Christoph Sotriffer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9437827/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	PROTAC-mediated degradation reveals a non-catalytic function of AURORA-A kinase. Nature Chemical Biology, 2020, 16, 1179-1188.	8.0	73
2	Highly Selective Butyrylcholinesterase Inhibitors with Tunable Duration of Action by Chemical Modification of Transferable Carbamate Units Exhibit Pronounced Neuroprotective Effect in an Alzheimer's Disease Mouse Model. Journal of Medicinal Chemistry, 2019, 62, 9116-9140.	6.4	59
3	Melatonin receptor ligands: A pharmacoâ€chemical perspective. Journal of Pineal Research, 2020, 69, e12672.	7.4	39
4	Design, Synthesis, and Evaluation of WD-Repeat-Containing Protein 5 (WDR5) Degraders. Journal of Medicinal Chemistry, 2021, 64, 10682-10710.	6.4	38
5	Docking of Covalent Ligands: Challenges and Approaches. Molecular Informatics, 2018, 37, e1800062.	2.5	35
6	Melatonin- and Ferulic Acid-Based HDAC6 Selective Inhibitors Exhibit Pronounced Immunomodulatory Effects <i>In Vitro</i> and Neuroprotective Effects in a Pharmacological Alzheimer's Disease Mouse Model. Journal of Medicinal Chemistry, 2021, 64, 3794-3812.	6.4	34
7	Dissecting the Specificity of Adenosyl Sulfamate Inhibitors Targeting the Ubiquitin-Activating Enzyme. Structure, 2017, 25, 1120-1129.e3.	3.3	30
8	Aminobenzimidazoles and Structural Isomers as Templates for Dualâ€Acting Butyrylcholinesterase Inhibitors and <i>h</i> CB ₂ R Ligands To Combat Neurodegenerative Disorders. ChemMedChem, 2016, 11, 1270-1283.	3.2	28
9	Elucidating the Molecular Basis for Inhibitory Neurotransmission Regulation by Artemisinins. Neuron, 2019, 101, 673-689.e11.	8.1	24
10	Photoswitchable Pseudoirreversible Butyrylcholinesterase Inhibitors Allow Optical Control of Inhibition <i>in Vitro</i> and Enable Restoration of Cognition in an Alzheimer's Disease Mouse Model upon Irradiation. Journal of the American Chemical Society, 2022, 144, 3279-3284.	13.7	22
11	Molecular Insights into Site-Specific Interferon-α2a Bioconjugates Originated from PEG, LPG, and PEtOx. Biomacromolecules, 2021, 22, 4521-4534.	5.4	21
12	Autoinhibition Mechanism of the Ubiquitin-Conjugating Enzyme UBE2S by Autoubiquitination. Structure, 2019, 27, 1195-1210.e7.	3.3	20
13	Novel bipharmacophoric inhibitors of the cholinesterases with affinity to the muscarinic receptors M ₁ and M ₂ . MedChemComm, 2017, 8, 1346-1359.	3.4	10
14	How To Design Selective Ligands for Highly Conserved Binding Sites: A Case Study Using <i>N</i> -Myristoyltransferases as a Model System. Journal of Medicinal Chemistry, 2020, 63, 2095-2113.	6.4	10
15	Tacrine-xanomeline and tacrine-iperoxo hybrid ligands: Synthesis and biological evaluation at acetylcholinesterase and M1 muscarinic acetylcholine receptors. Bioorganic Chemistry, 2020, 96, 103633.	4.1	10
16	Oxime Ethers of (E)-11-lsonitrosostrychnine as Highly Potent Glycine Receptor Antagonists. Journal of Natural Products, 2016, 79, 2997-3005.	3.0	8
17	Structural Basis of Substrate Recognition and Covalent Inhibition of Cdu1 from <i>Chlamydia trachomatis</i> . ChemMedChem, 2018, 13, 2014-2023.	3.2	8
18	Controlling Supramolecular Structures of Drugs by Light. Molecular Pharmaceutics, 2020, 17, 4704-4708.	4.6	7

#	Article	IF	CITATIONS
19	11-Aminostrychnine and <i>N</i> -(Strychnine-11-yl)propionamide: Synthesis, Configuration, and Pharmacological Evaluation at Glycine Receptors. Journal of Natural Products, 2019, 82, 2332-2336.	3.0	4
20	A Long Residence Time Enoyl-Reductase Inhibitor Explores an Extended Binding Region with Isoenzyme-Dependent Tautomer Adaptation and Differential Substrate-Binding Loop Closure. ACS Infectious Diseases, 2021, 7, 746-758.	3.8	4
21	Predicting Bile and Lipid Interaction for Drug Substances. Molecular Pharmaceutics, 2022, 19, 2868-2876.	4.6	4
22	Extending the Scope of GTFR Glucosylation Reactions with Tosylated Substrates for Rare Sugars Synthesis. ChemBioChem, 2017, 18, 2012-2015.	2.6	1
23	C-2-Linked Dimeric Strychnine Analogues as Bivalent Ligands Targeting Glycine Receptors. Journal of Natural Products, 2021, 84, 382-394.	3.0	1
24	Activity-based classification circumvents affinity prediction problems for pyrrolidine carboxamide inhibitors of InhA. Journal of Molecular Graphics and Modelling, 2018, 80, 76-84.	2.4	0