
Jonathan P Godbout

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9436505/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Neuroinflammation: the devil is in the details. Journal of Neurochemistry, 2016, 139, 136-153.	2.1	915
2	Microglia Induce Motor Neuron Death via the Classical NF-κB Pathway in Amyotrophic Lateral Sclerosis. Neuron, 2014, 81, 1009-1023.	3.8	527
3	Peripheral lipopolysaccharide (LPS) challenge promotes microglial hyperactivity in aged mice that is associated with exaggerated induction of both pro-inflammatory IL-11 ² and anti-inflammatory IL-10 cytokines. Brain, Behavior, and Immunity, 2009, 23, 309-317.	2.0	495
4	Stress-Induced Recruitment of Bone Marrow-Derived Monocytes to the Brain Promotes Anxiety-Like Behavior. Journal of Neuroscience, 2013, 33, 13820-13833.	1.7	466
5	Sequential activation of microglia and astrocyte cytokine expression precedes increased ibaâ€1 or <scp>GFAP</scp> immunoreactivity following systemic immune challenge. Glia, 2016, 64, 300-316.	2.5	401
6	Microglial priming and enhanced reactivity to secondary insult in aging, and traumatic CNS injury, and neurodegenerative disease. Neuropharmacology, 2015, 96, 29-41.	2.0	313
7	Stress-Induced Immune Dysregulation: Implications for Wound Healing, Infectious Disease and Cancer. Journal of NeuroImmune Pharmacology, 2006, 1, 421-427.	2.1	311
8	Microglia Priming with Aging and Stress. Neuropsychopharmacology, 2017, 42, 318-333.	2.8	284
9	Aging Exacerbates Depressive-like Behavior in Mice in Response to Activation of the Peripheral Innate Immune System. Neuropsychopharmacology, 2008, 33, 2341-2351.	2.8	267
10	TGFβ produced by ILâ€10 redirected astrocytes attenuates microglial activation. Glia, 2014, 62, 881-895.	2.5	252
11	Re-establishment of Anxiety in Stress-Sensitized Mice Is Caused by Monocyte Trafficking from the Spleen to the Brain. Biological Psychiatry, 2014, 75, 970-981.	0.7	242
12	Peripheral innate immune challenge exaggerated microglia activation, increased the number of inflammatory CNS macrophages, and prolonged social withdrawal in socially defeated mice. Psychoneuroendocrinology, 2012, 37, 1491-1505.	1.3	234
13	Protracted downregulation of CX3CR1 on microglia of aged mice after lipopolysaccharide challenge. Brain, Behavior, and Immunity, 2010, 24, 1190-1201.	2.0	225
14	lmmune Activation Promotes Depression 1 Month After Diffuse Brain Injury: A Role for Primed Microglia. Biological Psychiatry, 2014, 76, 575-584.	0.7	209
15	Priming the Inflammatory Pump of the CNS after Traumatic Brain Injury. Trends in Neurosciences, 2015, 38, 609-620.	4.2	175
16	Lipopolysaccharide-induced interleukin (IL)-4 receptor-α expression and corresponding sensitivity to the M2 promoting effects of IL-4 are impaired in microglia of aged mice. Brain, Behavior, and Immunity, 2012, 26, 766-777.	2.0	172
17	IL-4 Signaling Drives a Unique Arginase+/IL-1Â+ Microglia Phenotype and Recruits Macrophages to the Inflammatory CNS: Consequences of Age-Related Deficits in IL-4RA after Traumatic Spinal Cord Injury. Journal of Neuroscience, 2014, 34, 8904-8917.	1.7	172
18	Traumatic Brain Injury Causes Chronic Cortical Inflammation and Neuronal Dysfunction Mediated by Microglia. Journal of Neuroscience, 2021, 41, 1597-1616.	1.7	168

Jonathan P Godbout

#	Article	IF	CITATIONS
19	Neuroinflammatory Dynamics Underlie Memory Impairments after Repeated Social Defeat. Journal of Neuroscience, 2016, 36, 2590-2604.	1.7	163
20	Age and Neuroinflammation: A Lifetime of Psychoneuroimmune Consequences. Immunology and Allergy Clinics of North America, 2009, 29, 321-337.	0.7	161
21	Cell-Type-Specific Interleukin 1 Receptor 1 Signaling in the Brain Regulates Distinct Neuroimmune Activities. Immunity, 2019, 50, 317-333.e6.	6.6	116
22	Cognitive deficits develop 1 month after diffuse brain injury and are exaggerated by microglia-associated reactivity to peripheral immune challenge. Brain, Behavior, and Immunity, 2016, 54, 95-109.	2.0	113
23	Age and Neuroinflammation: A Lifetime of Psychoneuroimmune Consequences. Neurologic Clinics, 2006, 24, 521-538.	0.8	111
24	Sympathetic Release of Splenic Monocytes Promotes Recurring Anxiety Following Repeated Social Defeat. Biological Psychiatry, 2016, 79, 803-813.	0.7	108
25	Traumatic brain injuryâ€induced neuronal damage in the somatosensory cortex causes formation of rodâ€shaped microglia that promote astrogliosis and persistent neuroinflammation. Glia, 2018, 66, 2719-2736.	2.5	105
26	Traumatic Brain Injury and Risk of Neurodegenerative Disorder. Biological Psychiatry, 2022, 91, 498-507.	0.7	105
27	The Alarmin HMGB1 Mediates Age-Induced Neuroinflammatory Priming. Journal of Neuroscience, 2016, 36, 7946-7956.	1.7	103
28	Forced turnover of aged microglia induces an intermediate phenotype but does not rebalance CNS environmental cues driving priming to immune challenge. Acta Neuropathologica Communications, 2018, 6, 129.	2.4	96
29	Social Stress Mobilizes Hematopoietic Stem Cells to Establish Persistent Splenic Myelopoiesis. Cell Reports, 2018, 25, 2552-2562.e3.	2.9	94
30	Methylene Blue Attenuates Traumatic Brain Injury-Associated Neuroinflammation and Acute Depressive-Like Behavior in Mice. Journal of Neurotrauma, 2015, 32, 127-138.	1.7	93
31	Tumor growth increases neuroinflammation, fatigue and depressive-like behavior prior to alterations in muscle function. Brain, Behavior, and Immunity, 2015, 43, 76-85.	2.0	84
32	Cognitive and Behavioral Consequences of Impaired Immunoregulation in Aging. Journal of NeuroImmune Pharmacology, 2012, 7, 7-23.	2.1	77
33	Interleukin-6 Induced by Social Stress Promotes a Unique Transcriptional Signature in the Monocytes That Facilitate Anxiety. Biological Psychiatry, 2019, 85, 679-689.	0.7	77
34	A Tilted Axis: Maladaptive Inflammation and HPA Axis Dysfunction Contribute to Consequences of TBI. Frontiers in Neurology, 2019, 10, 345.	1.1	75
35	α-Tocopherol attenuates lipopolysaccharide-induced sickness behavior in mice. Brain, Behavior, and Immunity, 2004, 18, 149-157.	2.0	72
36	The Influence of Microglial Elimination and Repopulation on Stress Sensitization Induced byÂRepeated Social Defeat. Biological Psychiatry, 2019, 85, 667-678.	0.7	72

3

Jonathan P Godbout

#	Article	IF	CITATIONS
37	Insensitivity of astrocytes to interleukin 10 signaling following peripheral immune challenge results in prolonged microglial activation in the aged brain. Neurobiology of Aging, 2016, 44, 22-41.	1.5	63
38	Microglia coordinate cellular interactions during spinal cord repair in mice. Nature Communications, 2022, 13, .	5.8	61
39	Interleukin 1 Type 1 Receptor Restore: A Genetic Mouse Model for Studying Interleukin 1 Receptor-Mediated Effects in Specific Cell Types. Journal of Neuroscience, 2015, 35, 2860-2870.	1.7	57
40	Interleukin-1 receptor on hippocampal neurons drives social withdrawal and cognitive deficits after chronic social stress. Molecular Psychiatry, 2021, 26, 4770-4782.	4.1	50
41	Aging with a traumatic brain injury: Could behavioral morbidities and endocrine symptoms be influenced by microglial priming?. Brain, Behavior, and Immunity, 2017, 59, 1-7.	2.0	47
42	Interleukin-1 causes CNS inflammatory cytokine expression via endothelia-microglia bi-cellular signaling. Brain, Behavior, and Immunity, 2019, 81, 292-304.	2.0	37
43	Ibuprofen ameliorates fatigue- and depressive-like behavior in tumor-bearing mice. Life Sciences, 2015, 143, 65-70.	2.0	35
44	Stromal Platelet–Derived Growth Factor Receptor-β Signaling Promotes Breast Cancer Metastasis in the Brain. Cancer Research, 2021, 81, 606-618.	0.4	32
45	Fluoxetine prevents the development of depressive-like behavior in a mouse model of cancer related fatigue. Physiology and Behavior, 2015, 140, 230-235.	1.0	30
46	Acute peripheral inflammation and postâ€ŧraumatic sleep differ between sexes after experimental diffuse brain injury. European Journal of Neuroscience, 2020, 52, 2791-2814.	1.2	30
47	Sleep Disruption Exacerbates and Prolongs the Inflammatory Response to Traumatic Brain Injury. Journal of Neurotrauma, 2020, 37, 1829-1843.	1.7	28
48	Chronic Cortical Inflammation, Cognitive Impairment, and Immune Reactivity Associated with Diffuse Brain Injury Are Ameliorated by Forced Turnover of Microglia. Journal of Neuroscience, 2022, 42, 4215-4228.	1.7	26
49	Astrocyte immunosenescence and deficits in interleukin 10 signaling in the aged brain disrupt the regulation of microglia following innate immune activation. Glia, 2022, 70, 913-934.	2.5	23
50	Sleep fragmentation engages stress-responsive circuitry, enhances inflammation and compromises hippocampal function following traumatic brain injury. Experimental Neurology, 2022, 353, 114058.	2.0	17
51	Lumbar Myeloid Cell Trafficking into Locomotor Networks after Thoracic Spinal Cord Injury. Experimental Neurology, 2016, 282, 86-98.	2.0	16
52	Mammary tumors compromise time-of-day differences in hypothalamic gene expression and circadian behavior and physiology in mice. Brain, Behavior, and Immunity, 2019, 80, 805-817.	2.0	13
53	Comparison between midline and lateral fluid percussion injury in mice reveals prolonged but divergent cortical neuroinflammation. Brain Research, 2020, 1746, 146987.	1.1	9
54	Dynamic Interleukin-1 Receptor Type 1 Signaling Mediates Microglia-Vasculature Interactions Following Repeated Systemic LPS. Journal of Inflammation Research, 2022, Volume 15, 1575-1590.	1.6	6

#	Article	IF	CITATIONS
55	Effects of dermal wounding on distal primary tumor immunobiology in mice. Journal of Surgical Research, 2018, 221, 328-335.	0.8	3
56	Chronic Inflammation After TBI and Associated Behavioral Sequelae. Current Physical Medicine and Rehabilitation Reports, 2015, 3, 115-123.	0.3	2