Debra J Skinner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9438926/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Rare genetic variation at Zea mays crtRB1 increases β-carotene in maize grain. Nature Genetics, 2010, 42, 322-327.	9.4	421
2	A male-expressed rice embryogenic trigger redirected for asexual propagation through seeds. Nature, 2019, 565, 91-95.	13.7	324
3	Differentiation of Mucilage Secretory Cells of the Arabidopsis Seed Coat. Plant Physiology, 2000, 122, 345-356.	2.3	288
4	Isolation and Characterization of Mutants Defective in Seed Coat Mucilage Secretory Cell Development in Arabidopsis. Plant Physiology, 2001, 127, 998-1011.	2.3	180
5	Regulation of Ovule Development. Plant Cell, 2004, 16, S32-S45.	3.1	178
6	ABERRANT TESTA SHAPE encodes a KANADI family member, linking polarity determination to separation and growth of Arabidopsis ovule integuments. Plant Journal, 2006, 46, 522-531.	2.8	154
7	Roles of polarity determinants in ovule development. Plant Journal, 2009, 57, 1054-1064.	2.8	95
8	The Arabidopsis <i>HUELLENLOS</i> Gene, Which Is Essential for Normal Ovule Development, Encodes a Mitochondrial Ribosomal Protein. Plant Cell, 2001, 13, 2719-2730.	3.1	53
9	Development of a seed DNA-based genotyping system for marker-assisted selection in maize. Molecular Breeding, 2008, 22, 477-494.	1.0	52
10	Expression-based discovery of candidate ovule development regulators through transcriptional profiling of ovule mutants. BMC Plant Biology, 2009, 9, 29.	1.6	48
11	The Arabidopsis HUELLENLOS Gene, Which Is Essential for Normal Ovule Development, Encodes a Mitochondrial Ribosomal Protein. Plant Cell, 2001, 13, 2719-2730.	3.1	44
12	Development and evolution of the unique ovules of flowering plants. Current Topics in Developmental Biology, 2019, 131, 373-399.	1.0	42
13	Advances in Maize Genomics and Their Value for Enhancing Genetic Gains from Breeding. International Journal of Plant Genomics, 2009, 2009, 1-30.	2.2	37
14	Integument Development in <i>Arabidopsis</i> Depends on Interaction of YABBY Protein INNER NO OUTER with Coactivators and Corepressors. Genetics, 2017, 207, 1489-1500.	1.2	31
15	Conservation of the role of INNER NO OUTER in development of unitegmic ovules of the Solanaceae despite a divergence in protein function. BMC Plant Biology, 2016, 16, 143.	1.6	27
16	Recent advances in understanding female gametophyte development. F1000Research, 2018, 7, 804.	0.8	21
17	Functional conservation of the grapevine candidate gene INNER NO OUTER for ovule development and seed formation. Horticulture Research, 2021, 8, 29.	2.9	13