
Christine Perret

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9436512/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Apc Tumor Suppressor Gene Is the "Zonation-Keeper―of Mouse Liver. Developmental Cell, 2006, 10, 759-770.	3.1	460
2	New targets of β-catenin signaling in the liver are involved in the glutamine metabolism. Oncogene, 2002, 21, 8293-8301.	2.6	366
3	Functional intestinal stem cells after Paneth cell ablation induced by the loss of transcription factor Math1 (Atoh1). Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 8965-8970.	3.3	273
4	Oncogenic β-catenin triggers an inflammatory response that determines the aggressiveness of hepatocellular carcinoma in mice. Journal of Clinical Investigation, 2012, 122, 586-599.	3.9	155
5	Intestinal inhibition of Atg7 prevents tumour initiation through a microbiome-influenced immune response and suppresses tumour growth. Nature Cell Biology, 2015, 17, 1062-1073.	4.6	154
6	Tbx3 Is a Downstream Target of the Wnt/β-Catenin Pathway and a Critical Mediator of β-Catenin Survival Functions in Liver Cancer. Cancer Research, 2007, 67, 901-910.	0.4	147
7	T-cell factor 4 and β-catenin chromatin occupancies pattern zonal liver metabolism in mice. Hepatology, 2014, 59, 2344-2357.	3.6	137
8	Stabilization of β-catenin affects mouse embryonic liver growth and hepatoblast fate. Hepatology, 2008, 47, 247-258.	3.6	132
9	NOTUM from Apc-mutant cells biases clonal competition to initiate cancer. Nature, 2021, 594, 430-435.	13.7	122
10	Combined hepatocellular-cholangiocarcinomas exhibit progenitor features and activation of Wnt and TGFÎ ² signaling pathways. Carcinogenesis, 2012, 33, 1791-1796.	1.3	105
11	Identification of the leukocyte cell-derived chemotaxin 2 as a direct target gene of β-catenin in the liver. Hepatology, 2004, 40, 167-176.	3.6	103
12	β-catenin-activated hepatocellular carcinomas are addicted to fatty acids. Gut, 2019, 68, 322-334.	6.1	94
13	Transcription dynamics in a physiological process: β-Catenin signaling directs liver metabolic zonation. International Journal of Biochemistry and Cell Biology, 2011, 43, 271-278.	1.2	82
14	Molecular Determinants of Liver Zonation. Progress in Molecular Biology and Translational Science, 2010, 97, 127-150.	0.9	81
15	The Wnt/β-catenin pathway as a therapeutic target in human hepatocellular carcinoma. Clinics and Research in Hepatology and Gastroenterology, 2011, 35, 709-713.	0.7	80
16	AXIN deficiency in human and mouse hepatocytes induces hepatocellular carcinoma in the absence of β-catenin activation. Journal of Hepatology, 2018, 68, 1203-1213.	1.8	78
17	Proteomic analysis of βâ€catenin activation in mouse liver by DIGE analysis identifies glucose metabolism as a new target of the Wnt pathway. Proteomics, 2009, 9, 3889-3900.	1.3	74
18	Antitumour activity of an inhibitor of miR-34a in liver cancer with β-catenin-mutations. Gut, 2016, 65, 1024-1034.	6.1	61

#	Article	IF	CITATIONS
19	Essential role for autophagy protein ATG7 in the maintenance of intestinal stem cell integrity. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 11136-11146.	3.3	48
20	Liver Zonation. Molecular Pathology Library, 2011, , 7-16.	0.1	44
21	"Fibrous nests―in human hepatocellular carcinoma express a Wnt-induced gene signature associated with poor clinical outcome. International Journal of Biochemistry and Cell Biology, 2016, 81, 195-207.	1.2	32
22	<i>De novo</i> HAPLN1 expression hallmarks Wnt-induced stem cell and fibrogenic networks leading to aggressive human hepatocellular carcinomas. Oncotarget, 2016, 7, 39026-39043.	0.8	29
23	Osteoblastâ€derived NOTUM reduces cortical bone mass in mice and the <i>NOTUM</i> locus is associated with bone mineral density in humans. FASEB Journal, 2019, 33, 11163-11179.	0.2	24
24	LKB1 as a Gatekeeper of Hepatocyte Proliferation and Genomic Integrity during Liver Regeneration. Cell Reports, 2018, 22, 1994-2005.	2.9	23
25	Lkb1 suppresses amino acid-driven gluconeogenesis in the liver. Nature Communications, 2020, 11, 6127.	5.8	21
26	LKB1 and Notch Pathways Interact and Control Biliary Morphogenesis. PLoS ONE, 2015, 10, e0145400.	1.1	17
27	Notum deacylates octanoylated ghrelin. Molecular Metabolism, 2021, 49, 101201.	3.0	17
28	Deleting the Î ² -catenin degradation domain in mouse hepatocytes drives hepatocellular carcinoma or hepatoblastoma-like tumor growth. Journal of Hepatology, 2022, 77, 424-435.	1.8	17
29	Generation of Mice with Hepatocyte-Specific Conditional Deletion of Notum. PLoS ONE, 2016, 11, e0150997.	1.1	15
30	LKB1 signaling is activated in <i>CTNNB1</i> â€mutated HCC and positively regulates βâ€cateninâ€dependent <i>CTNNB1</i> â€mutated HCC. Journal of Pathology, 2019, 247, 435-443.	2.1	13
31	PKM2: a new player in the Î ² -catenin game. Future Oncology, 2012, 8, 395-398.	1.1	12
32	Cooperation Between the NRF2 Pathway and Oncogenic β atenin During HCC Tumorigenesis. Hepatology Communications, 2021, 5, 1490-1506.	2.0	11
33	A kinome siRNA screen identifies HGS as a potential target for liver cancers with oncogenic mutations in CTNNB1. BMC Cancer, 2015, 15, 1020.	1.1	10
34	Proteome analysis of formalinâ€fixed paraffinâ€embedded colorectal adenomas reveals the heterogeneous nature of traditional serrated adenomas compared to other colorectal adenomas. Journal of Pathology, 2020, 250, 251-261.	2.1	6
35	Osteocyte- and late osteoblast-derived NOTUM reduces cortical bone mass in mice. American Journal of Physiology - Endocrinology and Metabolism, 2021, 320, E967-E975.	1.8	6
36	The concomitant loss of <scp>APC</scp> and <scp>HNF</scp> 4α in adult hepatocytes does not contribute to hepatocarcinogenesis driven by βâ€catenin activation. Liver International, 2019, 39, 727-739.	1.9	3

#	Article	IF	CITATIONS
37	Letter to the Editor: Comment on Qiao et al Hepatology, 2019, 70, 763-764.	3.6	1
38	General mechanisms of cancer cell metabolic adaptation. Annales D'Endocrinologie, 2013, 74, 69-70.	0.6	0
39	Mammalian Target of Rapamycin Inhibitors, New Drugs for Beta atenin–Mutated Hepatocellular Carcinomas?. Hepatology, 2019, 70, 1473-1476.	3.6	0