
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9437910/publications.pdf Version: 2024-02-01

Ià F¶RC LIBUDA

#	Article	IF	CITATIONS
1	Support nanostructure boosts oxygen transfer to catalytically active platinum nanoparticles. Nature Materials, 2011, 10, 310-315.	27.5	748
2	Counting electrons on supported nanoparticles. Nature Materials, 2016, 15, 284-288.	27.5	469
3	Maximum Nobleâ€Metal Efficiency in Catalytic Materials: Atomically Dispersed Surface Platinum. Angewandte Chemie - International Edition, 2014, 53, 10525-10530.	13.8	384
4	Molecular beam experiments on model catalysts. Surface Science Reports, 2005, 57, 157-298.	7.2	327
5	Structure and defects of an ordered alumina film on NiAl(110). Surface Science, 1994, 318, 61-73.	1.9	311
6	CO Adsorption on Pd Nanoparticles:Â Density Functional and Vibrational Spectroscopy Studies. Journal of Physical Chemistry B, 2003, 107, 255-264.	2.6	262
7	Surface Science and Model Catalysis with Ionic Liquidâ€Modified Materials. Advanced Materials, 2011, 23, 2571-2587.	21.0	181
8	Catalytic Activity and Poisoning of Specific Sites on Supported Metal Nanoparticles. Angewandte Chemie - International Edition, 2002, 41, 2532-2535.	13.8	170
9	Hydroxy1 driven reconstruction of the polar NiO(111) surface. Surface Science, 1994, 315, L977-L982.	1.9	163
10	Fluctuations and Bistabilities on Catalyst Nanoparticles. Science, 2004, 304, 1639-1644.	12.6	156
11	Preparation and characterization of model catalysts: from ultrahigh vacuum to in situ conditions at the atomic dimension. Journal of Catalysis, 2003, 216, 223-235.	6.2	155
12	Size-Dependent Oxidation Mechanism of Supported Pd Nanoparticles. Angewandte Chemie - International Edition, 2006, 45, 3693-3697.	13.8	140
13	Title is missing!. Topics in Catalysis, 2001, 15, 201-209.	2.8	129
14	Methane Activation by Platinum: Critical Role of Edge and Corner Sites of Metal Nanoparticles. Chemistry - A European Journal, 2010, 16, 6530-6539.	3.3	126
15	Interaction of rhodium with hydroxylated alumina model substrates. Surface Science, 1997, 384, 106-119.	1.9	119
16	Toward Ionic-Liquid-Based Model Catalysis: Growth, Orientation, Conformation, and Interaction Mechanism of the [Tf ₂ N] ^{â^'} Anion in [BMIM][Tf ₂ N] Thin Films on a Well-Ordered Alumina Surface. Langmuir, 2010, 26, 7199-7207.	3.5	116
17	Oxygen Storage at the Metal/Oxide Interface of Catalyst Nanoparticles. Angewandte Chemie - International Edition, 2005, 44, 7601-7605.	13.8	115
18	Ceria reoxidation by CO2: A model study. Journal of Catalysis, 2010, 275, 181-185.	6.2	115

#	Article	IF	CITATIONS
19	Interaction of oxygen with palladium deposited on a thin alumina film. Surface Science, 2002, 501, 270-281.	1.9	111
20	Surface Reactivity of Pd Nanoparticles Supported on Polycrystalline Substrates As Compared to Thin Film Model Catalysts:Â Infrared Study of CO Adsorption. Journal of Physical Chemistry B, 2004, 108, 3603-3613.	2.6	110
21	Water Chemistry on Model Ceria and Pt/Ceria Catalysts. Journal of Physical Chemistry C, 2012, 116, 12103-12113.	3.1	108
22	Model Catalytic Studies of Liquid Organic Hydrogen Carriers: Dehydrogenation and Decomposition Mechanisms of Dodecahydro- <i>N</i> -ethylcarbazole on Pt(111). ACS Catalysis, 2014, 4, 657-665.	11.2	106
23	Near ambient pressure XPS investigation of the interaction of ethanol with Co/CeO2(111). Journal of Catalysis, 2013, 307, 132-139.	6.2	105
24	Adsorption and reaction of methanol on supported palladium catalysts: microscopic-level studies from ultrahigh vacuum to ambient pressure conditions. Physical Chemistry Chemical Physics, 2007, 9, 3541-3558.	2.8	100
25	Epitaxial Cubic Ce ₂ O ₃ Films via Ce–CeO ₂ Interfacial Reaction. Journal of Physical Chemistry Letters, 2013, 4, 866-871.	4.6	99
26	Atomically Dispersed Pd, Ni, and Pt Species in Ceria-Based Catalysts: Principal Differences in Stability and Reactivity. Journal of Physical Chemistry C, 2016, 120, 9852-9862.	3.1	99
27	lsomerization and Hydrogenation of <i>cis</i> -2-Butene on Pd Model Catalyst. Journal of Physical Chemistry C, 2008, 112, 11408-11420.	3.1	94
28	A molecular beam/surface spectroscopy apparatus for the study of reactions on complex model catalysts. Review of Scientific Instruments, 2000, 71, 4395.	1.3	93
29	Ligand Effects in SCILL Model Systems: Siteâ€Specific Interactions with Pt and Pd Nanoparticles. Advanced Materials, 2011, 23, 2617-2621.	21.0	91
30	Effects of deposited Pt particles on the reducibility of CeO2(111). Physical Chemistry Chemical Physics, 2011, 13, 11384.	2.8	89
31	Dehydrogenation of Dodecahydroâ€ <i>N</i> â€ethylcarbazole on Pd/Al ₂ O ₃ Model Catalysts. Chemistry - A European Journal, 2011, 17, 11542-11552.	3.3	89
32	Electrifying model catalysts for understanding electrocatalytic reactions in liquid electrolytes. Nature Materials, 2018, 17, 592-598.	27.5	89
33	Adsorption sites, metal-support interactions, and oxygen spillover identified by vibrational spectroscopy of adsorbed CO: A model study on Pt/ceria catalysts. Journal of Catalysis, 2012, 289, 118-126.	6.2	88
34	The CO oxidation kinetics on supported Pd model catalysts: A molecular beam/in situ time-resolved infrared reflection absorption spectroscopy study. Journal of Chemical Physics, 2001, 114, 4669.	3.0	87
35	Storing energy with molecular photoisomers. Joule, 2021, 5, 3116-3136.	24.0	86
36	The interaction of oxygen with alumina-supported palladium particles. Catalysis Letters, 2001, 71, 5-13.	2.6	85

#	Article	IF	CITATIONS
37	Oxide-based nanomaterials for fuel cell catalysis: the interplay between supported single Pt atoms and particles. Catalysis Science and Technology, 2017, 7, 4315-4345.	4.1	84
38	Boosting the activity of hydrogen release from liquid organic hydrogen carrier systems by sulfur-additives to Pt on alumina catalysts. Catalysis Science and Technology, 2019, 9, 3537-3547.	4.1	84
39	The Growth and Properties of Pd and Pt on Al ₂ O ₃ /NiAl(110). Zeitschrift Fur Elektrotechnik Und Elektrochemie, 1995, 99, 1381-1386.	0.9	83
40	Metal–oxide interaction for metal clusters on a metal-supported thin alumina film. Surface Science, 1999, 442, L964-L970.	1.9	83
41	On the thermal stability of metal particles supported on a thin alumina film. Surface Science, 2003, 523, 103-110.	1.9	83
42	Operando DRIFTS and DFT Study of Propane Dehydrogenation over Solid- and Liquid-Supported Ga _{<i>x</i>} Pt _{<i>y</i>} Catalysts. ACS Catalysis, 2019, 9, 2842-2853.	11.2	83
43	Particle size dependent CO dissociation on alumina-supported Rh: a model study. Chemical Physics Letters, 1997, 279, 92-99.	2.6	80
44	Particle size dependent adsorption and reaction kinetics on reduced and partially oxidized Pd nanoparticles. Physical Chemistry Chemical Physics, 2007, 9, 1347.	2.8	79
45	Dehydrogenation Mechanism of Liquid Organic Hydrogen Carriers: Dodecahydroâ€ <i>N</i> â€ethylcarbazole on Pd(111). Chemistry - A European Journal, 2013, 19, 10854-10865.	3.3	79
46	The influence of OH groups on the growth of rhodium on alumina: a model study. Catalysis Letters, 2000, 68, 19-24.	2.6	77
47	Ionic liquid based model catalysis: interaction of [BMIM][Tf2N] with Pd nanoparticles supported on an ordered alumina film. Physical Chemistry Chemical Physics, 2010, 12, 10610.	2.8	77
48	KOH-promoted Pt/Al2O3 catalysts for water gas shift and methanol steam reforming: An operando DRIFTS-MS study. Applied Catalysis B: Environmental, 2017, 201, 169-181.	20.2	77
49	Highly Effective Propane Dehydrogenation Using Ga–Rh Supported Catalytically Active Liquid Metal Solutions. ACS Catalysis, 2019, 9, 9499-9507.	11.2	76
50	CO oxidation on partially oxidized Pd nanoparticles. Journal of Catalysis, 2006, 242, 58-70.	6.2	73
51	Dehydrogenation of Dodecahydroâ€ <i>N</i> â€ethylcarbazole on Pt(111). ChemSusChem, 2013, 6, 974-977.	6.8	73
52	Towards an efficient liquid organic hydrogen carrier fuel cell concept. Energy and Environmental Science, 2019, 12, 2305-2314.	30.8	73
53	Adsorption and Activation of CO on Co ₃ O ₄ (111) Thin Films. Journal of Physical Chemistry C, 2015, 119, 16688-16699.	3.1	72
54	Oxygen-induced Restructuring of a Pd/Fe3O4 Model Catalyst. Catalysis Letters, 2006, 107, 189-196.	2.6	70

#	Article	IF	CITATIONS
55	Reaction Kinetics on Heterogeneous Model Catalysts. Journal of Catalysis, 2001, 204, 378-392.	6.2	69
56	Size and Structure Effects Controlling the Stability of the Liquid Organic Hydrogen Carrier Dodecahydro- <i>N</i> -ethylcarbazole during Dehydrogenation over Pt Model Catalysts. Journal of Physical Chemistry Letters, 2014, 5, 1498-1504.	4.6	69
57	Adsorption on oxide surfaces: structure and dynamics. Surface Science, 1994, 307-309, 1148-1160.	1.9	68
58	A route to continuous ultra-thin cerium oxide films on Cu(1 1 1). Surface Science, 2009, 603, 3382-3388.	1.9	67
59	Interaction of CO with Pd clusters supported on a thin alumina film. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1996, 14, 1546-1551.	2.1	63
60	Infrared study of CO adsorption on alumina supported palladium particles. Surface Science, 1998, 402-404, 428-432.	1.9	62
61	SO ₂ Adsorption on Pt(111) and Oxygen Precovered Pt(111): A Combined Infrared Reflection Absorption Spectroscopy and Density Functional Study. Journal of Physical Chemistry C, 2011, 115, 479-491.	3.1	61
62	Reactivity of atomically dispersed Pt ²⁺ species towards H ₂ : model Pt–CeO ₂ fuel cell catalyst. Physical Chemistry Chemical Physics, 2016, 18, 7672-7679.	2.8	61
63	Adsorption, decomposition and oxidation of methanol on alumina supported palladium particles. Physical Chemistry Chemical Physics, 2002, 4, 3909-3918.	2.8	60
64	A Molecular Beam Study of the NO + CO Reaction on Pd(111) Surfaces. Journal of Physical Chemistry B, 2005, 109, 13272-13282.	2.6	60
65	Adsorption and reaction of NO2 on ordered alumina films and mixed baria–alumina nanoparticles: Cooperative versus non-cooperative reaction mechanisms. Journal of Catalysis, 2008, 260, 315-328.	6.2	60
66	CO dissociation characteristics on size-distributed rhodium islands on alumina model substrates. Journal of Chemical Physics, 1998, 108, 2967-2974.	3.0	58
67	Complex model catalysts under UHV and high pressure conditions: CO adsorption and oxidation on alumina-supported Pd particles. Journal of Molecular Catalysis A, 2000, 162, 51-66.	4.8	58
68	Size Dependent Reaction Kinetics on Supported Model Catalysts:Â A Molecular Beam/IRAS Study of the CO Oxidation on Alumina-Supported Pd Particles. Journal of Physical Chemistry B, 2001, 105, 3567-3576.	2.6	58
69	Microscopic Insights into Methane Activation and Related Processes on Pt/Ceria Model Catalysts. ChemPhysChem, 2010, 11, 1496-1504.	2.1	58
70	Structural characterization of platinum deposits supported on ordered alumina films. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1994, 12, 2259-2264.	2.1	57
71	Electronic Structure of Magnesiaâ^'Ceria Model Catalysts, CO ₂ Adsorption, and CO ₂ Activation: A Synchrotron Radiation Photoelectron Spectroscopy Study. Journal of Physical Chemistry C, 2011, 115, 8716-8724.	3.1	57
72	Formation of interface and surface oxides on supported Pd nanoparticles. Surface Science, 2006, 600, 2528-2542.	1.9	56

#	Article	IF	CITATIONS
73	Photochemical Energy Storage and Electrochemically Triggered Energy Release in the Norbornadiene–Quadricyclane System: UVÂPhotochemistry and IR Spectroelectrochemistry in a Combined Experiment. Journal of Physical Chemistry Letters, 2017, 8, 2819-2825.	4.6	56
74	Energy Storage in Strained Organic Molecules: (Spectro)Electrochemical Characterization of Norbornadiene and Quadricyclane. ChemSusChem, 2016, 9, 1424-1432.	6.8	55
75	Vibrational structure of excited states of molecules on oxide surfaces. Journal of Electron Spectroscopy and Related Phenomena, 1993, 64-65, 217-225.	1.7	53
76	Reaction Kinetics on Complex Model Catalysts under Single Scattering Conditions. Journal of Physical Chemistry B, 2002, 106, 4901-4915.	2.6	53
77	Cluster, facets, and edges: Site-dependent selective chemistry on model catalysts. Chemical Record, 2003, 3, 181-201.	5.8	53
78	Metal deposition in adsorbate atmosphere: growth and decomposition of a palladium carbonyl-like species. Surface Science, 1996, 346, 108-126.	1.9	52
79	Identifying surface species by vibrational spectroscopy: Bridging vs monodentate nitrates. Journal of Catalysis, 2008, 255, 127-133.	6.2	52
80	Growth and morphology of Rh deposits on an alumina film under UHV conditions and under the influence of CO. Surface Science, 1997, 391, 204-215.	1.9	50
81	Stabilization of Small Platinum Nanoparticles on Pt–CeO ₂ Thin Film Electrocatalysts During Methanol Oxidation. Journal of Physical Chemistry C, 2016, 120, 19723-19736.	3.1	50
82	Insights in Reaction Mechanistics: Isotopic Exchange during the Metalation of Deuterated Tetraphenyl-21,23 <i>D</i> -porphyrin on Cu(111). Journal of Physical Chemistry C, 2014, 118, 26729-26736.	3.1	47
83	Hydrogen spillover monitored by resonant photoemission spectroscopy. Journal of Catalysis, 2012, 285, 6-9.	6.2	45
84	Structure-Dependent Dissociation of Water on Cobalt Oxide. Journal of Physical Chemistry Letters, 2018, 9, 2763-2769.	4.6	44
85	Enhanced Activity and Selectivity in Catalytic Methanol Steam Reforming by Basic Alkali Metal Salt Coatings. Angewandte Chemie - International Edition, 2013, 52, 5028-5032.	13.8	43
86	Interactions Between the Room-Temperature Ionic Liquid [C ₂ C ₁ Im][OTf] and Pd(111), Well-Ordered Al ₂ O ₃ , and Supported Pd Model Catalysts from IR Spectroscopy. Journal of Physical Chemistry C, 2014, 118, 3188-3193.	3.1	43
87	Dissolution of Platinum Single Crystals in Acidic Medium. ChemPhysChem, 2019, 20, 2997-3003.	2.1	42
88	Transition from a molecular to a metallic adsorbate system:mCore-hole creation and decay dynamics for CO coordinated to Pd. Physical Review B, 1997, 55, 7233-7243.	3.2	41
89	The Molecular Origins of Selectivity in Methanol Decomposition on Pd Nanoparticles. Catalysis Letters, 2002, 84, 209-217.	2.6	41
90	Surface reactivity of Pd nanoparticles supported on polycrystalline substrates as compared to thin film model catalysts: infrared study of CH3OH adsorption. Journal of Catalysis, 2004, 223, 64-73.	6.2	41

#	Article	IF	CITATIONS
91	A Combined Density-Functional and IRAS Study on the Interaction of NO with Pd Nanoparticles: Identifying New Adsorption Sites with Novel Properties. Journal of Physical Chemistry C, 2008, 112, 16539-16549.	3.1	41
92	CO2 activation on single crystal based ceria and magnesia/ceria model catalysts. European Physical Journal B, 2010, 75, 89-100.	1.5	40
93	Quantitative Analysis of the Oxidation State of Cobalt Oxides by Resonant Photoemission Spectroscopy. Journal of Physical Chemistry Letters, 2019, 10, 6129-6136.	4.6	39
94	Hydrogen Production Based on Liquid Organic Hydrogen Carriers through Sulfur Doped Platinum Catalysts Supported on TiO ₂ . ACS Sustainable Chemistry and Engineering, 2021, 9, 6561-6573.	6.7	39
95	Oxidation, Reduction, and Reactivity of Supported Pd Nanoparticles:  Mechanism and Microkinetics. Journal of Physical Chemistry C, 2007, 111, 938-949.	3.1	38
96	Conversion of cis- and trans-2-butene with Deuterium on a Pd/Fe3O4 model catalyst. Journal of Catalysis, 2009, 265, 191-198.	6.2	38
97	Ionic Liquid-Modified Electrocatalysts: The Interaction of [C 1 C 2 Im][OTf] with Pt(1 1 1) and its Influence on Methanol Oxidation Studied by Electrochemical IR Spectroscopy. Electrochimica Acta, 2016, 188, 825-836.	5.2	38
98	Ligand Effects at Ionic Liquid-Modified Interfaces: Coadsorption of [C ₂ C ₁ Im][OTf] and CO on Pd(111). Journal of Physical Chemistry C, 2016, 120, 4453-4465.	3.1	37
99	Solar energy storage at an atomically defined organic-oxide hybrid interface. Nature Communications, 2019, 10, 2384.	12.8	37
100	The temperature dependent growth mode of nickel on the basal plane of graphite. Surface Science, 1995, 327, 321-329.	1.9	36
101	Functionalization of Oxide Surfaces through Reaction with 1,3-Dialkylimidazolium Ionic Liquids. Journal of Physical Chemistry Letters, 2013, 4, 30-35.	4.6	36
102	Liquid Organic Hydrogen Carriers: Surface Science Studies of Carbazole Derivatives. Chemical Record, 2014, 14, 879-896.	5.8	36
103	Electron spectroscopy studies of small deposited metal particles. Journal of Electron Spectroscopy and Related Phenomena, 1995, 76, 301-306.	1.7	35
104	The surface structure matters: thermal stability of phthalic acid anchored to atomically-defined cobalt oxide films. Physical Chemistry Chemical Physics, 2016, 18, 10419-10427.	2.8	35
105	Modeling NO <i>_x</i> Storage Materials:  On the Formation of Surface Nitrites and Nitrates and Their Identification by Vibrational Spectroscopy. Journal of Physical Chemistry C, 2008, 112, 6477-6486.	3.1	34
106	Atomically Defined Co ₃ O ₄ (111) Thin Films Prepared in Ultrahigh Vacuum: Stability under Electrochemical Conditions. Journal of Physical Chemistry C, 2018, 122, 7236-7248.	3.1	34
107	Nanofacet-resolved CO oxidation kinetics on alumina-supported Pd particles. Chemical Physics Letters, 2002, 354, 403-408.	2.6	33
108	Adsorption and Decomposition of Formic Acid on Model Ceria and Pt/Ceria Catalysts. Journal of Physical Chemistry C, 2013, 117, 12483-12494.	3.1	33

#	Article	IF	CITATIONS
109	Dehydrogenation of the Liquid Organic Hydrogen Carrier System Indole/Indoline/Octahydroindole on Pt(111). Journal of Physical Chemistry C, 2018, 122, 4470-4479.	3.1	33
110	Pd-Ga model SCALMS: Characterization and stability of Pd single atom sites. Journal of Catalysis, 2019, 369, 33-46.	6.2	33
111	The kinetics of methanol oxidation on a supported Pd model catalyst: molecular beam and TR-IRAS experiments. Journal of Catalysis, 2003, 213, 176-190.	6.2	32
112	Site Occupation and Activity of Catalyst Nanoparticles Monitored by In Situ Vibrational Spectroscopy. Angewandte Chemie - International Edition, 2003, 42, 3035-3038.	13.8	32
113	Secondary Alcohols as Rechargeable Electrofuels: Electrooxidation of Isopropyl Alcohol at Pt Electrodes. ACS Catalysis, 2020, 10, 6831-6842.	11.2	32
114	Collision-induced desorption of hydrocarbons physisorbed on Au(111). Journal of Chemical Physics, 2000, 112, 1522-1530.	3.0	31
115	Strong Size Effects in Supported Ionic Nanoparticles: Tailoring the Stability of NO x Storage Catalysts. Catalysis Letters, 2008, 121, 311-318.	2.6	31
116	Regeneration of LOHC dehydrogenation catalysts: In-situ IR spectroscopy on single crystals, model catalysts, and real catalysts from UHV to near ambient pressure. Applied Surface Science, 2016, 360, 671-683.	6.1	31
117	Catalytically Triggered Energy Release from Strained Organic Molecules: The Surface Chemistry of Quadricyclane and Norbornadiene on Pt(111). Chemistry - A European Journal, 2017, 23, 1613-1622.	3.3	31
118	Electrochemically controlled energy storage in a norbornadiene-based solar fuel with 99% reversibility. Nano Energy, 2019, 63, 103872.	16.0	31
119	Porphyrin Metalation at the MgO Nanocube/Toluene Interface. ACS Applied Materials & Interfaces, 2015, 7, 22962-22969.	8.0	30
120	On the Role of Different Adsorption and Reaction Sites on Supported Nanoparticles during a Catalytic Reaction: NO Decomposition on a Pd/Alumina Model Catalystâ€. Journal of Physical Chemistry B, 2004, 108, 14244-14254.	2.6	29
121	Modeling NO _{<i>x</i>} Storage Materials: A High-Resolution Photoelectron Spectroscopy Study on the Interaction of NO ₂ with Al ₂ O ₃ /NiAl(110) and BaO/Al ₂ O ₃ /NiAl(110). Journal of Physical Chemistry C, 2008, 112, 9835-9846.	3.1	29
122	Controlled selectivity for ethanol steam reforming reaction over doped CeO2 surfaces: The role of gallium. Applied Catalysis B: Environmental, 2020, 277, 119103.	20.2	29
123	Evidence for Pdx(CO)y compound formation on an alumina substrate. Chemical Physics Letters, 1995, 240, 429-434.	2.6	28
124	Functionalized Porphyrins on an Atomically Defined Oxide Surface: Anchoring and Coverage-Dependent Reorientation of MCTPP on Co ₃ O ₄ (111). Journal of Physical Chemistry Letters, 2016, 7, 555-560.	4.6	28
125	<i>Operando</i> Identification of the Reversible Skin Layer on Co ₃ O ₄ as a Three-Dimensional Reaction Zone for Oxygen Evolution. ACS Catalysis, 2022, 12, 3256-3268.	11.2	28
126	Low temperature decomposition of NO on ordered alumina films. Chemical Physics Letters, 2003, 381, 298-305.	2.6	27

#	Article	IF	CITATIONS
127	Surface Reactions of Dicyclohexylmethane on Pt(111). Journal of Physical Chemistry C, 2015, 119, 20299-20311.	3.1	27
128	Supported homogeneous catalyst makes its own liquid phase. Journal of Catalysis, 2015, 321, 32-38.	6.2	27
129	Katalytische Aktivitäund Vergiftung spezifischer aktiver Zentren von Metall-Nanopartikeln auf TrÃǥern. Angewandte Chemie, 2002, 114, 2643-2646.	2.0	26
130	Methane Oxidation Over Pd Supported on Ceria–Alumina Under Rich/Lean Cycling Conditions. Topics in Catalysis, 2013, 56, 410-415.	2.8	26
131	Structural Dynamics of Ultrathin Cobalt Oxide Nanoislands under Potential Control. Advanced Functional Materials, 2021, 31, 2009923.	14.9	26
132	CO adsorption and thermal stability of Pd deposited on a thin FeO(111) film. Surface Science, 2005, 586, 174-182.	1.9	25
133	Isothermal Kinetic Study of Nitric Oxide Adsorption and Decomposition on Pd(111) Surfaces:Â Molecular Beam Experiments. Journal of Physical Chemistry B, 2005, 109, 13283-13290.	2.6	25
134	Surface sites on Pt–CeO ₂ mixed oxide catalysts probed by CO adsorption: a synchrotron radiation photoelectron spectroscopy study. Physical Chemistry Chemical Physics, 2014, 16, 24747-24754.	2.8	25
135	Sensitivity of CO oxidation toward metal oxidation state in ceria-supported catalysts: an operando DRIFTS-MS study. Catalysis Science and Technology, 2016, 6, 818-828.	4.1	25
136	Anchoring of carboxyl-functionalized porphyrins on MgO, TiO ₂ , and Co ₃ O ₄ nanoparticles. Physical Chemistry Chemical Physics, 2018, 20, 24858-24868.	2.8	25
137	Electrochemically controlled energy release from a norbornadiene-based solar thermal fuel: increasing the reversibility to 99.8% using HOPG as the electrode material. Journal of Materials Chemistry A, 2020, 8, 15658-15664.	10.3	25
138	Adsorbate mobilities on catalyst nanoparticles studied via the angular distribution of desorbing products. Surface Science, 2004, 561, L218-L224.	1.9	24
139	Reaction kinetics on model catalysts: Molecular beam methods and time-resolved vibrational spectroscopy. Surface Science, 2005, 587, 55-68.	1.9	24
140	Model Catalytic Studies of Novel Liquid Organic Hydrogen Carriers: Indole, Indoline and Octahydroindole on Pt(111). Chemistry - A European Journal, 2017, 23, 14806-14818.	3.3	24
141	Structureâ€Dependent Anchoring of Organic Molecules to Atomically Defined Oxide Surfaces: Phthalic Acid on Co ₃ O ₄ (111), CoO(100), and CoO(111). Chemistry - A European Journal, 2016, 22, 5384-5396.	3.3	23
142	Dynamic equilibria in supported ionic liquid phase (SILP) catalysis: <i>in situ</i> IR spectroscopy identifies [Ru(CO) _x Cl _y] _n species in water gas shift catalysis. Catalysis Science and Technology, 2018, 8, 344-357.	4.1	23
143	Interplay between the metal-support interaction and stability in Pt/Co ₃ O ₄ (111) model catalysts. Journal of Materials Chemistry A, 2018, 6, 23078-23086.	10.3	23
144	Controlling the Adsorption Kinetics via Nanostructuring: Pd Nanoparticles on TiO ₂ Nanotubes. Langmuir, 2010, 26, 14014-14023.	3.5	22

#	Article	IF	CITATIONS
145	Enhanced reactivity of Pt nanoparticles supported on ceria thin films during ethylenedehydrogenation. Physical Chemistry Chemical Physics, 2011, 13, 253-261.	2.8	22
146	Interactions of Imidazoliumâ€Based Ionic Liquids with Oxide Surfaces Controlled by Alkyl Chain Functionalization. ChemPhysChem, 2013, 14, 3673-3677.	2.1	22
147	Interface Controls Spontaneous Crystallization in Thin Films of the Ionic Liquid [C ₂ C ₁ Im][OTf] on Atomically Clean Pd(111). Langmuir, 2014, 30, 6846-6851.	3.5	22
148	Benzoic Acid and Phthalic Acid on Atomically Well-Defined MgO(100) Thin Films: Adsorption, Interface Reaction, and Thin Film Growth. Journal of Physical Chemistry C, 2015, 119, 26968-26979.	3.1	22
149	Preparation of complex model electrocatalysts in ultra-high vacuum and transfer into the electrolyte for electrochemical IR spectroscopy and other techniques. Review of Scientific Instruments, 2018, 89, 114101.	1.3	22
150	Electronic and geometric structure of adsorbates on oxide surfaces. Journal of Electron Spectroscopy and Related Phenomena, 1994, 68, 347-355.	1.7	21
151	Metal Deposits on Thin Well Ordered Oxide Films: Morphology, Adsorption and Reactivity. , 1997, , 61-104.		21
152	Mechanism of Sulfur Poisoning and Storage: Adsorption and Reaction of SO ₂ with Stoichiometric and Reduced Ceria Films on Cu(111). Journal of Physical Chemistry C, 2011, 115, 19872-19882.	3.1	21
153	Cobalt Oxide-Supported Pt Electrocatalysts: Intimate Correlation between Particle Size, Electronic Metal–Support Interaction and Stability. Journal of Physical Chemistry Letters, 2020, 11, 8365-8371.	4.6	21
154	IR spectroscopy of a Pd-carbonyl surface compound. Chemical Physics Letters, 1997, 277, 513-520.	2.6	20
155	Molecular Beams and Model Catalysis: Activity and Selectivity of Specific Reaction Centers on Supported Nanoparticles. ChemPhysChem, 2004, 5, 625-631.	2.1	20
156	Local reaction rates and surface diffusion on nanolithographically prepared model catalysts: Experiments and simulations. Journal of Chemical Physics, 2005, 122, 084713.	3.0	20
157	Controlling metal/oxide interactions in bifunctional nanostructured model catalysts: Pd and BaO on Al2O3/NiAl(110). Surface Science, 2009, 603, L9-L13.	1.9	20
158	Ordering and Phase Transitions in Ionic Liquidâ€Crystalline Films. ChemPhysChem, 2010, 11, 1632-1636.	2.1	20
159	Preparation and Adsorption Properties of Pd Nanoparticles Supported on TiO ₂ Nanotubes. Journal of Physical Chemistry C, 2010, 114, 20146-20154.	3.1	20
160	Density Functional Calculations and IR Reflection Absorption Spectroscopy on the Interaction of SO ₂ with Oxide-Supported Pd Nanoparticles. Journal of Physical Chemistry C, 2010, 114, 13813-13824.	3.1	20
161	Alkyl chain length-dependent surface reaction of dodecahydro- <i>N</i> -alkylcarbazoles on Pt model catalysts. Journal of Chemical Physics, 2014, 140, 204711.	3.0	20
162	Adsorption, Ordering, and Metalation of Porphyrins on MgO Nanocube Surfaces: The Directional Role of Carboxylic Anchoring Groups. Journal of Physical Chemistry C, 2016, 120, 26879-26888.	3.1	20

#	Article	IF	CITATIONS
163	Charge transfer and spillover phenomena in ceria-supported iridium catalysts: A model study. Journal of Chemical Physics, 2019, 151, 204703.	3.0	20
164	Pd model catalysts on clean and modified HOPG: Growth, adsorption properties, and stability. Surface Science, 2019, 679, 64-73.	1.9	20
165	Model Studies in Heterogeneous Catalysis. From Structure to Kinetics. Monatshefte Für Chemie, 2005, 136, 59-75.	1.8	19
166	Surfaceâ€Functionalized Ionic Liquid Crystal–Supported Ionic Liquid Phase Materials: Ionic Liquid Crystals in Mesopores. ChemPhysChem, 2011, 12, 3539-3546.	2.1	19
167	Methanol Steam Reforming Promoted by Molten Saltâ€Modified Platinum on Alumina Catalysts. ChemSusChem, 2014, 7, 2516-2526.	6.8	19
168	Thermal evolution of cobalt deposits on Co ₃ O ₄ (111): atomically dispersed cobalt, two-dimensional CoO islands, and metallic Co nanoparticles. Physical Chemistry Chemical Physics, 2015, 17, 23538-23546.	2.8	19
169	Dicyclohexylmethane as a Liquid Organic Hydrogen Carrier: A Model Study on the Dehydrogenation Mechanism over Pd(111). Catalysis Letters, 2016, 146, 851-860.	2.6	19
170	Roomâ€Temperature Onâ€Spinâ€Switching and Tuning in a Porphyrinâ€Based Multifunctional Interface. Small, 2021, 17, e2104779.	10.0	19
171	Interaction of NO ₂ with Model NSR Catalysts: Metal–Oxide Interaction Controls Initial NO _{<i>x</i>} Storage Mechanism. ChemPhysChem, 2008, 9, 2191-2197.	2.1	18
172	SO ₂ Decomposition on Pt/CeO ₂ (111) Model Catalysts: On the Reaction Mechanism and the Influence of H ₂ and CO. Journal of Physical Chemistry C, 2012, 116, 10959-10967.	3.1	18
173	Characterization of thin CeO2 films electrochemically deposited on HOPG. Applied Surface Science, 2015, 350, 142-148.	6.1	18
174	Reduction of Pt2+ species in model Pt–CeO2 fuel cell catalysts upon reaction with methanol. Applied Surface Science, 2016, 387, 674-681.	6.1	18
175	Water on Oxide Surfaces: A Triaqua Surface Coordination Complex on Co ₃ O ₄ (111). Journal of the American Chemical Society, 2019, 141, 5623-5627.	13.7	18
176	Norbornadiene photoswitches anchored to well-defined oxide surfaces: From ultrahigh vacuum into the liquid and the electrochemical environment. Journal of Chemical Physics, 2020, 152, 044708.	3.0	18
177	Metal Aggregates on Oxide Surfaces: Structure and Adsorption. Crystal Research and Technology, 1998, 33, 977-1008.	1.3	17
178	Functional nickel complexes of N-heterocyclic carbeneligands in pre-organized and supported thin film materials. Journal of Materials Chemistry, 2012, 22, 1893-1898.	6.7	17
179	Pd Nanoparticle Formation in Ionic Liquid Thin Films Monitored by in situ Vibrational Spectroscopy. Langmuir, 2015, 31, 12126-12139.	3.5	17
180	Role of Oxygen in Acetic Acid Decomposition on Pt(111). Journal of Physical Chemistry C, 2014, 118, 14316-14325.	3.1	16

#	Article	IF	CITATIONS
181	Molecular Orientation and Structural Transformations in Phthalic Anhydride Thin Films on MgO(100)/Ag(100). Langmuir, 2015, 31, 7806-7814.	3.5	16
182	Gluing Ionic Liquids to Oxide Surfaces: Chemical Anchoring of Functionalized Ionic Liquids by Vapor Deposition onto Cobalt(II) Oxide. Angewandte Chemie - International Edition, 2017, 56, 9072-9076.	13.8	16
183	Dissociative Adsorption of Benzoic Acid on Well-Ordered Cobalt Oxide Surfaces: Role of the Protons. Journal of Physical Chemistry C, 2017, 121, 28317-28327.	3.1	16
184	Electrocatalysis with Atomically Defined Model Systems: Metal–Support Interactions between Pt Nanoparticles and Co3O4(111) under Ultrahigh Vacuum and in Liquid Electrolytes. Journal of Physical Chemistry C, 2018, 122, 20787-20799.	3.1	16
185	Water on Atomically-Defined Cobalt Oxide Surfaces Studied by Temperature-Programmed IR Reflection Absorption Spectroscopy and Steady State Isotopic Exchange. Journal of Physical Chemistry C, 2019, 123, 7673-7681.	3.1	16
186	Improving the performance of supported ionic liquid phase (SILP) catalysts for the ultra-low-temperature water–gas shift reaction using metal salt additives. Green Chemistry, 2019, 21, 5008-5018.	9.0	16
187	Redox Behavior of Pt/Co ₃ O ₄ (111) Model Electrocatalyst Studied by X-ray Photoelectron Spectroscopy Coupled with an Electrochemical Cell. Journal of Physical Chemistry C, 2019, 123, 8746-8758.	3.1	16
188	Preparation and characterization of ultrathin [Ru(CO)3Cl2]2 and [BMIM][Tf2N] films on Al2O3/NiAl(110) under UHV conditions. Physical Chemistry Chemical Physics, 2012, 14, 10603.	2.8	15
189	On the interaction of Mg with the (111) and (110) surfaces of ceria. Physical Chemistry Chemical Physics, 2012, 14, 1293-1301.	2.8	15
190	Structural transformations and adsorption properties of PtNi nanoalloy thin film electrocatalysts prepared by magnetron co-sputtering. Electrochimica Acta, 2017, 251, 427-441.	5.2	15
191	Pt–Ga Model SCALMS on Modified HOPG: Thermal Behavior and Stability in UHV and under Near-Ambient Conditions. Journal of Physical Chemistry C, 2020, 124, 2562-2573.	3.1	15
192	Observation of a low-energy adsorbate core-level satellite for CO bonded to palladium: Coordination-dependent effects. Physical Review B, 1998, 57, 13199-13208.	3.2	14
193	Transient and steady state CO oxidation kinetics on nanolithographically prepared supported Pd model catalysts: Experiments and simulations. Journal of Chemical Physics, 2005, 123, 054701.	3.0	14
194	Palladiumâ€Mediated Ethylation of the Imidazolium Cation Monitored In Operando on a Solid Catalyst with Ionic Liquid Layer. ChemCatChem, 2017, 9, 109-113.	3.7	14
195	SOx storage and release kinetics for ceria-supported platinum. Applied Catalysis B: Environmental, 2009, 91, 679-682.	20.2	13
196	Impact of Sulfur Poisoning on the NO _{<i>x</i>} Uptake of a NO _{<i>x</i>} Storage and Reduction (NSR) Model Catalyst. Journal of Physical Chemistry C, 2010, 114, 4568-4575.	3.1	13
197	Decomposition of Acetic Acid on Model Pt/CeO ₂ Catalysts: The Effect of Surface Crowding. Journal of Physical Chemistry C, 2015, 119, 13721-13734.	3.1	13
198	Coverage-Dependent Anchoring of 4,4′-Biphenyl Dicarboxylic Acid to CoO(111) Thin Films. Langmuir, 2017, 33, 4178-4188.	3.5	13

#	Article	IF	CITATIONS
199	Anchoring of a Carboxyl-Functionalized Norbornadiene Derivative to an Atomically Defined Cobalt Oxide Surface. Journal of Physical Chemistry C, 2017, 121, 11508-11518.	3.1	13
200	Interaction of Esterâ€Functionalized Ionic Liquids with Atomicallyâ€Defined Cobalt Oxides Surfaces: Adsorption, Reaction and Thermal Stability. ChemPhysChem, 2017, 18, 3443-3453.	2.1	13
201	Atomically-defined model catalysts in ultrahigh vacuum and in liquid electrolytes: particle size-dependent CO adsorption on Pt nanoparticles on ordered Co ₃ O ₄ (111) films. Physical Chemistry Chemical Physics, 2018, 20, 23702-23716.	2.8	13
202	Selfâ€Metalation of Anchored Porphyrins on Atomically Defined Cobalt Oxide Surfaces: In situ Studies by Surface Vibrational Spectroscopy. Chemistry - A European Journal, 2020, 26, 12445-12453.	3.3	13
203	Modifying the Electrocatalytic Selectivity of Oxidation Reactions with Ionic Liquids. Angewandte Chemie - International Edition, 2022, 61, .	13.8	13
204	Dynamic CO Adsorption and Desorption through the Ionic Liquid Layer of a Pt Model Solid Catalyst with Ionic Liquid Layers. Journal of Physical Chemistry C, 2019, 123, 31057-31072.	3.1	12
205	Enhancing the feasibility of Pd/C-catalyzed formic acid decomposition for hydrogen generation – catalyst pretreatment, deactivation, and regeneration. Catalysis Science and Technology, 2021, 11, 4259-4271.	4.1	12
206	Temperature dependent XPS study of CO dissociation on small Rh particles. Vacuum, 1998, 49, 167-170.	3.5	11
207	Interaction of NO with alumina supported palladium model catalysts. Physical Chemistry Chemical Physics, 2003, 5, 5139-5148.	2.8	11
208	The Mechanism of Hydrocarbon Oxygenate Reforming: CC Bond Scission, Carbon Formation, and Nobleâ€Metalâ€Free Oxide Catalysts. ChemSusChem, 2014, 7, 77-81.	6.8	11
209	Redox-mediated conversion of atomically dispersed platinum to sub-nanometer particles. Journal of Materials Chemistry A, 2017, 5, 9250-9261.	10.3	11
210	Atomic Ordering and Sn Segregation in Pt–Sn Nanoalloys Supported on CeO2 Thin Films. Topics in Catalysis, 2017, 60, 522-532.	2.8	11
211	Nanoscale Morphological and Structural Transformations of PtCu Alloy Electrocatalysts during Potentiodynamic Cycling. Journal of Physical Chemistry C, 2018, 122, 21974-21982.	3.1	11
212	NAP-XPS and In Situ DRIFTS of the Interaction of CO with Au Nanoparticles Supported by Ce _{1–<i>x</i>} Eu _{<i>x</i>} O ₂ Nanocubes. Journal of Physical Chemistry C, 2020, 124, 5647-5656.	3.1	11
213	Selective electrooxidation of 2-propanol on Pt nanoparticles supported on Co ₃ O ₄ : an in-situ study on atomically defined model systems. Journal Physics D: Applied Physics, 2021, 54, 164002.	2.8	11
214	Reduction of Oxide Layers on Au(111): The Interplay between Reduction Rate, Dissolution, and Restructuring. Journal of Physical Chemistry C, 2021, 125, 22698-22704.	3.1	11
215	Collision-Induced Chemical Dynamics in Ethanethiol Adsorbed on Au(111). Journal of Physical Chemistry B, 1999, 103, 9933-9943.	2.6	10
216	Formation and catalytic activity of partially oxidized Pd nanoparticles. Topics in Catalysis, 2007, 42-43, 387-391.	2.8	10

#	Article	IF	CITATIONS
217	Nitrite and nitrate formation on model NOx storage materials: on the influence of particle size and composition. Physical Chemistry Chemical Physics, 2009, 11, 2514.	2.8	10
218	Ionic-Liquid-Modified Hybrid Materials Prepared by Physical Vapor Codeposition: Cobalt and Cobalt Oxide Nanoparticles in [C1C2Im][OTf] Monitored by In Situ IR Spectroscopy. Langmuir, 2016, 32, 8613-8622.	3.5	10
219	Electrifying Oxide Model Catalysis: Complex Electrodes Based on Atomically-Defined Oxide Films. Catalysis Letters, 2020, 150, 1546-1560.	2.6	10
220	Area‣elective Growth of HfS ₂ Thin Films via Atomic Layer Deposition at Low Temperature. Advanced Materials Interfaces, 2020, 7, 2001493.	3.7	10
221	Surface Structure Controls Self-Metalation: In-Situ IR Studies of Anchored Porphyrins on Atomically-Defined Cobalt Oxide Surfaces. Journal of Physical Chemistry C, 2020, 124, 21538-21548.	3.1	10
222	Photoconversion of 2-Propanol on Rutile Titania: A Combined Liquid-Phase and Surface Science Study. Journal of Physical Chemistry C, 2021, 125, 3355-3367.	3.1	10
223	Triggering the energy release in molecular solar thermal systems: Norbornadiene-functionalized trioxatriangulen on Au(111). Nano Energy, 2022, 95, 107007.	16.0	10
224	Reaction kinetics on supported model catalysts: Molecular beam/in situtime-resolved infrared reflection absorption spectroscopy study of the CO oxidation on alumina supported Pd particles. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2001, 19, 1516-1523.	2.1	9
225	Particle-Size-Dependent Interaction of NO ₂ with Pd Nanoparticles Supported on Model NO _{<i>x</i>} Storage Materials. Journal of Physical Chemistry C, 2009, 113, 9755-9764.	3.1	9
226	An operando DRIFTS-MS study of NH3 removal by supported ionic liquid phase (SILP) materials. Separation and Purification Technology, 2017, 174, 245-250.	7.9	9
227	Phosphonic Acids on an Atomically Defined Oxide Surface: The Binding Motif Changes with Surface Coverage. Journal of Physical Chemistry Letters, 2018, 9, 1937-1943.	4.6	9
228	Dissociation of water on atomically-defined cobalt oxide nanoislands on Pt(111) and its effect on the adsorption of CO. Journal of Materials Research, 2019, 34, 379-393.	2.6	9
229	A simple high-intensity UV-photon source for photochemical studies in UHV: Application to the photoconversion of norbornadiene to quadricyclane. Review of Scientific Instruments, 2019, 90, 024105.	1.3	9
230	Pt–Ga Model SCALMS on Modified HOPG: Growth and Adsorption Properties. Topics in Catalysis, 2019, 62, 849-858.	2.8	9
231	Nanoscale architecture of ceria-based model catalysts: Pt–Co nanostructures on well-ordered CeO2(111) thin films. Chinese Journal of Catalysis, 2020, 41, 985-997.	14.0	9
232	Stability of the Pd/Co ₃ O ₄ (111) Model Catalysts in Oxidizing and Humid Environments. Journal of Physical Chemistry C, 2021, 125, 2907-2917.	3.1	9
233	A Molecular View of the Ionic Liquid Catalyst Interface of SCILLs: Coverage-Dependent Adsorption Motifs of [C ₄ C ₁ Pyr][NTf ₂] on Pd Single Crystals and Nanoparticles. Journal of Physical Chemistry C, 2021, 125, 13264-13272.	3.1	9
234	CO Permeability and Wetting Behavior of Ionic Liquids on Pt(111): An IRAS and PM-IRAS Study from Ultrahigh Vacuum to Ambient Pressure. Journal of Physical Chemistry C, 2021, 125, 15301-15315.	3.1	9

#	Article	IF	CITATIONS
235	Adsorption on Epitaxial Oxide Films as Model Systems for Heterogeneous Catalysis. , 1996, , 193-202.		9
236	Adsorption Motifs and Molecular Orientation at the Ionic Liquid/Noble Metal Interface: [C ₂ C ₁ Im][NTf ₂] on Pt(111). Langmuir, 2021, 37, 12596-12607.	3.5	9
237	Hydrogen activation on Pt–Sn nanoalloys supported on mixed Sn–Ce oxide films. Physical Chemistry Chemical Physics, 2014, 16, 13209.	2.8	8
238	Gluing Ionic Liquids to Oxide Surfaces: Chemical Anchoring of Functionalized Ionic Liquids by Vapor Deposition onto Cobalt(II) Oxide. Angewandte Chemie, 2017, 129, 9200-9204.	2.0	8
239	Reactive interaction of isopropanol with Co3O4(1 1 1) and Pt/Co3O4(1 1 1) model catalysts. Journal of Catalysis, 2021, 398, 171-184.	6.2	8
240	Model electrocatalysts for the oxidation of rechargeable electrofuels - carbon supported Pt nanoparticles prepared in UHV. Electrochimica Acta, 2021, 389, 138716.	5.2	8
241	Organic linkers on oxide surfaces: Adsorption and chemical bonding of phthalic anhydride on MgO(100). Surface Science, 2016, 646, 90-100.	1.9	7
242	Thermally Activated Selfâ€metalation of Carboxyâ€functionalized Porphyrin Films on MgO Nanocubes. ChemPhysChem, 2018, 19, 2272-2280.	2.1	7
243	Lowâ€Temperature Synthesis of Oxides in Ionic Liquids: Ozoneâ€Mediated Formation of Co ₃ O ₄ Nanoparticles Monitored by In Situ Infrared Spectroscopy. Advanced Materials Interfaces, 2019, 6, 1900890.	3.7	7
244	Cu carbonyls enhance the performance of Ru-based SILP water–gas shift catalysts: a combined <i>in situ</i> DRIFTS and DFT study. Catalysis Science and Technology, 2020, 10, 252-262.	4.1	7
245	Size Dependent CO Dissociation on Rh Particles Supported on Thin Alumina Films. Springer Series in Solid-state Sciences, 1996, , 210-216.	0.3	7
246	Improving the Performance of Supported Ionic Liquid Phase Catalysts for the Ultra-Low-Temperature Water Gas Shift Reaction Using Organic Salt Additives. ACS Catalysis, 2022, 12, 5661-5672.	11.2	7
247	In-situ-Schwingungsspektroskopie zur Untersuchung der Aktivitäund Adsorbatplatzbesetzung von Katalysator-Nanopartikeln. Angewandte Chemie, 2003, 115, 3143-3147.	2.0	6
248	Model studies in heterogeneous catalysis at the microscopic level: from the structure and composition of surfaces to reaction kinetics. Mikrochimica Acta, 2006, 156, 9-20.	5.0	6
249	Model NO _{<i>x</i>} Storage Materials at Realistic NO ₂ Pressures. ChemCatChem, 2009, 1, 318-325.	3.7	6
250	Dehydrogenation of Liquid Organic Hydrogen Carriers on Supported Pd Model Catalysts: Carbon Incorporation Under Operation Conditions. Catalysis Letters, 2018, 148, 2901-2910.	2.6	6
251	Molecular anchoring to oxide surfaces in ultrahigh vacuum and in aqueous electrolytes: phosphonic acids on atomically-defined cobalt oxide. Physical Chemistry Chemical Physics, 2019, 21, 23364-23374.	2.8	6
252	Electrochemically Triggered Energy Release from an Azothiopheneâ€Based Molecular Solar Thermal System. ChemSusChem, 2022, 15, .	6.8	6

#	Article	IF	CITATIONS
253	Steering the formation of supported Pt–Sn nanoalloys by reactive metal–oxide interaction. RSC Advances, 2016, 6, 85688-85697.	3.6	5
254	ZnO Nanoparticle Formation from the Molecular Precursor [MeZnO <i>t</i> Bu] ₄ by Ozone Treatment in Ionic Liquids: inâ€situ Vibrational Spectroscopy in an Ultrahigh Vacuum Environment. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2017, 643, 31-40.	1.2	5
255	Phosphonic Acids on Well-Ordered CoO Surfaces: The Binding Motif Depends on the Surface Structure. Journal of Physical Chemistry C, 2018, 122, 16221-16233.	3.1	5
256	Metastability of palladium carbide nanoparticles during hydrogen release from liquid organic hydrogen carriers. Physical Chemistry Chemical Physics, 2021, 23, 1371-1380.	2.8	5
257	Interaction between Ionic Liquids and a Pt(111) Surface Probed by Coadsorbed CO as a Test Molecule. Journal of Physical Chemistry Letters, 2021, 12, 10079-10085.	4.6	5
258	Disproportionation of Nitric Oxide at a Surfaceâ€Bound Nickel Porphyrinoid. Angewandte Chemie - International Edition, 2022, 61, .	13.8	4
259	Chemistry at surfaces. Chemical Society Reviews, 2008, 37, 2153.	38.1	3
260	Model Systems for Heterogeneous Catalysis: Quo Vadis Surface Science?. Fundamental and Applied Catalysis, 2002, , 103-145.	0.9	3
261	From Real World Catalysis to Surface Science and Back: Can Nanoscience Help to Bridge the Gap?. , 2003, , 65-92.		3
262	Adsorption of D ₂ O and CO on Co ₃ O ₄ (111): Water Stabilizes Coadsorbed CO. Journal of Physical Chemistry C, 2021, 125, 26785-26792.	3.1	3
263	Pt–CeO2 Catalysts for Fuel Cell Applications: From Surface Science to Electrochemistry. , 2018, , 189-201.		2
264	The Role of Defects in the Photoconversion of 2-Propanol on Rutile Titania: Operando Spectroscopy Combined with Elementary Studies. Journal of Catalysis, 2022, , .	6.2	2
265	Redox-mediated C–C bond scission in alcohols adsorbed on CeO _{2â^' x} thin films. Journal of Physics Condensed Matter, 2022, 34, 194002.	1.8	2
266	SelektivitÄ u skontrolle in elektrokatalytischen Oxidationsreaktionen durch Ionische Flüssigkeiten. Angewandte Chemie, 2022, 134, .	2.0	2
267	A combined rotating disk electrode–surface x-ray diffraction setup for surface structure characterization in electrocatalysis. Review of Scientific Instruments, 2022, 93, .	1.3	2
268	Model Studies on the Ozoneâ€Mediated Synthesis of Cobalt Oxide Nanoparticles from Dicobalt Octacarbonyl in Ionic Liquids. ChemistryOpen, 2021, 10, 141-152.	1.9	1
269	Anchoring of porphyrins on atomically defined cobalt oxide: In-situ infrared spectroscopy at the electrified solid/liquid interface. Surface Science, 2022, 718, 122013.	1.9	1
270	Adsorption and Reaction of NH ₃ on Rutile TiO ₂ (110): An STM Study. Journal of Physical Chemistry C, 2022, 126, 6590-6600.	3.1	1

#	Article	IF	CITATIONS
271	Supraparticles for Bareâ€Eye H ₂ Indication and Monitoring: Design, Working Principle, and Molecular Mobility (Adv. Funct. Mater. 22/2022). Advanced Functional Materials, 2022, 32, .	14.9	1
272	Model Systems for Heterogeneous Catalysis: Quo Vadis Surface Science?. ChemInform, 2003, 34, no.	0.0	0
273	Reaction Kinetics on Model Catalysts: Molecular Beam Methods and Time-Resolved Vibrational Spectroscopy. ChemInform, 2005, 36, no.	0.0	Ο
274	Inside Cover: Surface-Functionalized Ionic Liquid Crystal-Supported Ionic Liquid Phase Materials: Ionic Liquid Crystals in Mesopores (ChemPhysChem 18/2011). ChemPhysChem, 2011, 12, 3486-3486.	2.1	0
275	Thin Films: Areaâ€Selective Growth of HfS ₂ Thin Films via Atomic Layer Deposition at Low Temperature (Adv. Mater. Interfaces 23/2020). Advanced Materials Interfaces, 2020, 7, 2070130.	3.7	Ο
276	Disproportionation of Nitric Oxide at a Surfaceâ€Bound Nickel Porphyrinoid. Angewandte Chemie, 0, , .	2.0	0