
Adolfo Jaitovich

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9438226/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Severe COVID-19 Shares a Common Neutrophil Activation Signature with Other Acute Inflammatory States. Cells, 2022, 11, 847.	1.8	27
2	Deaccelerated Myogenesis and Autophagy in Genetically Induced Pulmonary Emphysema. American Journal of Respiratory Cell and Molecular Biology, 2022, 66, 623-637.	1.4	12
3	Large-Scale Multi-omic Analysis of COVID-19 Severity. Cell Systems, 2021, 12, 23-40.e7.	2.9	438
4	Hypercapnic Respiratory Failure-Driven Skeletal Muscle Dysfunction: It Is Time for Animal Model-Based Mechanistic Research. Advances in Experimental Medicine and Biology, 2021, 1303, 129-138.	0.8	0
5	Unique inflammatory profile is associated with higher SARS-CoV-2 acute respiratory distress syndrome (ARDS) mortality. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2021, 320, R250-R257.	0.9	21
6	Blood DNA methylation and COVID-19 outcomes. Clinical Epigenetics, 2021, 13, 118.	1.8	68
7	Endothelial SOCS3 maintains homeostasis and promotes survival in endotoxemic mice. JCI Insight, 2021, 6, .	2.3	20
8	50-gene risk profiles in peripheral blood predict COVID-19 outcomes: A retrospective, multicenter cohort study. EBioMedicine, 2021, 69, 103439.	2.7	20
9	SDH Subunit C Regulates Muscle Oxygen Consumption and Fatigability in an Animal Model of Pulmonary Emphysema. American Journal of Respiratory Cell and Molecular Biology, 2021, 65, 259-271.	1.4	9
10	Increased risk of severe clinical course of COVID-19 in carriers of HLA-C*04:01. EClinicalMedicine, 2021, 40, 101099.	3.2	52
11	High CO ₂ Downregulates Skeletal Muscle Protein Anabolism via AMP-activated Protein Kinase α2–mediated Depressed Ribosomal Biogenesis. American Journal of Respiratory Cell and Molecular Biology, 2020, 62, 74-86.	1.4	27
12	IL-13-driven pulmonary emphysema leads to skeletal muscle dysfunction attenuated by endurance exercise. Journal of Applied Physiology, 2020, 128, 134-148.	1.2	18
13	Established Biomarkers of Chronic Obstructive Pulmonary Disease Reflect Skeletal Muscle Integrity's Response to Exercise in an Animal Model of Pulmonary Emphysema. American Journal of Respiratory Cell and Molecular Biology, 2020, 63, 266-269.	1.4	10
14	ICU admission body composition: skeletal muscle, bone, and fat effects on mortality and disability at hospital discharge—a prospective, cohort study. Critical Care, 2020, 24, 566.	2.5	34
15	Hypercapnia-Driven Skeletal Muscle Dysfunction in an Animal Model of Pulmonary Emphysema Suggests a Complex Phenotype. Frontiers in Physiology, 2020, 11, 600290.	1.3	9
16	Corticosteroid Administration Is Associated With Improved Outcome in Patients With Severe Acute Respiratory Syndrome Coronavirus 2-Related Acute Respiratory Distress Syndrome. , 2020, 2, e0143.		8
17	AMP-Activated Protein Kinase (AMPK) at the Crossroads Between CO2 Retention and Skeletal Muscle Dysfunction in Chronic Obstructive Pulmonary Disease (COPD). International Journal of Molecular Sciences, 2020, 21, 955.	1.8	22
18	Use of Mass Spectrometryâ€Based Proteomics to Investigate Protein Regulation Associated with COPDâ€Related Muscle Dysfunction. FASEB Journal, 2020, 34, 1-1.	0.2	0

Adolfo Jaitovich

#	Article	IF	CITATIONS
19	ICU Admission Muscle and Fat Mass, Survival, and Disability at Discharge. Chest, 2019, 155, 322-330.	0.4	53
20	Skeletal Muscle Dysfunction in Chronic Obstructive Pulmonary Disease. What We Know and Can Do for Our Patients. American Journal of Respiratory and Critical Care Medicine, 2018, 198, 175-186.	2.5	168
21	Skeletal muscle dysfunction in COPD: relevance of nutritional support and pulmonary rehabilitation. Journal of Thoracic Disease, 2018, 10, S1330-S1331.	0.6	11
22	Muscle atrophy in chronic obstructive pulmonary disease: molecular basis and potential therapeutic targets. Journal of Thoracic Disease, 2018, 10, S1415-S1424.	0.6	57
23	A Brief Overview of Nitric Oxide and Reactive Oxygen Species Signaling in Hypoxia-Induced Pulmonary Hypertension. Advances in Experimental Medicine and Biology, 2017, 967, 71-81.	0.8	38
24	High CO2 Levels Cause Skeletal Muscle Atrophy via AMP-activated Kinase (AMPK), FoxO3a Protein, and Muscle-specific Ring Finger Protein 1 (MuRF1). Journal of Biological Chemistry, 2015, 290, 9183-9194.	1.6	101
25	Salt, Na+,K+-ATPase and hypertension. Life Sciences, 2010, 86, 73-78.	2.0	50
26	Improving survival by increasing lung edema clearance: is airspace delivery of dopamine a solution?. Critical Care, 2008, 12, 135.	2.5	4
27	Ubiquitin-Proteasome-mediated Degradation of Keratin Intermediate Filaments in Mechanically Stimulated A549 Cells. Journal of Biological Chemistry, 2008, 283, 25348-25355.	1.6	50
28	HOâ€l is located in liver mitochondria and modulates mitochondrial heme content and metabolism. FASEB Journal, 2006, 20, 1236-1238.	0.2	153
29	Mitochondrial extracellular signal-regulated kinases 1/2 (ERK1/2) are modulated during brain development. Journal of Neurochemistry, 2004, 89, 248-256.	2.1	87
30	Mitochondrial nitric oxide synthase drives redox signals for proliferation and quiescence in rat liver development. Hepatology, 2004, 40, 157-166.	3.6	55