List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9436521/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Increased Prevalence of Minocycline-Resistant <i>Staphylococcus epidermidis</i> with <i>tet</i> (M) by Tetracycline Use for Acne Treatment. Microbial Drug Resistance, 2022, 28, 861-866.	2.0	2
2	In vitro anti-biofilm effect of anti-methicillin-resistant Staphylococcus aureus (anti-MRSA) agents against the USA300 clone. Journal of Global Antimicrobial Resistance, 2021, 24, 63-71.	2.2	14
3	Possible Dissemination of a Panton-Valentine Leukocidin–Positive Livestock-Associated Methicillin-Resistant <i>Staphylococcus aureus</i> CC398 Clone in Tokyo, Japan. Japanese Journal of Infectious Diseases, 2021, 74, 82-84.	1.2	8
4	Prevalence of antimicrobial-resistant staphylococci in nares and affected sites of pet dogs with superficial pyoderma. Journal of Veterinary Medical Science, 2021, 83, 214-219.	0.9	8
5	In vitro growth-inhibitory effects of Portulaca oleracea L. formulation on intestinal pathogens. Access Microbiology, 2021, 3, 000208.	0.5	4
6	Increased prevalence of doxycycline lowâ€susceptible Cutibacterium acnes isolated from acne patients in Japan caused by antimicrobial use and diversification of tetracycline resistance factors. Journal of Dermatology, 2021, 48, 1365-1371.	1.2	9
7	Comparison of the bactericidal effects of quinolones against low-susceptible Haemophilus influenzae. Journal of Medical Microbiology, 2021, 70, .	1.8	0
8	Antimicrobial activity and additive effect of the modified Gingyo-san with antimicrobials against Helicobacter pylori. Journal of Infection and Chemotherapy, 2021, 27, 957-961.	1.7	1
9	Dissemination of quinolone low-susceptible Haemophilus influenzae ST422 in Tokyo, Japan. Journal of Infection and Chemotherapy, 2021, 27, 962-966.	1.7	4
10	Chinese herbal medicines and nutraceuticals inhibit Pseudomonas aeruginosa biofilm formation. Access Microbiology, 2021, 3, 000254.	0.5	1
11	Cutibacterium acnes phylogenetic type IC and II isolated from patients with non-acne diseases exhibit high-level biofilm formation. International Journal of Medical Microbiology, 2021, 311, 151538.	3.6	11
12	Trends in Panton-Valentine Leukocidin (PVL)-Positive Methicillin-Resistant <i>Staphylococcus aureus</i> (MRSA) in Outpatients of a University Hospital. Iryo Yakugaku (Japanese Journal of) Tj ETQq0 0 (0 r gƁ∏ /Ov	erlock 10 Tf 5
13	An outbreak of severe infectious diseases caused by methicillin-resistant Staphylococcus aureus USA300 clone among hospitalized patients and nursing staff in a tertiary care university hospital. Journal of Infection and Chemotherapy, 2020, 26, 76-81.	1.7	23
14	β-Lactamase-non-producing ampicillin-resistant Haemophilus influenzae is acquiring multidrug resistance. Journal of Infection and Public Health, 2020, 13, 497-501.	4.1	31
15	Combination effects of modified Gingyo-san extract and antimicrobial agents. European Journal of Integrative Medicine, 2020, 33, 101016.	1.7	1
16	Detection of Panton–Valentine leukocidin-positive livestock-associated Staphylococcus aureus CC398 clone in a Vietnamese patient in Japan. Journal of Global Antimicrobial Resistance, 2020, 23, 72-73.	2.2	2
17	First isolation of an IMP-1 metallo-î ² -lactamase-producing Kluyvera ascorbata in Japan. Journal of Global Antimicrobial Resistance, 2020, 23, 228-231.	2.2	1
18	Current status of Panton–Valentine leukocidinâ€positive methicillinâ€resistant <i>Staphylococcus aureus</i> isolated from patients with skin and soft tissue infections in Japan. Journal of Dermatology, 2020, 47, 1280-1286.	1.2	23

#	Article	IF	CITATIONS
19	Whole-genome sequence of Haemophilus influenzae ST422 outbreak clone strain 2018-Y40 with low quinolone susceptibility isolated from a paediatric patient. Journal of Global Antimicrobial Resistance, 2020, 22, 759-761.	2.2	6
20	A novel community-acquired MRSA clone, USA300-LV/J, uniquely evolved in Japan. Journal of Antimicrobial Chemotherapy, 2020, 75, 3131-3134.	3.0	12
21	Phosphatidylinositol-specific phospholipase C enhances epidermal penetration by Staphylococcus aureus. Scientific Reports, 2020, 10, 17845.	3.3	7
22	Kampo medicines suppress the production of exfoliative toxins causing impetigo in Staphylococcus aureus. Journal of Dermatology, 2020, 47, 714-719.	1.2	2
23	Characterization of acne patients carrying clindamycinâ€resistant <i>Cutibacterium acnes</i> : A Japanese multicenter study. Journal of Dermatology, 2020, 47, 863-869.	1.2	20
24	pspK acquisition contributes to the loss of capsule in pneumococci: molecular characterisation of non-encapsulated pneumococci. Microbes and Infection, 2020, 22, 451-456.	1.9	4
25	Arthritis Caused by MRSA CC398 in a Patient without Animal Contact, Japan. Emerging Infectious Diseases, 2020, 26, 795-797.	4.3	16
26	A class A β-lactamase produced by borderline oxacillin-resistant Staphylococcus aureus hydrolyses oxacillin. Journal of Global Antimicrobial Resistance, 2020, 22, 244-247.	2.2	18
27	A risk as an infection route: Nasal colonization of methicillin-resistant Staphylococcus aureus USA300 clone among contact sport athletes in Japan. Journal of Infection and Chemotherapy, 2020, 26, 862-864.	1.7	9
28	Transferable Multidrug-Resistance Plasmid Carrying a Novel Macrolide-Clindamycin Resistance Gene, <i>erm</i> (50), in Cutibacterium acnes. Antimicrobial Agents and Chemotherapy, 2020, 64, .	3.2	24
29	First outbreak of Haemophilus influenzae clone ST422 with low susceptibility to quinolones in paediatric patients in Japan. Journal of Medical Microbiology, 2020, 69, 239-243.	1.8	8
30	Two Cases in which Tosufloxacin was Administered for Respiratory Infections that may have been Caused by <i>Haemophilus influenzae</i> less Susceptible to Quinolone. Iryo Yakugaku (Japanese) Tj ETQq0 0 0	rg ð1 1/Ove	rlæk 10 Tf 5
31	First Report of Fatal Infection Caused by Community-acquired Methicillin-resistant Staphylococcus aureus USA300 Clone in a Collegiate Athlete. JMA Journal, 2020, 3, 78-82.	0.8	4
32	Development of effective antimicrobial cocktails to prevent bacterial contamination of allograft tissues under low temperature conditions. Interactive Cardiovascular and Thoracic Surgery, 2019, 28, 128-136.	1.1	4
33	Emergence of Haemophilus influenzae with low susceptibility to quinolones and persistence in tosufloxacin treatment. Journal of Global Antimicrobial Resistance, 2019, 18, 104-108.	2.2	20
34	Relationship between quinolone use and resistance of <i>Staphylococcus epidermidis</i> in patients with acne vulgaris. Journal of Dermatology, 2019, 46, 782-786.	1.2	11
35	<i>Panax Notoginseng</i> Extract Possesses Significant Antibacterial Activity against Pathogenic Streptococci. Pharmacology, 2019, 103, 221-227.	2.2	10
36	Decreased Prevalence of <i>qacA</i> -Positive Methicillin-Resistant <i>Staphylococcus aureus</i> in Hospitalized Patients in Tokyo, Japan. Microbial Drug Resistance, 2019, 25, 1032-1040.	2.0	2

#	Article	IF	CITATIONS
37	Tokiinshi, a traditional Japanese medicine (Kampo), suppresses Panton-Valentine leukocidin production in the methicillin-resistant Staphylococcus aureus USA300 clone. PLoS ONE, 2019, 14, e0214470.	2.5	4
38	Shiunko and Chuoko, topical Kampo medicines, inhibit the expression of gehA encoding the extracellular lipase in Cutibacterium acnes. Journal of Dermatology, 2019, 46, 308-313.	1.2	8
39	Clonal change of methicillinâ€resistant <i>Staphylococcus aureus</i> isolated from patients with impetigo in Kagawa, Japan. Journal of Dermatology, 2019, 46, 301-307.	1.2	10
40	A case of acute septic arthritis of the hip joint caused by Panton-Valentine leukocidin-positive ST772 community-acquired methicillin-resistant Staphylococcus aureus. Journal of Infection and Chemotherapy, 2019, 25, 212-214.	1.7	3
41	Identification and detection of USA300 methicillin-resistant Staphylococcus aureus clones with a partial deletion in the ccrB2 gene on the type IV SCCmec element. Diagnostic Microbiology and Infectious Disease, 2019, 94, 86-87.	1.8	16
42	Evaluation of <i>in Vitro</i> Bactericidal Activity of 1.5% Olanexidine Gluconate, a Novel Biguanide Antiseptic Agent. Biological and Pharmaceutical Bulletin, 2019, 42, 512-515.	1.4	11
43	Isolation of multidrug-resistant Haemophilus influenzae harbouring multiple exogenous genes from a patient diagnosed with acute sinusitis. Journal of Infection and Chemotherapy, 2019, 25, 385-387.	1.7	6
44	Comparative analysis of methicillin-resistant Staphylococcus aureus isolated from outpatients of dermatology unit in hospitals and clinics. Journal of Infection and Chemotherapy, 2019, 25, 233-237.	1.7	8
45	Transconjugation of erm(X) conferring high-level resistance of clindamycin for Cutibacterium acnes. Journal of Medical Microbiology, 2019, 68, 26-30.	1.8	18
46	Fast-acting bactericidal activity of olanexidine gluconate against qacA/B-positive methicillin-resistant Staphylococcus aureus. Journal of Medical Microbiology, 2019, 68, 957-960.	1.8	9
47	Impact of the introduction of a 13-valent pneumococcal vaccine on pneumococcal serotypes in non-invasive isolates from 2007 to 2016 at a teaching hospital in Japan. Journal of Medical Microbiology, 2019, 68, 903-909.	1.8	10
48	Earlier generation quinolones can be useful in identifying Haemophilus influenzae strains with low susceptibility to quinolone isolated from paediatric patients. Journal of Medical Microbiology, 2019, 68, 1227-1232.	1.8	4
49	<i>Propionibacterium acnes</i> Has Low Susceptibility to Chlorhexidine Digluconate. Surgical Infections, 2018, 19, 298-302.	1.4	15
50	Change in genotype of methicillin-resistant Staphylococcus aureus (MRSA) affects the antibiogram of hospital-acquired MRSA. Journal of Infection and Chemotherapy, 2018, 24, 563-569.	1.7	36
51	Specific clones of Staphylococcus lugdunensis may be associated with colon carcinoma. Journal of Infection and Public Health, 2018, 11, 39-42.	4.1	13
52	Longâ€ŧerm administration of oral macrolides for acne treatment increases macrolideâ€resistant <i>Propionibacterium acnes</i> . Journal of Dermatology, 2018, 45, 340-343.	1.2	12
53	651. Non-encapsulation of Pneumococci as a Potential Evasion Mechanism From Vaccines. Open Forum Infectious Diseases, 2018, 5, S236-S236.	0.9	0
54	Characterization of SCCmec type IV methicillin-resistant Staphylococcus aureus clones increased in Japanese hospitals. Journal of Medical Microbiology, 2018, 67, 769-774.	1.8	22

#	Article	IF	CITATIONS
55	Antimicrobial susceptibility and phylogenetic analysis of <i>Propionibacterium acnes</i> isolated from acne patients in Japan between 2013 and 2015. Journal of Dermatology, 2017, 44, 1248-1254.	1.2	49
56	Prevalence of skin infections caused by Panton-Valentine leukocidin-positive methicillin-resistant Staphylococcus aureus ÂinÂJapan, particularly in Ishigaki, Okinawa. Journal of Infection and Chemotherapy, 2017, 23, 800-803.	1.7	35
57	Involvement of adenosine triphosphateâ€binding cassette subfamily <scp>B</scp> member 1 in the augmentation of triacylglycerol excretion by <i>Propionibacterium acnes</i> in differentiated hamster sebocytes. Journal of Dermatology, 2017, 44, 1404-1407.	1.2	3
58	Evaluation of <i>In Vitro</i> Antiamoebic Activity of Antimicrobial Agents Against Clinical <i>Acanthamoeba</i> Isolates. Journal of Ocular Pharmacology and Therapeutics, 2017, 33, 629-634.	1.4	12
59	Rise in Haemophilus influenzae With Reduced Quinolone Susceptibility and Development of a Simple Screening Method. Pediatric Infectious Disease Journal, 2017, 36, 263-266.	2.0	17
60	First report of sasX-positive methicillin-resistant Staphylococcus aureus in Japan. FEMS Microbiology Letters, 2017, 364, .	1.8	9
61	Emergence and molecular characterization of Haemophilus influenzae harbouring mef(A)—authors' response. Journal of Antimicrobial Chemotherapy, 2017, 72, 1846-1846.	3.0	4
62	Genetic diversity of pvl- positive community-onset methicillin-resistant Staphylococcus aureus isolated at a university hospital in Japan. Journal of Infection and Chemotherapy, 2017, 23, 856-858.	1.7	16
63	Determination of the Mutant Prevention Concentration and the Mutant Selection Window of Topical Antimicrobial Agents against <i>Propionibacterium acnes</i> . Chemotherapy, 2017, 62, 94-99.	1.6	6
64	Amino Acid Substitution in the Major Multidrug Efflux Transporter Protein AcrB Contributes to Low Susceptibility to Azithromycin in Haemophilus influenzae. Antimicrobial Agents and Chemotherapy, 2017, 61, .	3.2	8
65	Propionibacterium acnes is developing gradual increase in resistance to oral tetracyclines. Journal of Medical Microbiology, 2017, 66, 8-12.	1.8	24
66	Oldenlandia diffusa Extract Inhibits Biofilm Formation by Haemophilus influenzae Clinical Isolates. PLoS ONE, 2016, 11, e0167335.	2.5	15
67	Methicillin-Resistant <i>Staphylococcus epidermidis</i> Is Part of the Skin Flora on the Hands of Both Healthy Individuals and Hospital Workers. Biological and Pharmaceutical Bulletin, 2016, 39, 1868-1875.	1.4	11
68	Emergence and molecular characterization ofHaemophilus influenzaeharbouringmef(A). Journal of Antimicrobial Chemotherapy, 2016, 72, dkw501.	3.0	3
69	A novel 23S rRNA mutation in Propionibacterium acnes confers resistance to 14-membered macrolides. Journal of Global Antimicrobial Resistance, 2016, 6, 160-161.	2.2	11
70	Emergence of fluoroquinolone-resistant Propionibacterium acnes caused by amino acid substitutions of DNA gyrase but not DNA topoisomerase IV. Anaerobe, 2016, 42, 166-171.	2.1	21
71	The modified Gingyo-san, a Chinese herbal medicine, has direct antibacterial effects against respiratory pathogens. BMC Complementary and Alternative Medicine, 2016, 16, 463.	3.7	12
72	Prevalence of macrolide-non-susceptible isolates among β-lactamase-negative ampicillin-resistant Haemophilus influenzae in a tertiary care hospital in Japan. Journal of Global Antimicrobial Resistance, 2016, 6, 22-26.	2.2	16

#	Article	IF	CITATIONS
73	Clarithromycin Resistance Mechanisms of Epidemic β-Lactamase-Nonproducing Ampicillin-Resistant Haemophilus influenzae Strains in Japan. Antimicrobial Agents and Chemotherapy, 2016, 60, 3207-3210.	3.2	14
74	Impact of calcium concentration in Muller–Hinton medium on the antimicrobial activity of daptomycin. Journal of Global Antimicrobial Resistance, 2016, 4, 76-77.	2.2	2
75	Increase in SCCmec type IV strains affects trends in antibiograms of meticillin-resistant Staphylococcus aureus at a tertiary-care hospital. Journal of Medical Microbiology, 2015, 64, 745-751.	1.8	22
76	In Vitro Antimicrobial Activity of Fibrin Sealants Containing Antimicrobial Agents. Surgical Infections, 2014, 15, 29-35.	1.4	10
77	Discovery of Natural Products Possessing Selective Eukaryotic Readthrough Activity: 3â€ <i>epi</i> â€Deoxynegamycin and Its Leucine Adduct. ChemMedChem, 2014, 9, 2233-2237.	3.2	18
78	Characterization of methicillin-resistant Staphylococcus aureus isolated from tertiary care hospitals in Tokyo, Japan. Journal of Infection and Chemotherapy, 2014, 20, 512-515.	1.7	36
79	Comprehensive evaluation of fibrin glue as a local drug-delivery system—efficacy and safety of sustained release of vancomycin by fibrin glue against local methicillin-resistant Staphylococcus aureus infection. Journal of Artificial Organs, 2014, 17, 42-49.	0.9	16
80	A novel GyrB mutation in meticillin-resistant Staphylococcus aureus (MRSA) confers a high level of resistance to third-generation quinolones. International Journal of Antimicrobial Agents, 2014, 43, 478-479.	2.5	11
81	Relationship between the severity of acne vulgaris and antimicrobial resistance of bacteria isolated from acne lesions in a hospital in Japan. Journal of Medical Microbiology, 2014, 63, 721-728.	1.8	65
82	<i>In vitro</i> antiseptic susceptibilities for <i>Staphylococcus pseudintermedius</i> isolated from canine superficial pyoderma in Japan. Veterinary Dermatology, 2013, 24, 126.	1.2	27
83	Novel Hybrid-Type Antimicrobial Agents Targeting the Switch Region of Bacterial RNA Polymerase. ACS Medicinal Chemistry Letters, 2013, 4, 220-224.	2.8	20
84	Clinical and bacteriological evaluation of adapalene 0.1% gel plus nadifloxacin 1% cream versus adapalene 0.1% gel in patients with acne vulgaris. Journal of Dermatology, 2013, 40, 620-625.	1.2	12
85	Antimicrobial Spectrum of Alcohol-Based Hand-Rubbings Containing 1 w/v% Chlorhexidine Gluconate. Iryo Yakugaku (Japanese Journal of Pharmaceutical Health Care and Sciences), 2013, 39, 304-308.	0.1	3
86	Practical Measures to Prevent Outbreaks in Hospital Nursery School. Japanese Journal of Environmental Infections, 2013, 28, 295-300.	0.1	1
87	Fluoroquinolone Resistance in <i>Helicobacter pylori</i> : Role of Mutations at Position 87 and 91 of GyrA on the Level of Resistance and Identification of a Resistance Conferring Mutation in GyrB. Helicobacter, 2012, 17, 36-42.	3.5	76
88	First report of high levels of clindamycinâ€resistant <i>Propionibacterium acnes</i> carrying <i>erm</i> (X) in Japanese patients with acne vulgaris. Journal of Dermatology, 2012, 39, 794-796.	1.2	38
89	Novel antiâ€acne actions of nadifloxacin and clindamycin that inhibit the production of sebum, prostaglandin E ₂ and promatrix metalloproteinaseâ€2 in hamster sebocytes. Journal of Dermatology, 2012, 39, 774-780.	1.2	17
90	Effect of pretreatment with <i>Lactobacillus gasseri</i> OLL2716 on firstâ€line <i>Helicobacter pylori</i> eradication therapy. Journal of Gastroenterology and Hepatology (Australia), 2012, 27, 888-892.	2.8	60

#	Article	IF	CITATIONS
91	Susceptibility of Propionibacterium acnes isolated from patients with acne vulgaris to zinc ascorbate and antibiotics. Clinical, Cosmetic and Investigational Dermatology, 2011, 4, 161.	1.8	11
92	Characterization of Enterococcus Strains Contained in Probiotic Products. Biological and Pharmaceutical Bulletin, 2011, 34, 1469-1473.	1.4	19
93	Augmentation of Gene Expression and Production of Promatrix Metalloproteinase 2 by Propionibacterium acnes-Derived Factors in Hamster Sebocytes and Dermal Fibroblasts: A Possible Mechanism for Acne Scarring. Biological and Pharmaceutical Bulletin, 2011, 34, 295-299.	1.4	23

94 病院内ã®é«~é»åº¦æŽ¥è§¦è;¨é¢ã«ãŠãʿã,‹ç~èœå¦çš"ç'°å¢f調査. Japanese Journal of Environmental Infections, 2011,026, 362-30

95	Fluoroquinolone Efflux by the Plasmid-Mediated Multidrug Efflux Pump QacB Variant QacBIII in <i>Staphylococcus aureus</i> . Antimicrobial Agents and Chemotherapy, 2010, 54, 4107-4111.	3.2	58
96	Using the tannase gene to rapidly and simply identify Staphylococcus lugdunensis. Diagnostic Microbiology and Infectious Disease, 2010, 66, 120-123.	1.8	29
97	Analysis of Clarithromycin Resistance and CagA Status in <i>Helicobacter pylori</i> by Use of Feces from Children in Thailand. Journal of Clinical Microbiology, 2009, 47, 4144-4145.	3.9	14
98	Involvement of Propionibacterium acnes in the Augmentation of Lipogenesis in Hamster Sebaceous Glands In Vivo and In Vitro. Journal of Investigative Dermatology, 2009, 129, 2113-2119.	0.7	72
99	Evaluation of Clarithromycin Resistance in <i>Helicobacter pylori</i> Obtained from Culture Isolates, Gastric Juice, and Feces. Helicobacter, 2009, 14, 156-157.	3.5	15
100	Anti-infectious Activity of Tryptophan Metabolites in the L-Tryptophan-L-Kynurenine Pathway. Biological and Pharmaceutical Bulletin, 2009, 32, 41-44.	1.4	40
101	Tailored eradication therapy based on fecal <i>Helicobacter pylori</i> clarithromycin sensitivities. Journal of Gastroenterology and Hepatology (Australia), 2008, 23, S171-4.	2.8	60
102	Antimicrobial susceptibilities of <i>Propionibacterium acnes</i> isolated from patients with acne vulgaris. Microbiology and Immunology, 2008, 52, 621-624.	1.4	54
103	Characterization of the pTZ2162 encoding multidrug efflux gene qacB from Staphylococcus aureus. Plasmid, 2008, 60, 108-117.	1.4	37
104	Novel Mutation in 23S rRNA That Confers Low-Level Resistance to Clarithromycin in Helicobacter pylori. Antimicrobial Agents and Chemotherapy, 2008, 52, 3465-3466.	3.2	33
105	Mutations in penicillin-binding proteins 1, 2 and 3 are responsible for amoxicillin resistance in Helicobacter pylori. Journal of Antimicrobial Chemotherapy, 2008, 61, 995-998.	3.0	68
106	Molecular epidemiology and antimicrobial susceptibilities of 273 exfoliative toxin-encoding-gene-positive Staphylococcus aureus isolates from patients with impetigo in Japan. Journal of Medical Microbiology, 2008, 57, 1251-1258.	1.8	53
107	Anti-infectious Effect of S-Benzylisothiourea Compound A22, Which Inhibits the Actin-Like Protein, MreB, in Shigella flexneri. Biological and Pharmaceutical Bulletin, 2008, 31, 1327-1332.	1.4	16
108	Detection of mixed clarithromycin-resistant and -susceptible Helicobacter pylori using nested PCR and direct sequencing of DNA extracted from faeces. Journal of Medical Microbiology, 2007, 56, 1174-1180.	1.8	60

#	Article	IF	CITATIONS
109	Correlation between Substitutions in Penicillinâ€Binding Protein 1 and Amoxicillin Resistance in <i>Helicobacter pylori</i> . Microbiology and Immunology, 2007, 51, 939-944.	1.4	32
110	Transduction of the Plasmid Encoding Antiseptic Resistance Gene qacB in Staphylococcus aureus. Biological and Pharmaceutical Bulletin, 2007, 30, 1412-1415.	1.4	26
111	Susceptibilities of Methicillin-Resistant Staphylococcus aureus Isolates to Seven Biocides. Biological and Pharmaceutical Bulletin, 2007, 30, 585-587.	1.4	25
112	Antimicrobial susceptibilities and distribution of resistance genes for β-lactams and macrolides in Streptococcus pneumoniae isolated between 2002 and 2004 in Tokyo. International Journal of Antimicrobial Agents, 2007, 29, 26-33.	2.5	15
113	Mutations in the 23S rRNA gene of clarithromycin-resistant Helicobacter pylori from Japan. International Journal of Antimicrobial Agents, 2007, 30, 250-254.	2.5	24
114	Association of tannase-producing Staphylococcus lugdunensis with colon cancer and characterization of a novel tannase gene. Journal of Gastroenterology, 2007, 42, 346-351.	5.1	67
115	The Effectiveness of Packaged Medicine in Eradication Therapy of Helicobacter pylori in Japan. Journal of Clinical Biochemistry and Nutrition, 2006, 38, 73-76.	1.4	7
116	Antimicrobial Agent of Susceptibilities and Antiseptic Resistance Gene Distribution among Methicillin-Resistant <i>Staphylococcus aureus</i> Isolates from Patients with Impetigo and Staphylococcal Scalded Skin Syndrome. Journal of Clinical Microbiology, 2006, 44, 2119-2125.	3.9	88
117	Comparison of the HM-CAP and E-Plate Serum Antibody Kit for the Assessment of Helicobacter pylori Eradication in Japan. Journal of Clinical Biochemistry and Nutrition, 2006, 38, 39-43.	1.4	0
118	Study of Methods for Hand-Washing. Journal of the Japanese Association of Rural Medicine, 2006, 55, 100-107.	0.0	0
119	Development of a Highly Sensitive Method for Detection of Clarithromycin-Resistant Helicobacter pylori from Human Feces. Current Microbiology, 2005, 51, 1-5.	2.2	39
120	Susceptibilities to antiseptic agents and distribution of antiseptic-resistance genes qacA/B and smr of methicillin-resistant Staphylococcus aureus isolated in Asia during 1998 and 1999. Journal of Medical Microbiology, 2005, 54, 557-565.	1.8	145
121	Susceptibility and resistance genes to fluoroquinolones in methicillin-resistant Staphylococcus aureus isolated in 2002. International Journal of Antimicrobial Agents, 2005, 25, 374-379.	2.5	42
122	Comparison of the Nucleotide Sequence and Expression of norA Genes and Microbial Susceptibility in 21 Strains of Staphylococcus aureus. Microbial Drug Resistance, 2004, 10, 197-203.	2.0	39
123	Novel Biological Activity of the Region (106-126) on Human Prion Sequence Biological and Pharmaceutical Bulletin, 2003, 26, 229-232.	1.4	4
124	Frequency and Genetic Characterization of Multidrug-Resistant Mutants of Staphylococcus aureus after Selection with Individual Antiseptics and Fluoroquinolones Biological and Pharmaceutical Bulletin, 2002, 25, 1129-1132.	1.4	34
125	Cloning and Characterization of a Novel Chromosomal Drug Efflux Gene in Staphylococcus aureus Biological and Pharmaceutical Bulletin, 2002, 25, 1533-1536.	1.4	57
126	A transposon carrying the genemphBfor macrolide 2′-phosphotransferase II. FEMS Microbiology Letters, 2000, 192, 175-178.	1.8	13

#	Article	IF	CITATIONS
127	Regulation of Transcription of themph(A) Gene for Macrolide 2′-Phosphotransferase I inEscherichia coli: Characterization of the Regulatory Gene mphR(A). Journal of Bacteriology, 2000, 182, 5052-5058.	2.2	67
128	Antiseptic susceptibility and distribution of antiseptic-resistance genes in methicillin-resistant <i>Staphylococcus aureus</i> . FEMS Microbiology Letters, 1999, 172, 247-253.	1.8	113
129	Nucleotide Sequence of the Gene Cluster Containing the mphB Gene for Macrolide 2'-Phosphotransferase II Biological and Pharmaceutical Bulletin, 1999, 22, 227-228.	1.4	8
130	Antiseptic susceptibility and distribution of antiseptic-resistance genes in methicillin-resistant Staphylococcus aureus. FEMS Microbiology Letters, 1999, 172, 247-253.	1.8	10
131	Expression of themphBgene for macrolide 2′-phosphotransferase II fromEscherichia coliinStaphylococcus aureus. FEMS Microbiology Letters, 1998, 159, 337-342.	1.8	15
132	Expression in Pseudomonas aeruginosa of an Erythromycin-Resistance Determinant that Encodes the mphA Gene for Macrolide 2-Phosphotransferase I from Escherichia coli Biological and Pharmaceutical Bulletin, 1998, 21, 191-193.	1.4	5
133	Isolation and Characterization of Two Plasmids That Mediate Macrolide Resistance in Escherichia coli: Transferability and Molecular Properties Biological and Pharmaceutical Bulletin, 1998, 21, 326-329.	1.4	11
134	Cloning and nucleotide sequence of themphBgene for macrolide 2′-phosphotransferase II inEscherichia coli. FEMS Microbiology Letters, 1996, 144, 197-202.	1.8	53
135	The tetracycline efflux protein encoded by the <i>tet</i> (K) gene from <i>Staphylococcus aureus</i> is a metalâ€ŧetracycline/H ⁺ antiporter. FEBS Letters, 1995, 365, 193-197.	2.8	32
136	Substrates and Inhibitors of Antiseptic Resistance in Staphylococcus aureus Biological and Pharmaceutical Bulletin, 1994, 17, 163-165.	1.4	13
137	Evaluation of Antiseptics by the Modified Phenol Coefficient Method: Sensitivity of Methicillin-Resistant Staphylococcus aureus Biological and Pharmaceutical Bulletin, 1994, 17, 136-138.	1.4	10
138	Expression in Escherichia coli of a TetK Determinant from Staphylococcus aureus Biological and Pharmaceutical Bulletin, 1994, 17, 352-355.	1.4	9
139	Genetic mapping in Bacillus subtilis 168 of the aadK gene which encodes aminoglycoside 6-adenylyltransferase. FEMS Microbiology Letters, 1993, 114, 47-52.	1.8	19
140	Triclosan-resistant Staphylococcus aureus. Lancet, The, 1993, 341, 756.	13.7	84
141	Detection of Plasmid DNA in Erysipelothrix rhusiopathiae Isolated from Pigs with Chronic Swine Erysipelas Journal of Veterinary Medical Science, 1993, 55, 349-350.	0.9	9
142	High-level resistance to ethidium bromide and antiseptics inStaphylococcus aureus. FEMS Microbiology Letters, 1992, 93, 109-113.	1.8	30
143	High-level resistance to ethidium bromide and antiseptics in Staphylococcus aureus. FEMS Microbiology Letters, 1992, 93, 109-113.	1.8	14
144	Expression of the Aminoglycoside 6-Adenylyltransferase Coding Gene from <i>Bacillus subtilis</i> in <i>Escherichia coli</i> . Agricultural and Biological Chemistry, 1989, 53, 2519-2520.	0.3	1

#	Article	IF	CITATIONS
145	Expression of the aminoglycoside 6-adenylyltransferase coding gene from Bacillus subtilis in Escherichia coli Agricultural and Biological Chemistry, 1989, 53, 2519-2520.	0.3	2
146	Four Plasmids Simultaneously Maintained inBacillus cereus, a Tetracycline-resistant Isolate. Agricultural and Biological Chemistry, 1987, 51, 1665-1670.	0.3	0
147	Four plasmids simultaneously maintained in Bacillus cereus, a tetracycline-resistant isolate Agricultural and Biological Chemistry, 1987, 51, 1665-1670.	0.3	3
148	Complete nucleotide sequence of pTZ12, a chloramphenicol-resistance plasmid of Bacillus subtilis. Gene, 1987, 51, 107-111.	2.2	27
149	Purification and characterization of chromosomal streptomycin adenylyltransferase from derivatives ofBacillus subtilisMarburg 168. FEMS Microbiology Letters, 1987, 40, 223-228.	1.8	18
150	Determination of the complete nucleotide sequence of pNS1, a staphylococcal tetracycline-resistance plasmid propagated inBacillus subtilis. FEMS Microbiology Letters, 1986, 37, 283-288.	1.8	34
151	Characterization of pTZ12, a chloramphenicol-resistance plasmid in Bacillus subtilis Agricultural and Biological Chemistry, 1985, 49, 1429-1433.	0.3	2
152	Characterization of pTZ12, a Chloramphenicol-resistance Plasmid inBacillus subtilis. Agricultural and Biological Chemistry, 1985, 49, 1429-1433.	0.3	1
153	Bacillus subtilisCloning Vectors Which Originated fromCorynebacterium xerosis. Agricultural and Biological Chemistry, 1984, 48, 821-822.	0.3	0
154	Bacillus subtilis cloning vectors which originated from Corynebacterium xerosis Agricultural and Biological Chemistry, 1984, 48, 821-822.	0.3	4
155	Correlation of enzyme-induced cleavage sites on negatively superhelical DNA between prokaryotic topoisomerase I and S1 nuclease. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1983, 740, 108-117.	2.4	21
156	Isolation of a tetracycline-resistance plasmid excised from a chromosomal DNA sequence in Bacillus subtilis. Plasmid, 1983, 10, 224-234.	1.4	39
157	Electron Microscopic Mapping of <i>Escherichia coli</i> RNA Polymerase Binding Sites on Tetracycline Resistant Plasmid pNS1. Agricultural and Biological Chemistry, 1983, 47, 1371-1373.	0.3	0
158	Electron microscopic mapping of Escherichia coli RNA polymerase binding sites on tetracycline resistant plasmid pNS1 Agricultural and Biological Chemistry, 1983, 47, 1371-1373.	0.3	3
159	Construction of deletion derivatives of the chloramphenicol resistant plasmid pTP-4 Agricultural and Biological Chemistry, 1983, 47, 2393-2394.	0.3	1
160	Construction of Deletion Derivatives of the Chloramphenicol Resistant Plasmid pTP-4. Agricultural and Biological Chemistry, 1983, 47, 2393-2394.	0.3	0