James S Wilkinson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9437205/publications.pdf Version: 2024-02-01

LAMES S WULKINSON

#	Article	IF	CITATIONS
1	Optical fiber nanowires and microwires: fabrication and applications. Advances in Optics and Photonics, 2009, 1, 107.	12.1	311
2	Waveguide surface plasmon resonance sensors. Sensors and Actuators B: Chemical, 1995, 29, 261-267.	4.0	255
3	Integrated optical Mach-Zehnder biosensor. Journal of Lightwave Technology, 1998, 16, 583-592.	2.7	219
4	Selective excitation of whispering gallery modes in a novel bottle microresonator. Optics Express, 2009, 17, 11916.	1.7	161
5	Optical manipulation of microspheres along a subwavelength optical wire. Optics Letters, 2007, 32, 3041.	1.7	144
6	A new masking technology for deep glass etching and its microfluidic application. Sensors and Actuators A: Physical, 2004, 115, 476-482.	2.0	141
7	Optofluidic integration for microanalysis. Microfluidics and Nanofluidics, 2008, 4, 53-79.	1.0	132
8	Optical biosensors based on refractometric sensing schemes: A review. Biosensors and Bioelectronics, 2019, 144, 111693.	5.3	130
9	Sorting of polystyrene microspheres using a Y-branched optical waveguide. Optics Express, 2005, 13, 1.	1.7	124
10	Determination of simazine in water samples by waveguide surface plasmon resonance. Analytica Chimica Acta, 1997, 338, 109-117.	2.6	120
11	Design and theoretical evaluation of a novel microfluidic device to be used for PCR. Journal of Micromechanics and Microengineering, 2003, 13, S125-S130.	1.5	119
12	Hollow-bottle optical microresonators. Optics Express, 2011, 19, 20773.	1.7	117
13	Extracellular Vesicle Flow Cytometry Analysis and Standardization. Frontiers in Cell and Developmental Biology, 2017, 5, 78.	1.8	101
14	Theory and modelling of optical waveguide sensors utilising surface plasmon resonance. Sensors and Actuators B: Chemical, 1999, 54, 66-73.	4.0	92
15	Automated Water Analyser Computer Supported System (AWACSS). Biosensors and Bioelectronics, 2005, 20, 1509-1519.	5.3	90
16	Automated Water Analyser Computer Supported System (AWACSS) Part I: Project objectives, basic technology, immunoassay development, software design and networking. Biosensors and Bioelectronics, 2005, 20, 1499-1508.	5.3	86
17	Chalcogenide glass microspheres; their production, characterization and potential. Optics Express, 2007, 15, 17542.	1.7	84
18	Integrated optical surface plasmon resonance immunoprobe for simazine detection. Biosensors and Bioelectronics, 1999, 14, 377-386.	5.3	82

#	Article	IF	CITATIONS
19	Determination of nonlinear refractive index in a Ta2O5 rib waveguide using self-phase modulation. Optics Express, 2004, 12, 5110.	1.7	79
20	Germanium Mid-Infrared Photonic Devices. Journal of Lightwave Technology, 2017, 35, 624-630.	2.7	76
21	Germanium-on-silicon waveguides operating at mid-infrared wavelengths up to 85 μm. Optics Express, 2017, 25, 27431.	1.7	75
22	Propulsion of gold nanoparticles on optical waveguides. Optics Communications, 2002, 208, 117-124.	1.0	74
23	A waveguide-coupled surface-plasmon sensor for an aqueous environment. Sensors and Actuators B: Chemical, 1994, 22, 75-81.	4.0	71
24	Whispering gallery mode spectra of channel waveguide coupled microspheres. Optics Express, 2008, 16, 11066.	1.7	71
25	Surface transport and stable trapping of particles and cells by an optical waveguide loop. Lab on A Chip, 2012, 12, 3436.	3.1	69
26	Erbium-doped ion-exchanged waveguide lasers in BK-7 glass. IEEE Photonics Technology Letters, 1992, 4, 542-544.	1.3	68
27	Optical propulsion of microspheres along a channel waveguide produced by Cs+ ion-exchange in glass. Optics Communications, 2004, 239, 227-235.	1.0	67
28	Channel waveguide laser at 1 μm in Yb-indiffused LiNbO_3. Optics Letters, 1995, 20, 1477.	1.7	63
29	An optoelectrochemical thin-film chlorine sensor employing evanescent fields on planar optical waveguides. Analytical Chemistry, 1992, 64, 651-655.	3.2	62
30	Detection of glucose via electrochemiluminescence in a thin-layer cell with a planar optical waveguide. Measurement Science and Technology, 1995, 6, 1325-1328.	1.4	62
31	Optical immunoprobe development for multiresidue monitoring in water. Analytica Chimica Acta, 1998, 362, 69-79.	2.6	61
32	Phase interrogation of an integrated optical SPR sensor. Sensors and Actuators B: Chemical, 2004, 97, 114-121.	4.0	61
33	Fabrication of Submicrometer High Refractive Index Tantalum Pentoxide Waveguides for Optical Propulsion of Microparticles. IEEE Photonics Technology Letters, 2009, 21, 1408-1410.	1.3	59
34	Chalcogenide glass microsphere laser. Optics Express, 2010, 18, 26720.	1.7	59
35	FCM _{PASS} Software Aids Extracellular Vesicle Light Scatter Standardization. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2020, 97, 569-581.	1.1	58
36	Optical excitation and probing of whispering gallery modes in bottle microresonators: potential for all-fiber add–drop filters. Optics Letters, 2010, 35, 1893.	1.7	57

#	Article	IF	CITATIONS
37	lon-exchanged Er/Yb waveguide laser at 1.5 Âμm pumped by laser diode. Electronics Letters, 1995, 31, 1345-1346.	0.5	56
38	Indium tin oxide overlayered waveguides for sensor applications. Applied Optics, 1997, 36, 7066.	2.1	56
39	Integrated optical fluorescence multisensor for water pollution. Optics Express, 2005, 13, 1124.	1.7	55
40	Forces on a Rayleigh particle in the cover region of a planar waveguide. Journal of Lightwave Technology, 2000, 18, 388-400.	2.7	54
41	Integrated optical dual Mach–Zehnder interferometer sensor. Sensors and Actuators B: Chemical, 2002, 87, 250-257.	4.0	51
42	Photosensitivity of ion-exchanged Er-doped phosphate glass using 248nm excimer laser radiation. Optics Express, 2004, 12, 3131.	1.7	48
43	Continuous-wave and Q-switched Tm-doped KY(WO_4)_2 planar waveguide laser at 184 µm. Optics Express, 2011, 19, 1449.	1.7	46
44	Integrated Nd-doped borosilicate glass microsphere laser. Optics Letters, 2011, 36, 73.	1.7	45
45	Sensitivity enhancement of integrated optical sensors by use of thin high-index films. Applied Optics, 1999, 38, 6036.	2.1	44
46	Electrochemiluminescence detection of glucose oxidase as a model for flow injection immunoassays. Biosensors and Bioelectronics, 1996, 11, 805-810.	5.3	43
47	Integrated optical waveguide-based fluorescent immunosensor for fast and sensitive detection of microcystin-LR in lakes: Optimization and Analysis. Scientific Reports, 2017, 7, 3655.	1.6	43
48	Tunable coupled-cavity waveguide laser at room temperature in Nd-diffused Ti:LiNbO_3. Optics Letters, 1994, 19, 1541.	1.7	39
49	Partial discharge on-line monitoring for hv cable systems using electrooptic modulators. IEEE Transactions on Dielectrics and Electrical Insulation, 2004, 11, 861-869.	1.8	39
50	Complex refractive index spectra of whole blood and aqueous solutions of anticoagulants, analgesics and buffers in the mid-infrared. Scientific Reports, 2017, 7, 7356.	1.6	39
51	Optoelectrochemical transduction on planar optical waveguides. Journal of Lightwave Technology, 1992, 10, 693-699.	2.7	38
52	Indium tin oxide films by sequential evaporation. Thin Solid Films, 1990, 189, 227-233.	0.8	37
53	High index contrast photonic platforms for on-chip Raman spectroscopy. Optics Express, 2019, 27, 23067.	1.7	37
54	Ti:Sapphire waveguide lasers. Laser Physics Letters, 2007, 4, 560-571.	0.6	36

#	Article	IF	CITATIONS
55	Waveguide lasers operating at 1084 nm in neodymium-diffused lithium niobate. IEEE Photonics Technology Letters, 1992, 4, 852-855.	1.3	35
56	Structural and optical properties of yttrium oxide thin films for planar waveguiding applications. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2010, 28, 1388-1392.	0.9	35
57	Separation of photonic crystal waveguides modes using femtosecond time-of-flight. Applied Physics Letters, 2002, 81, 3927-3929.	1.5	34
58	Optical quality ZnSe films and low loss waveguides on Si substrates for mid-infrared applications. Optical Materials Express, 2017, 7, 712.	1.6	34
59	Neodymium-doped tantalum pentoxide waveguide lasers. IEEE Journal of Quantum Electronics, 2005, 41, 1565-1573.	1.0	33
60	Velocity distribution of Gold nanoparticles trapped on an optical waveguide. Optics Express, 2005, 13, 3896.	1.7	31
61	Waveguide surface plasmon resonance sensing: Electrochemical desorption of alkane thiol monolayers. Sensors and Actuators B: Chemical, 2006, 117, 253-260.	4.0	30
62	Flexible Acoustic Particle Manipulation Device with Integrated Optical Waveguide for Enhanced Microbead Assays. Analytical Sciences, 2009, 25, 285-291.	0.8	28
63	Surface and waveguide collection of Raman emission in waveguide-enhanced Raman spectroscopy. Optics Letters, 2016, 41, 4146.	1.7	28
64	Optical Propulsion of Individual and Clustered Microspheres along Sub-Micron Optical Wires. Japanese Journal of Applied Physics, 2008, 47, 6716-6718.	0.8	27
65	Mirrorless buried waveguide laser in monoclinic double tungstates fabricated by a novel combination of ion milling and liquid phase epitaxy. Optics Express, 2010, 18, 26937.	1.7	27
66	Integrated diode detector and optical fibres forin situdetection within micromachined polymerase chain reaction chips. Journal of Micromechanics and Microengineering, 2001, 11, 329-333.	1.5	25
67	High index contrast Er:Ta2O5 waveguide amplifier on oxidised silicon. Optics Communications, 2012, 285, 124-127.	1.0	25
68	Diffused Ti:sapphire channel-waveguide lasers. Journal of the Optical Society of America B: Optical Physics, 2004, 21, 1452.	0.9	24
69	Erbium-Doped Waveguide Laser in Tantalum Pentoxide. IEEE Photonics Technology Letters, 2010, 22, 1571-1573.	1.3	24
70	Transmittance and surface intensity in 3D composite plasmonic waveguides. Optics Express, 2015, 23, 14407.	1.7	24
71	Chalcogenide glass waveguides with paper-based fluidics for mid-infrared absorption spectroscopy. Optics Letters, 2018, 43, 2913.	1.7	24
72	Position-dependent coupling between a channel waveguide and a distorted microsphere resonator. Journal of Applied Physics, 2010, 107, 053105.	1.1	22

#	Article	IF	CITATIONS
73	Waveguide Absorption Spectroscopy of Bovine Serum Albumin in the Mid-Infrared Fingerprint Region. ACS Sensors, 2019, 4, 1749-1753.	4.0	22
74	Structural characteristics and optical properties of plasma assisted reactive magnetron sputtered dielectric thin films for planar waveguiding applications. Surface and Coatings Technology, 2012, 206, 4930-4939.	2.2	21
75	Fabrication and characterization of high-contrast mid-infrared GeTe_4 channel waveguides. Optics Letters, 2015, 40, 2016.	1.7	21
76	Permanent holographic recording in indium oxide thin films using 193 nm excimer laser radiation. Applied Physics A: Materials Science and Processing, 1999, 69, 333-336.	1.1	19
77	Waveguide Enhanced Raman Spectroscopy for Biosensing: A Review. ACS Sensors, 2021, 6, 2025-2045.	4.0	19
78	Continuous measurement of blood hydration during ultrafiltration using optical methods. Medical and Biological Engineering and Computing, 1987, 25, 317-323.	1.6	18
79	Gratings in indium oxide film overlayers on ion-exchanged waveguides by excimer laser micromachining. Applied Physics Letters, 2001, 78, 694-696.	1.5	18
80	Nd:Ta2O5 rib waveguide lasers. Applied Physics Letters, 2005, 86, 021110.	1.5	18
81	Efficient blue upconversion emission due to confined radiative energy transfer in Tm3+–Nd3+ co-doped Ta2O5 waveguides under infrared-laser excitation. Optics Communications, 2008, 281, 3691-3694.	1.0	18
82	Squeezing red blood cells on an optical waveguide to monitor cell deformability during blood storage. Analyst, The, 2015, 140, 223-229.	1.7	18
83	Integrated Q-switched multiple-cavity glass waveguide laser. IEEE Photonics Technology Letters, 1992, 4, 235-237.	1.3	17
84	Optical microdiscus resonators by flattening microspheres. Applied Physics Letters, 2012, 101, 071106.	1.5	17
85	Spectroscopy, Modeling, and Performance of Erbium-Doped Ta\$_{2}\$O\$_{5}\$ Waveguide Amplifiers. Journal of Lightwave Technology, 2012, 30, 1455-1462.	2.7	17
86	Micromanipulation of InP lasers with optoelectronic tweezers for integration on a photonic platform. Optics Express, 2016, 24, 18163.	1.7	17
87	Electric-field-induced periodic domain inversion in Nd3+-diffused LiNbO3. Electronics Letters, 1994, 30, 2135-2136.	0.5	16
88	Relief gratings on Er/Yb-doped borosilicate glasses and waveguides by excimer laser ablation. Applied Surface Science, 2000, 153, 200-210.	3.1	16
89	Perspective on Thin Film Waveguides for on-Chip Mid-Infrared Spectroscopy of Liquid Biochemical Analytes. Analytical Chemistry, 2020, 92, 10891-10901.	3.2	16
90	Channel waveguides and Mach-Zehnder structures on RbTiOPO_4 by Cs^+ ion exchange. Optical Materials Express, 2015, 5, 1183.	1.6	14

#	Article	IF	CITATIONS
91	Waveguiding and photoluminescence in Er3+-doped Ta2O5 planar waveguides. Journal of Luminescence, 2009, 129, 812-816.	1.5	13
92	Lead silicate glass microsphere resonators with absorption-limited Q. Applied Physics Letters, 2011, 98,	1.5	13
93	Waveguide lasers in ytterbium-doped tantalum pentoxide on silicon. Optics Letters, 2015, 40, 2549.	1.7	13
94	Neodymium-doped ion-exchanged waveguide lasers in BK-7 glass. Journal of Lightwave Technology, 1993, 11, 1550-1558.	2.7	12
95	Non-invasive, optical measurement of absolute blood volume in hemodialysis patients. Kidney International, 1996, 49, 255-260.	2.6	12
96	Waveguide surface plasmon resonance sensor for electrochemically controlled surface reactions. Applied Optics, 2001, 40, 6242.	2.1	12
97	UV Photosensitivity in a <tex>\$hboxTa_2 hboxO_5\$</tex> Rib Waveguide Mach–Zehnder Interferometer. IEEE Photonics Technology Letters, 2004, 16, 1522-1524.	1.3	12
98	Investigation of neodymium-diffused yttrium vanadate waveguides by confocal microluminescence. Journal of Applied Physics, 2008, 103, .	1.1	12
99	Integrated platform based on high refractive index contrast waveguide for optical guiding and sorting. Proceedings of SPIE, 2010, , .	0.8	12
100	Supercontinuum generation in tantalum pentoxide waveguides for pump wavelengths in the 900 nm to 1500 nm spectral region. Optics Express, 2020, 28, 32173.	1.7	12
101	Artificial neural networks for material parameter extraction in terahertz time-domain spectroscopy. Optics Express, 2022, 30, 15583.	1.7	12
102	Biosensors for unattended, cost-effective and continuous monitoring of environmental pollution: Automated Water Analyser Computer Supported System (AWACSS) and River Analyser (RIANA). International Journal of Environmental Analytical Chemistry, 2005, 85, 837-852.	1.8	11
103	Multi-modal particle manipulator to enhance bead-based bioassays. Ultrasonics, 2010, 50, 235-239.	2.1	11
104	Ge on Si waveguide mid-infrared absorption spectroscopy of proteins and their aggregates. Biomedical Optics Express, 2020, 11, 4714.	1.5	11
105	Optoelectrochemical sensor for lead based on electrochemically assisted solvent extraction. Sensors and Actuators B: Chemical, 2000, 63, 115-121.	4.0	10
106	Characterization of secondary silver ion exchange in potassium-ion-exchanged glass waveguides. Journal Physics D: Applied Physics, 1994, 27, 235-240.	1.3	8
107	A non-invasive continuous method of measuring blood volume during haemodialysis using optical techniques. Medical Engineering and Physics, 1996, 18, 105-109.	0.8	8
108	High-contrast GeTe4waveguides for mid-infrared biomedical sensing applications. , 2014, , .		8

#	Article	IF	CITATIONS
109	Optical coupling between a self-assembled microsphere grating and a rib waveguide. Applied Physics Letters, 2004, 84, 3513-3515.	1.5	7
110	An Experimental Comparison of Linear and Parabolic Tapered Waveguide Lasers and a Demonstration of Broad-Stripe Diode Pumping. Journal of Lightwave Technology, 2004, 22, 845-849.	2.7	7
111	Room temperature infrared-laser-induced upconversion in Nd3+ doped Ta2O5 waveguides. Chemical Physics Letters, 2006, 421, 198-204.	1.2	7
112	Diffusion of gallium in sapphire. Journal of the European Ceramic Society, 2006, 26, 2695-2698.	2.8	7
113	Multimode interference devices for focusing in microfluidic channels. Optics Letters, 2011, 36, 3067.	1.7	7
114	Integrated optical waveguides and inertial focussing microfluidics in silica for microflow cytometry applications. Journal of Micromechanics and Microengineering, 2016, 26, 105004.	1.5	7
115	Optimized design for grating-coupled waveguide-enhanced Raman spectroscopy. Optics Express, 2020, 28, 37226.	1.7	7
116	Modeling of Y-junction waveguide resonators. Journal of Lightwave Technology, 1992, 10, 1700-1707.	2.7	6
117	New Materials and Processes for Integrated Optics. Journal of the American Ceramic Society, 2002, 85, 1387-1390.	1.9	6
118	KY0.58Gd0.22Lu0.17Tm0.03(WO4)2 buried rib waveguide lasers. Optical Materials, 2011, 34, 475-480.	1.7	6
119	Spectroscopy of ytterbium-doped tantalum pentoxide rib waveguides on silicon. Optical Materials Express, 2014, 4, 1505.	1.6	6
120	Power Budget Analysis for Waveguide-Enhanced Raman Spectroscopy. Applied Spectroscopy, 2016, 70, 1384-1391.	1.2	6
121	Effect of sodium addition and thermal annealing on second-order optical nonlinearity in thermally poled amorphous Ta2O5 thin films. Journal of Applied Physics, 2019, 125, .	1.1	6
122	Spectroscopy of thulium-doped tantalum pentoxide waveguides on silicon. Optical Materials Express, 2020, 10, 2201.	1.6	6
123	Manipulating Spheres That Sink: Assembly of Micrometer Sized Glass Spheres for Optical Coupling. Langmuir, 2009, 25, 1872-1880.	1.6	5
124	Fluorescent lifetime of Er3+4I132 level in BK-7 borosilieate glass. Materials Letters, 1992, 14, 347-351.	1.3	4
125	Channel waveguides in ion-exchanged pyrex by direct UV writing. Optics Communications, 2004, 242, 109-114.	1.0	4
126	Demonstration of novel high-Q fibre WGM "Bottle" microresonators. , 2008, ,		4

#	Article	IF	CITATIONS
127	Kinoform microlenses for focusing into microfluidic channels. Optics Express, 2012, 20, 9442.	1.7	4
128	Study of waveguide background at visible wavelengths for on-chip nanoscopy. Optics Express, 2021, 29, 20735.	1.7	4
129	Integrated Switching Circuit for Low-Noise Self-Referenced Mid-Infrared Absorption Sensing Using Silicon Waveguides. IEEE Photonics Journal, 2021, 13, 1-10.	1.0	4
130	Photopatterning of DNA oligonucleotides on silicon surfaces with micron-scale dimensions. , 2004, , .		3
131	Whispering gallery mode excitation in borosilicate glass microspheres by K+ion-exchanged channel waveguide coupler. , 2006, 6101, 131.		3
132	Analysis of confinement effects on microstructured Ln^3+:KY_1-x-yGd_xLu_y(WO_4)_2 waveguides. Optical Materials Express, 2011, 1, 306.	1.6	3
133	The Effect of Haematocrit on Measurement of the Mid-Infrared Refractive Index of Plasma in Whole Blood. Biosensors, 2021, 11, 417.	2.3	3
134	Integrated optics-devices. Physics in Technology, 1983, 14, 190-193.	0.2	2
135	Diffusion of Neodymium into Sputtered Films of Tantalum Pentoxide. Journal of the American Ceramic Society, 2002, 85, 2581-2583.	1.9	2
136	GeTe4 channel waveguides for the mid-wave infrared spectral band. , 2014, , .		2
137	An optical fiber optofluidic particle aspirator. Applied Physics Letters, 2014, 105, .	1.5	2
138	A low-cost technique for adding microlasers to a silicon photonic platform. , 2016, , .		2
139	Monolithically-integrated cytometer for measuring particle diameter in the extracellular vesicle size range using multi-angle scattering. Lab on A Chip, 2020, 20, 1267-1280.	3.1	2
140	Integration of mid-infrared SOI photonics with microfluidics. , 2019, , .		2
141	A polarized brightness-enhanced Nd:Y/sub 3/Al/sub 5/O/sub l2/ planar waveguide laser. IEEE Photonics Technology Letters, 1998, 10, 1392-1394.	1.3	1
142	<title>Waveguide immunofluorescence sensor for water pollution analysis</title> . , 1998, , .		1
143	Integrated optical chemical and biochemical sensors. , 1999, , .		1
144	Generalized ultrafast dispersion scans of continuum generation induced by sub-50fs chirped pulses in highly nonlinear tapered planar waveguides. , 2005, 5714, 200.		1

#	Article	IF	CITATIONS
145	Optical Microdiscus Resonators. , 2012, , .		1
146	Robust Mode-Selection in Optical Bottle Microresonators. , 2012, , .		1
147	Modelling of a miniature mid-IR thermo-optic spectrometer on chip based on a GaAs/In0.49Ga0.51P waveguide platform. Optics Communications, 2021, 495, 127044.	1.0	1
148	Tantalum pentoxide waveguides and microresonators for VECSEL based frequency combs. , 2018, , .		1
149	Fabrication and optimization of Tantalum pentoxide waveguides for optical micro-propulsion. , 2010, , .		1
150	A Thulium-Doped Tantalum Pentoxide Waveguide Laser. , 2021, , .		1
151	Etchless pedestal chalcogenide waveguide platform for long-wave IR applications. Optical Materials Express, 2022, 12, 1154.	1.6	1
152	Cross-sectional transformers for the signal enhancement of intensity-based evanescent-field sensors. Sensors and Actuators B: Chemical, 1994, 22, 165-173.	4.0	0
153	<title>Integrated optical sensor system for beverage analysis</title> . , 1998, , .		0
154	Simultaneous SPR and electrochemical sensing of an alkane-thiol self-assembled monolayer (SAM): toward an optical biosensor. , 2004, 5502, 271.		0
155	Integrated optical immunofluorescence multisensor for river pollution. , 2004, , .		0
156	Manipulation of microparticles with integrated optics. , 2006, , .		0
157	Sub-micron period relief grating structures inscribed on erbium doped Ta <inf>2</inf> O <inf>5</inf> waveguides using 213 nm, 150 ps laser radiation. , 2009, , .		0
158	Whispering gallery modes in bottle microresonators. , 2009, , .		0
159	Novel fiber bottle microresonator add-drop filters. Proceedings of SPIE, 2010, , .	0.8	0
160	Optical waveguide devices for bioanalysis. , 2010, , .		0
161	Experimental and numerical study of trapping of cells on a waveguide. , 2011, , .		0
162	High-resolution broadly-tunable MOPA-based terahertz spectrometer to non-destructively probe and modulate protein electrodynamics. , 2013, , .		0

#	Article	IF	CITATIONS
163	Optical deformation of red blood cells trapped on a narrow waveguide. , 2014, , .		0
164	Wavelength division demultiplexer and integrated III-V semiconductor lasers on a silicon photonics platform with microbubble manipulation. , 2015, , .		0
165	Chalcogenide waveguides for mid-infrared biomedical sensing applications. , 2015, , .		Ο
166	Mid-infrared GeTe4waveguides on silicon with a ZnSe isolation layer. , 2015, , .		0
167	Photoluminescence of Tm-doped Ta <inf>2</inf> 0 <inf>5</inf> waveguides. , 2017, , .		Ο
168	Optical Quality ZnSe Films on Silicon for Mid-IR Waveguides. , 2016, , .		0
169	Group IV mid-infrared devices and circuits. , 2018, , .		0