Dallas Abbott

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9437919/publications.pdf Version: 2024-02-01

DALLAS ABBOTT

#	Article	IF	CITATIONS
1	An empirical thermal history of the Earth's upper mantle. Journal of Geophysical Research, 1994, 99, 13835-13850.	3.3	238
2	Precambrian superplumes and supercontinents: a record in black shales, carbon isotopes, and paleoclimates?. Precambrian Research, 2001, 106, 239-260.	1.2	226
3	The intensity, occurrence, and duration of superplume events and eras over geological time. Journal of Geodynamics, 2002, 34, 265-307.	0.7	115
4	Flat to steep transition in subduction style. Geology, 1994, 22, 937.	2.0	99
5	The structural and geochemical evolution of the continental crust: Support for the oceanic plateau model of continental growth. Reviews of Geophysics, 1995, 33, 231-242.	9.0	85
6	Implications of the Temporal Distribution of Highâ€Mg Magmas for Mantle Plume Volcanism through Time. Journal of Geology, 2002, 110, 141-158.	0.7	75
7	Extraterrestrial influences on mantle plume activity. Earth and Planetary Science Letters, 2002, 205, 53-62.	1.8	69
8	Continents as lithological icebergs: the importance of buoyant lithospheric roots. Earth and Planetary Science Letters, 1997, 149, 15-27.	1.8	67
9	Anomalous heat flow in the northwest Atlantic: A case for continued hydrothermal circulation in 80â€M.Y. crust. Journal of Geophysical Research, 1983, 88, 1067-1074.	3.3	60
10	Geologic evidence for a mantle superplume event at 1.9 Ga. Geochemistry, Geophysics, Geosystems, 2000, 1, n/a-n/a.	1.0	49
11	Influence of the tectosphere upon plate motion. Journal of Geophysical Research, 1996, 101, 5425-5433.	3.3	47
12	The case for accretion of the tectosphere by buoyant subduction. Geophysical Research Letters, 1991, 18, 585-588.	1.5	42
13	Quantifying Precambrian crustal extraction: the root is the answer. Tectonophysics, 2000, 322, 163-190.	0.9	34
14	Length of the global plate boundary at 2.4 Ga. Geology, 1990, 18, 58.	2.0	32
15	Paleobathymetry and sediments of the Indian Ocean. , 1977, , 25-59.		28
16	Cold Cratonic Roots and Thermal Blankets: How Continents Affect Mantle Convection. International Geology Review, 2003, 45, 479-496.	1.1	28
17	Age of oceanic plates at subduction and volatile recycling. Geophysical Research Letters, 1984, 11, 951-954.	1.5	27
18	Evidence for excess pore pressures in southwest Indian Ocean sediments. Journal of Geophysical Research, 1981, 86, 1813-1827.	3.3	26

Dallas Abbott

#	Article	IF	CITATIONS
19	Crustal Heating and Lithospheric Alteration and Erosion Associated With Asthenospheric Upwelling Beneath Southern New England (USA). Journal of Geophysical Research: Solid Earth, 2018, 123, 8995-9008.	1.4	22
20	Heat flow measurements on a hydrothermallyâ€active, slowâ€spreading ridge: The Escanaba Trough. Geophysical Research Letters, 1986, 13, 678-680.	1.5	21
21	Tectonically controlled origin of three unusual rock suites in the Woodlark Basin. Tectonics, 1986, 5, 1145-1160.	1.3	16
22	Archaean plate tectonics revisited 2. Paleoâ€sea level changes, continental area, oceanic heat loss and the areaâ€age distribution of the ocean basins. Tectonics, 1984, 3, 709-722.	1.3	15
23	Has the Wharton Basin's Heat flow been perturbed by the formation of a diffuse plate boundary in the Indian Ocean?. Geophysical Research Letters, 1988, 15, 455-458.	1.5	15
24	Correlated sediment thickness, temperature gradient and excess pore pressure in a marine fault block basin. Geophysical Research Letters, 1984, 11, 485-488.	1.5	11
25	Scientific Rationale for Establishing Long-Term Ocean Bottom Observatory/Laboratory Systems. , 1987, , 389-411.		9
26	Subduction obstruction and the crack-up of the Pacific plate. Geology, 1998, 26, 795.	2.0	8
27	Gravity signatures of terrane accretion. Lithos, 1999, 46, 5-15.	0.6	8
28	New historical records and relationships among 14 C production rates, abundance and color of low latitude auroras and sunspot abundance. Advances in Space Research, 2016, 58, 2181-2246.	1.2	7
29	Increased mantle convection during the mid-Cretaceous: A comparative study of mantle potential temperature. Journal of Geophysical Research, 1996, 101, 8673-8684.	3.3	6
30	Oceanic upwelling and mantle-plume activity: Paleomagnetic tests of ideas on the source of the Fe in early Precambrian iron formations. , 2001, , .		5
31	Tsunami geology and its role in hazard mitigation. Eos, 2005, 86, 400.	0.1	3
32	Impacts, mega-tsunami, and other extraordinary claims: COMMENT. GSA Today, 2008, , e12-e12.	1.1	2
33	Reply to Comment on â€~Extraterrestrial influences on mantle plume activity' by Andrew Glikson. Earth and Planetary Science Letters, 2003, 215, 429-432.	1.8	1
34	Using magnetic susceptibility to find Precambrian impact ejecta: A proposal. Gondwana Research, 2007, 12, 571-575.	3.0	1
35	Chevron Dunes in Madagascar: The Most Spectacular Tsunami Deposits on Earth. , 2007, , .		0