279.	1.2	36
239	Carbon-13 nuclear magnetic resonance measurements of local segmental dynamics of polyisoprene in dilute solution: nonlinear viscosity dependence. Macromolecules, 1990, 23, 3520-3530.	2.2	66
240	Time-resolved optical study of the rotational mobility of small probe molecules in bulk polyisoprene. Macromolecules, 1989, 22, 1510-1512.	2.2	8
241	Local segmental dynamics of polyisoprene in concentrated solutions and in the bulk. Macromolecules, 1989, 22, 2253-2259.	2.2	28
242	Local segmental dynamics of polyisoprene in dilute solution: solvent and molecular weight effects. Macromolecules, 1989, 22, 1345-1351.	2.2	26
243	Time-Resolved Optical Spectroscopy as a Probe of Local Polymer Motions. ACS Symposium Series, 1987, , 68-82.	0.5	0
244	Local segmental dynamics of polyisoprene in dilute solution: picosecond holographic grating experiments. Macromolecules, 1986, 19, 2533-2538.	2.2	26
245	Determination of the guest radius of gyration in polymer blends: time-resolved measurements of excitation transport induced fluorescence depolarization. Macromolecules, 1985, 18, 1182-1190.	2.2	31
246	Picosecond studies of excitation transport in a finite volume: The clustered transport system octadecyl rhodamine B in triton Xâ€100 micelles. Journal of Chemical Physics, 1984, 80, 1246-1253.	1.2	64
247	New approach to probing polymer and polymer blend structure using electronic excitation transport. Macromolecules, 1983, 16, 1839-1844.	2.2	56
248	Electronic excited state transport among molecules distributed randomly in a finite volume. Journal of Chemical Physics, 1983, 78, 2518-2524.	1.2	55