Hidetaka Kaya

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9437033/publications.pdf Version: 2024-02-01

ΗΙΠΕΤΛΚΛ ΚΛΥΛ

#	Article	IF	CITATIONS
1	Knockout of Tobacco Homologs of Arabidopsis Multi-Antibiotic Resistance 1 Gene Confers a Limited Resistance to Aminoglycoside Antibiotics. International Journal of Molecular Sciences, 2022, 23, 2006.	4.1	3
2	Quantitative Analysis for ROS-Producing Activity and Regulation of Plant NADPH Oxidases in HEK293T Cells. Methods in Molecular Biology, 2022, , 107-122.	0.9	3
3	A Simple Heat Treatment Increases SpCas9-Mediated Mutation Efficiency in Arabidopsis. Plant and Cell Physiology, 2021, 62, 1676-1686.	3.1	14
4	An adenine base editor with expanded targeting scope using SpCas9â€ <scp>NG</scp> v1 in rice. Plant Biotechnology Journal, 2019, 17, 1476-1478.	8.3	52
5	Transient activity of the florigen complex during the floral transition in <i>Arabidopsis thaliana</i> . Development (Cambridge), 2019, 146, .	2.5	35
6	Comparative analysis of the reactive oxygen speciesâ€producing enzymatic activity of Arabidopsis <scp>NADPH</scp> oxidases. Plant Journal, 2019, 98, 291-300.	5.7	56
7	Genome editing in plants by engineered CRISPR–Cas9 recognizing NG PAM. Nature Plants, 2019, 5, 14-17.	9.3	154
8	Deletion of TLS polymerases promotes homologous recombination in <i>Arabidopsis</i> . Plant Signaling and Behavior, 2018, 13, e1483673.	2.4	3
9	A Split Staphylococcus aureus Cas9 as a Compact Genome-Editing Tool in Plants. Plant and Cell Physiology, 2017, 58, 643-649.	3.1	43
10	DNA Methylation Affects the Efficiency of Transcription Activator-Like Effector Nucleases-Mediated Genome Editing in Rice. Frontiers in Plant Science, 2017, 8, 302.	3.6	10
11	Efficient targeted mutagenesis of rice and tobacco genomes using Cpf1 from Francisella novicida. Scientific Reports, 2016, 6, 38169.	3.3	264
12	Highly specific targeted mutagenesis in plants using Staphylococcus aureus Cas9. Scientific Reports, 2016, 6, 26871.	3.3	112
13	<scp>FE</scp> , a phloemâ€specific Mybâ€related protein, promotes flowering through transcriptional activation of <i><scp>FLOWERING LOCUS</scp> T</i> and <i><scp>FLOWERING LOCUS</scp> T</i> <scp>INTERACTING PROTEIN</scp> 1. Plant Journal, 2015, 83, 1059-1068.	5.7	53
14	Apoplastic ROS production upon pollination by RbohH and RbohJ in Arabidopsis. Plant Signaling and Behavior, 2015, 10, e989050.	2.4	48
15	Ca ²⁺ -Activated Reactive Oxygen Species Production by <i>Arabidopsis</i> RbohH and RbohJ Is Essential for Proper Pollen Tube Tip Growth. Plant Cell, 2014, 26, 1069-1080.	6.6	243
16	A low temperature-inducible protein AtSRC2 enhances the ROS-producing activity of NADPH oxidase AtRbohF. Biochimica Et Biophysica Acta - Molecular Cell Research, 2013, 1833, 2775-2780.	4.1	84
17	The CBL-interacting protein kinase CIPK26 is a novel interactor of Arabidopsis NADPH oxidase AtRbohF that negatively modulates its ROS-producing activity in a heterologous expression system. Journal of Biochemistry, 2013, 153, 191-195.	1.7	69
18	Reactive oxygen species production and activation mechanism of the rice NADPH oxidase OsRbohB. Journal of Biochemistry, 2012, 152, 37-43.	1.7	36

HIDETAKA KAYA

#	Article	IF	CITATIONS
19	Protein phosphorylation is a prerequisite for the Ca2+-dependent activation of Arabidopsis NADPH oxidases and may function as a trigger for the positive feedback regulation of Ca2+ and reactive oxygen species. Biochimica Et Biophysica Acta - Molecular Cell Research, 2012, 1823, 398-405.	4.1	155
20	Local Positive Feedback Regulation Determines Cell Shape in Root Hair Cells. Science, 2008, 319, 1241-1244.	12.6	486
21	Synergistic Activation of the Arabidopsis NADPH Oxidase AtrbohD by Ca2+ and Phosphorylation. Journal of Biological Chemistry, 2008, 283, 8885-8892.	3.4	415
22	Chromatin assembly factor 1 ensures the stable maintenance of silent chromatin states in Arabidopsis. Genes To Cells, 2006, 11, 153-162.	1.2	81
23	Increased frequency of homologous recombination and T-DNA integration in Arabidopsis CAF-1 mutants. EMBO Journal, 2006, 25, 5579-5590.	7.8	158
24	Cell-cycle-dependent regulation of oxidative stress responses and Ca2+ permeable channels NtTPC1A/B in tobacco BY-2 cells. Biochemical and Biophysical Research Communications, 2005, 336, 1259-1267.	2.1	38
25	BRU1, a novel link between responses to DNA damage and epigenetic gene silencing in Arabidopsis. Genes and Development, 2004, 18, 782-793.	5.9	197
26	FASCIATA Genes for Chromatin Assembly Factor-1 in Arabidopsis Maintain the Cellular Organization of Apical Meristems. Cell, 2001, 104, 131-142.	28.9	446
27	hosoba toge toge , a Syndrome Caused by a Large Chromosomal Deletion Associated with a T-DNA Insertion in Arabidopsis. Plant and Cell Physiology, 2000, 41, 1055-1066.	3.1	37
28	Identification of three kinds of mutually related composite elements conferring S phase-specific transcriptional activation. Plant Journal, 1999, 18, 611-623.	5.7	21
29	A Pair of Related Genes with Antagonistic Roles in Mediating Flowering Signals. Science, 1999, 286, 1960-1962.	12.6	1,192
30	The flowering-time geneFT and regulation of flowering inArabidopsis. Journal of Plant Research, 1998, 111, 277-281.	2.4	14
31	Cooperation of two distinct cis-acting elements is necessary for the S phase-specific activation of the wheat histone H3 promoter. Plant Journal, 1997, 11, 1219-1225.	5.7	17