
Christian Schlötterer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9436484/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	microsatellite analyser(MSA): a platform independent analysis tool for large microsatellite data sets. Molecular Ecology Notes, 2003, 3, 167-169.	1.7	1,413
2	Slippage synthesis of simple sequence DNA. Nucleic Acids Research, 1992, 20, 211-215.	14.5	1,000
3	PoPoolation2: identifying differentiation between populations using sequencing of pooled DNA samples (Pool-Seq). Bioinformatics, 2011, 27, 3435-3436.	4.1	729
4	Sequencing pools of individuals — mining genome-wide polymorphism data without big funding. Nature Reviews Genetics, 2014, 15, 749-763.	16.3	654
5	The evolution of molecular markers — just a matter of fashion?. Nature Reviews Genetics, 2004, 5, 63-69.	16.3	635
6	Evolutionary dynamics of microsatellite DNA. Chromosoma, 2000, 109, 365-371.	2.2	604
7	PoPoolation: A Toolbox for Population Genetic Analysis of Next Generation Sequencing Data from Pooled Individuals. PLoS ONE, 2011, 6, e15925.	2.5	556
8	Conservation of polymorphic simple sequence loci in cetacean species. Nature, 1991, 354, 63-65.	27.8	336
9	Social structure of pilot whales revealed by analytical DNA profiling. Science, 1993, 260, 670-672.	12.6	334
10	Diversity in a hidden world: potential and limitation of nextâ€generation sequencing for surveys of molecular diversity of eukaryotic microorganisms. Molecular Ecology, 2010, 19, 32-40.	3.9	330
11	The Next Generation of Molecular Markers From Massively Parallel Sequencing of Pooled DNA Samples. Genetics, 2010, 186, 207-218.	2.9	329
12	Isolation of simple-sequence loci for use in polymerase chain reaction-based DNA fingerprinting. Electrophoresis, 1991, 12, 113-118.	2.4	327
13	SciRoKo: a new tool for whole genome microsatellite search and investigation. Bioinformatics, 2007, 23, 1683-1685.	4.1	304
14	Simple sequences. Current Opinion in Genetics and Development, 1994, 4, 832-837.	3.3	282
15	Genomeâ€wide patterns of latitudinal differentiation among populations of <i><scp>D</scp>rosophila melanogaster</i> from <scp>N</scp> orth <scp>A</scp> merica. Molecular Ecology, 2012, 21, 4748-4769.	3.9	256
16	Chromosomal homogeneity of Drosophila ribosomal DNA arrays suggests intrachromosomal exchanges drive concerted evolution. Current Biology, 1994, 4, 777-783.	3.9	252
17	Polygenic adaptation: a unifying framework to understand positive selection. Nature Reviews Genetics, 2020, 21, 769-781.	16.3	238
18	Sequencing of Pooled DNA Samples (Pool-Seq) Uncovers Complex Dynamics of Transposable Element Insertions in Drosophila melanogaster. PLoS Genetics, 2012, 8, e1002487.	3.5	223

#	Article	IF	CITATIONS
19	Fitness effects of advantageous mutations in evolving <i>Escherichia coli</i> populations. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 1113-1117.	7.1	222
20	Combining experimental evolution with next-generation sequencing: a powerful tool to study adaptation from standing genetic variation. Heredity, 2015, 114, 431-440.	2.6	219
21	Amplification of hypervariable simple sequence repeats (microsatellites) from excremental DNA of wild living bonobos (<i>Pan paniscus</i>). Molecular Ecology, 1995, 4, 515-518.	3.9	218
22	Genetic redundancy fuels polygenic adaptation in Drosophila. PLoS Biology, 2019, 17, e3000128.	5.6	212
23	Gene expression profiling by massively parallel sequencing. Genome Research, 2008, 18, 172-177.	5.5	210
24	Contrasting seasonal niche separation between rare and abundant taxa conceals the extent of protist diversity. Molecular Ecology, 2010, 19, 2908-2915.	3.9	209
25	Hitchhiking mapping – functional genomics from the population genetics perspective. Trends in Genetics, 2003, 19, 32-38.	6.7	208
26	Genes from scratch – the evolutionary fate of de novo genes. Trends in Genetics, 2015, 31, 215-219.	6.7	206
27	A Microsatellite-Based Multilocus Screen for the Identification of Local Selective Sweeps. Genetics, 2002, 160, 753-763.	2.9	203
28	Sequencing of the genus Arabidopsis identifies a complex history of nonbifurcating speciation and abundant trans-specific polymorphism. Nature Genetics, 2016, 48, 1077-1082.	21.4	198
29	Adaptation of <i>Drosophila</i> to a novel laboratory environment reveals temporally heterogeneous trajectories of selected alleles. Molecular Ecology, 2012, 21, 4931-4941.	3.9	194
30	Evidence for shared ancestral polymorphism rather than recurrent gene flow at microsatellite loci differentiating two hybridizing oaks (Quercus spp.). Molecular Ecology, 2004, 14, 549-561.	3.9	176
31	High mutation rate of a long microsatellite allele in Drosophila melanogaster provides evidence for allele-specific mutation rates. Molecular Biology and Evolution, 1998, 15, 1269-1274.	8.9	174
32	Hitchhiking mapping: A population-based fine-mapping strategy for adaptive mutations in Drosophila melanogaster. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 12949-12954.	7.1	174
33	The life cycle of Drosophila orphan genes. ELife, 2014, 3, e01311.	6.0	163
34	Two Distinct Modes of Microsatellite Mutation Processes: Evidence From the Complete Genomic Sequences of Nine Species. Genome Research, 2003, 13, 2242-2251.	5.5	162
35	Three Divergent rDNA Clusters Predate the Species Divergence in Quercus petraea (Matt.) Liebl. and Quercus robur L. Molecular Biology and Evolution, 2001, 18, 112-119.	8.9	156
36	A Genome-Wide, Fine-Scale Map of Natural Pigmentation Variation in Drosophila melanogaster. PLoS Genetics, 2013, 9, e1003534.	3.5	146

#	Article	IF	CITATIONS
37	Molecular Phylogeny of European Muroid Rodents Based on Complete Cytochrome b Sequences. Molecular Phylogenetics and Evolution, 2000, 16, 37-47.	2.7	138
38	Massive Habitat-Specific Genomic Response in D. melanogaster Populations during Experimental Evolution in Hot and Cold Environments. Molecular Biology and Evolution, 2014, 31, 364-375.	8.9	138
39	A Guide for the Design of Evolve and Resequencing Studies. Molecular Biology and Evolution, 2014, 31, 474-483.	8.9	138
40	Multiple mating in wildDrosophila melanogasterrevisited by microsatellite analysis. Molecular Ecology, 1998, 7, 915-917.	3.9	136
41	World-wide survey of an Accord insertion and its association with DDT resistance in Drosophila melanogaster. Molecular Ecology, 2004, 13, 2491-2504.	3.9	131
42	Host adaptation to viruses relies on few genes with different cross-resistance properties. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 5938-5943.	7.1	122
43	Distribution of dinucleotide microsatellites in the Drosophila melanogaster genome. Molecular Biology and Evolution, 1999, 16, 602-610.	8.9	119
44	Phenotypic Plasticity in Drosophila Pigmentation Caused by Temperature Sensitivity of a Chromatin Regulator Network. PLoS Genetics, 2007, 3, e30.	3.5	119
45	Gowinda: unbiased analysis of gene set enrichment for genome-wide association studies. Bioinformatics, 2012, 28, 2084-2085.	4.1	116
46	Long Microsatellite Alleles in <i>Drosophila melanogaster</i> Have a Downward Mutation Bias and Short Persistence Times, Which Cause Their Genome-Wide Underrepresentation. Genetics, 2000, 155, 1213-1220.	2.9	115
47	Polymorphism and Locus-Specific Effects on Polymorphism at Microsatellite Loci in Natural <i>Drosophila melanogaster</i> Populations. Genetics, 1997, 146, 309-320.	2.9	112
48	Trichome Distribution in Arabidopsis thaliana and its Close Relative Arabidopsis lyrata: Molecular Analysis of the Candidate Gene GLABROUS1. Molecular Biology and Evolution, 2001, 18, 1754-1763.	8.9	111
49	Genetic Differentiation Between American and European Drosophila melanogaster Populations Could Be Attributed to Admixture of African Alleles. Molecular Biology and Evolution, 2003, 20, 792-799.	8.9	110
50	Distinguishing Positive Selection From Neutral Evolution: Boosting the Performance of Summary Statistics. Genetics, 2011, 187, 229-244.	2.9	102
51	Inference of chromosomal inversion dynamics from P ool―S eq data in natural and laboratory populations of D rosophila melanogaster. Molecular Ecology, 2014, 23, 1813-1827.	3.9	101
52	The recent invasion of natural <i>Drosophila simulans</i> populations by the P-element. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 6659-6663.	7.1	101
53	Complex patterns of colonization and refugia revealed for European grayling Thymallus thymallus, based on complete sequencing of the mitochondrial DNA control region. Molecular Ecology, 2002, 11, 1393-1407.	3.9	100
54	Tempo and Mode of Transposable Element Activity in Drosophila. PLoS Genetics, 2015, 11, e1005406.	3.5	97

#	Article	IF	CITATIONS
55	PoPoolationTE2: Comparative Population Genomics of Transposable Elements Using Pool-Seq. Molecular Biology and Evolution, 2016, 33, 2759-2764.	8.9	86
56	Microsatellite Variability Differs Between Dinucleotide Repeat Motifs—Evidence from Drosophila melanogaster. Molecular Biology and Evolution, 2000, 17, 1277-1285.	8.9	83
57	Patterns of Linkage Disequilibrium and Long Range Hitchhiking in Evolving Experimental <i>Drosophila melanogaster</i> Populations. Molecular Biology and Evolution, 2015, 32, 495-509.	8.9	82
58	Genome evolution: Are microsatellites really simple sequences?. Current Biology, 1998, 8, R132-R134.	3.9	81
59	Comparison of algorithms for the analysis of Affymetrix microarray data as evaluated by co-expression of genes in known operons. Nucleic Acids Research, 2006, 34, e8-e8.	14.5	81
60	Phylogeography, genetic structure and population divergence time of cheetahs in Africa and Asia: evidence for long-term geographic isolates. Molecular Ecology, 2011, 20, 706-724.	3.9	81
61	Temperature Stress Mediates Decanalization and Dominance of Gene Expression in Drosophila melanogaster. PLoS Genetics, 2015, 11, e1004883.	3.5	81
62	Two fiber genes of nearly equal lengths are a common and distinctive feature of Fowl adenovirus C members. Veterinary Microbiology, 2012, 156, 411-417.	1.9	79
63	A <i><scp>D</scp>rosophila</i> laboratory evolution experiment points to low evolutionary potential under increased temperatures likely to be experienced in the future. Journal of Evolutionary Biology, 2014, 27, 1859-1868.	1.7	79
64	Detecting Selective Sweeps from Pooled Next-Generation Sequencing Samples. Molecular Biology and Evolution, 2012, 29, 2177-2186.	8.9	75
65	Y Chromosome Uncovers the Recent Oriental Origin of Modern Stallions. Current Biology, 2017, 27, 2029-2035.e5.	3.9	75
66	Mitochondrial and nuclear DNA phylogeography of Thymallus spp. (grayling) provides evidence of ice-age mediated environmental perturbations in the world's oldest body of fresh water, Lake Baikal. Molecular Ecology, 2002, 11, 2599-2611.	3.9	74
67	Linking Great Apes Genome Evolution across Time Scales Using Polymorphism-Aware Phylogenetic Models. Molecular Biology and Evolution, 2013, 30, 2249-2262.	8.9	73
68	Genome-wide patterns of natural variation reveal strong selective sweeps and ongoing genomic conflict in <i>Drosophila mauritiana</i> . Genome Research, 2013, 23, 99-110.	5.5	73
69	Haplotype (mtDNA) diversity of brown trout Salmo trutta in tributaries of the Austrian Danube: massive introgression of Atlantic basin fish - by man or nature?. Molecular Ecology, 2001, 10, 1241-1246.	3.9	72
70	VARIATION IN THERMAL PERFORMANCE AND REACTION NORMS AMONG POPULATIONS OF <i>DROSOPHILA MELANOGASTER </i> . Evolution; International Journal of Organic Evolution, 2013, 67, 3573-3587.	2.3	72
71	A simple genetic basis of adaptation to a novel thermal environment results in complex metabolic rewiring in Drosophila. Genome Biology, 2018, 19, 119.	8.8	71
72	Quantifying Selection with Pool-Seq Time Series Data. Molecular Biology and Evolution, 2017, 34, 3023-3034.	8.9	69

CHRISTIAN SCHLĶTTERER

#	Article	IF	CITATIONS
73	Nextâ€generation biological control: the need for integrating genetics and genomics. Biological Reviews, 2020, 95, 1838-1854.	10.4	67
74	A microsatellite-based multilocus phylogeny of the Drosophila melanogaster species complex. Current Biology, 1998, 8, 1183-1187.	3.9	65
75	Molecular dissection of a natural transposable element invasion. Genome Research, 2018, 28, 824-835.	5.5	64
76	Towards a molecular characterization of adaptation in local populations. Current Opinion in Genetics and Development, 2002, 12, 683-687.	3.3	63
77	Multi-locus Analysis of Genomic Time Series Data from Experimental Evolution. PLoS Genetics, 2015, 11, e1005069.	3.5	63
78	Conservation of locus-specific microsatellite variability across species: a comparison of two Drosophila sibling species, D. melanogaster and D. simulans. Molecular Biology and Evolution, 1998, 15, 176-184.	8.9	62
79	Mitochondrial haplotype diversity among Portuguese brown trout Salmo trutta L. populations: relevance to the post-Pleistocene recolonization of northern Europe. Molecular Ecology, 2000, 9, 691-698.	3.9	62
80	Evolution of longevity improves immunity in <i>Drosophila</i> . Evolution Letters, 2018, 2, 567-579.	3.3	62
81	Isolation and characterization of microsatellite loci from Apodemus flavicollis (rodentia, muridae) and Clethrionomys glareolus (rodentia, cricetidae). Molecular Ecology, 1997, 6, 597-599.	3.9	61
82	Hybrid Dysgenesis in Drosophila simulans Associated with a Rapid Invasion of the P-Element. PLoS Genetics, 2016, 12, e1005920.	3.5	60
83	Survey of microsatellite clustering in eight fully sequenced species sheds light on the origin of compound microsatellites. BMC Genomics, 2008, 9, 612.	2.8	59
84	Reproductive and postâ€reproductive life history of wildâ€caught <i><scp>D</scp>rosophila melanogaster</i> under laboratory conditions. Journal of Evolutionary Biology, 2013, 26, 1508-1520.	1.7	59
85	Estimating the Effective Population Size from Temporal Allele Frequency Changes in Experimental Evolution. Genetics, 2016, 204, 723-735.	2.9	58
86	Extensive paternal mt <scp>DNA</scp> leakage in natural populations of <i><scp>D</scp>rosophila melanogaster</i> . Molecular Ecology, 2013, 22, 2106-2117.	3.9	57
87	Temperature-Related Reaction Norms of Gene Expression: Regulatory Architecture and Functional Implications. Molecular Biology and Evolution, 2015, 32, 2393-2402.	8.9	57
88	Nonsense-Mediated Decay Enables Intron Gain in Drosophila. PLoS Genetics, 2010, 6, e1000819.	3.5	55
89	Poolâ€hmm: a Python program for estimating the allele frequency spectrum and detecting selective sweeps from next generation sequencing of pooled samples. Molecular Ecology Resources, 2013, 13, 337-340.	4.8	55
90	DNA double-strand break repair and the evolution of intron density. Trends in Genetics, 2011, 27, 1-6.	6.7	54

#	Article	IF	CITATIONS
91	Expression profiling of Drosophila mitochondrial genes via deep mRNA sequencing. Nucleic Acids Research, 2009, 37, 7509-7518.	14.5	53
92	Evolution of Eye Morphology and Rhodopsin Expression in the Drosophila melanogaster Species Subgroup. PLoS ONE, 2012, 7, e37346.	2.5	53
93	Estimating Empirical Codon Hidden Markov Models. Molecular Biology and Evolution, 2013, 30, 725-736.	8.9	51
94	Spatially varying selection shapes life history clines among populations of <i>Drosophila melanogaster</i> from subâ€5aharan Africa. Journal of Evolutionary Biology, 2015, 28, 826-840.	1.7	51
95	CANGS: a user-friendly utility for processing and analyzing 454 GS-FLX data in biodiversity studies. BMC Research Notes, 2010, 3, 3.	1.4	50
96	Developmental Stability: A Major Role for Cyclin G in Drosophila melanogaster. PLoS Genetics, 2011, 7, e1002314.	3.5	50
97	Complete genome sequences of pigeon adenovirus 1 and duck adenovirus 2 extend the number of species within the genus Aviadenovirus. Virology, 2014, 462-463, 107-114.	2.4	50
98	The Interplay of Temperature and Genotype on Patterns of Alternative Splicing in <i>Drosophila melanogaster</i> . Genetics, 2016, 204, 315-325.	2.9	50
99	DistMap: A Toolkit for Distributed Short Read Mapping on a Hadoop Cluster. PLoS ONE, 2013, 8, e72614.	2.5	50
100	The use of microsatellites for genetic analysis of natural populations — a critical review. , 1998, , 71-86.		48
101	Removal of Microsatellite Interruptions by DNA Replication Slippage: Phylogenetic Evidence from Drosophila. Molecular Biology and Evolution, 2000, 17, 1001-1009.	8.9	48
102	Detecting Selective Sweeps: A New Approach Based on Hidden Markov Models. Genetics, 2009, 181, 1567-1578.	2.9	48
103	A Perspective on Micro-Evo-Devo: Progress and Potential. Genetics, 2013, 195, 625-634.	2.9	48
104	A Novel Test Statistic for the Identification of Local Selective Sweeps Based on Microsatellite Gene Diversity. , 2005, , 55-64.		47
105	Evolution of mir-92a Underlies Natural Morphological Variation in Drosophila melanogaster. Current Biology, 2013, 23, 523-528.	3.9	47
106	Mismatch Repair-Driven Mutational Bias in D. melanogaster. Molecular Cell, 2002, 10, 199-205.	9.7	46
107	Genome assembly and annotation of a Drosophila simulans strain from Madagascar. Molecular Ecology Resources, 2015, 15, 372-381.	4.8	46
108	Redefining reproductive dormancy in Drosophila as a general stress response to cold temperatures. Journal of Insect Physiology, 2018, 107, 175-185.	2.0	46

CHRISTIAN SCHLĶTTERER

#	Article	IF	CITATIONS
109	Drosophila virilis Has Long and Highly Polymorphic Microsatellites. Molecular Biology and Evolution, 2000, 17, 1641-1646.	8.9	44
110	Microsatellite analysis reveals substantial genetic differentiation between contemporary New World and Old World Holstein Friesian populations. Animal Genetics, 2000, 31, 31-38.	1.7	44
111	Nonrandom Wolbachia Infection Status of Drosophila melanogaster Strains with Different mtDNA Haplotypes. Molecular Biology and Evolution, 2008, 25, 2493-2498.	8.9	44
112	Experimental evolution reveals habitatâ€specific fitness dynamics among <i><scp>W</scp>olbachia</i> clades in <i><scp>D</scp>rosophila melanogaster</i> . Molecular Ecology, 2014, 23, 802-814.	3.9	43
113	Patterns of Microsatellite Variability Among X Chromosomes and Autosomes Indicate a High Frequency of Beneficial Mutations in Non-African D. simulans. Molecular Biology and Evolution, 2004, 21, 1384-1390.	8.9	42
114	Uncovering the genetic signature of quantitative trait evolution with replicated time series data. Heredity, 2017, 118, 42-51.	2.6	42
115	The first whole genome sequence of a Fowl adenovirus B strain enables interspecies comparisons within the genus Aviadenovirus. Veterinary Microbiology, 2013, 166, 250-256.	1.9	41
116	Complete Mitochondrial DNA Sequences of the Threadfin Cichlid (Petrochromis trewavasae) and the Blunthead Cichlid (Tropheus moorii) and Patterns of Mitochondrial Genome Evolution in Cichlid Fishes. PLoS ONE, 2013, 8, e67048.	2.5	41
117	Unexpected high genetic diversity in small populations suggests maintenance by associative overdominance. Molecular Ecology, 2017, 26, 6510-6523.	3.9	40
118	Reconciling Differences in Pool-GWAS Between Populations: A Case Study of Female Abdominal Pigmentation in Drosophila melanogaster. Genetics, 2016, 202, 843-855.	2.9	39
119	The horse Y chromosome as an informative marker for tracing sire lines. Scientific Reports, 2019, 9, 6095.	3.3	39
120	Genealogical inference of closely related species based on microsatellites. Genetical Research, 2001, 78, 209-212.	0.9	38
121	Nonneutral Admixture of Immigrant Genotypes in African Drosophila melanogaster Populations from Zimbabwe. Molecular Biology and Evolution, 2003, 20, 1329-1337.	8.9	38
122	A Single Amino Acid Replacement in ETC2 Shapes Trichome Patterning in Natural Arabidopsis Populations. Current Biology, 2009, 19, 1747-1751.	3.9	38
123	Suitability of Different Mapping Algorithms for Genome-Wide Polymorphism Scans with Pool-Seq Data. G3: Genes, Genomes, Genetics, 2016, 6, 3507-3515.	1.8	38
124	Multiple hybridization events between <i>Drosophila simulans</i> and <i>Drosophila mauritiana</i> are supported by mtDNA introgression. Molecular Ecology, 2010, 19, 4695-4707.	3.9	37
125	CLINAL DISTRIBUTION OF A CHROMOSOMAL REARRANGEMENT: A PRECURSOR TO CHROMOSOMAL SPECIATION?. Evolution; International Journal of Organic Evolution, 2008, 62, 1852-1865.	2.3	36
126	Host Range and Specificity of the Drosophila C Virus. PLoS ONE, 2010, 5, e12421.	2.5	36

8

#	Article	IF	CITATIONS
127	Allelic imbalance metre (A llim), a new tool for measuring alleleâ€specific gene expression with RNA â€seq data. Molecular Ecology Resources, 2013, 13, 740-745.	4.8	36
128	Parallel trait adaptation across opposing thermal environments in experimental <i>Drosophila melanogaster</i> populations. Evolution; International Journal of Organic Evolution, 2015, 69, 1745-1759.	2.3	36
129	No Accelerated Rate of Protein Evolution in Male-Biased Drosophila pseudoobscura Genes. Genetics, 2006, 174, 411-420.	2.9	35
130	Genetic Architecture and Functional Characterization of Genes Underlying the Rapid Diversification of Male External Genitalia Between <i>Drosophila simulans</i> and <i>Drosophila mauritiana</i> . Genetics, 2015, 200, 357-369.	2.9	35
131	High rate of translocation-based gene birth on the <i>Drosophila</i> Y chromosome. Proceedings of the United States of America, 2017, 114, 11721-11726.	7.1	35
132	<i>ReadTools</i> : A universal toolkit for handling sequence data from different sequencing platforms. Molecular Ecology Resources, 2018, 18, 676-680.	4.8	34
133	African <i>Drosophila melanogaster</i> and <i>D. simulans</i> Populations Have Similar Levels of Sequence Variability, Suggesting Comparable Effective Population Sizes. Genetics, 2008, 178, 405-412.	2.9	33
134	Genealogical lineage sorting leads to significant, but incorrect Bayesian multilocus inference of population structure. Molecular Ecology, 2011, 20, 1108-1121.	3.9	33
135	Genetic and developmental analysis of differences in eye and face morphology between <i>Drosophila simulans</i> and <i>Drosophila mauritiana</i> . Evolution & Development, 2013, 15, 257-267.	2.0	33
136	Benchmarking software tools for detecting and quantifying selection in evolve and resequencing studies. Genome Biology, 2019, 20, 169.	8.8	33
137	Population structure in African Drosophila melanogaster revealed by microsatellite analysis. Molecular Ecology, 2004, 14, 563-573.	3.9	32
138	Identification of Selective Sweeps Using a Dynamically Adjusted Number of Linked Microsatellites. Genetics, 2007, 175, 207-218.	2.9	32
139	<scp>Clear</scp> : Composition of Likelihoods for Evolve and Resequence Experiments. Genetics, 2017, 206, 1011-1023.	2.9	32
140	Reconstruction of Haplotype-Blocks Selected during Experimental Evolution. Molecular Biology and Evolution, 2017, 34, 174-184.	8.9	32
141	Asian horses deepen the MSY phylogeny. Animal Genetics, 2018, 49, 90-93.	1.7	32
142	The Use of Imperfect Microsatellites for DNA Fingerprinting and Population Genetics. , 1999, , 153-165.		32
143	Phylogeographic patterns in Drosophila montana. Molecular Ecology, 2006, 16, 1085-1097.	3.9	31
144	Combining evidence of selection with association analysis increases power to detect regions influencing complex traits in dairy cattle. BMC Genomics, 2012, 13, 48.	2.8	31

#	Article	IF	CITATIONS
145	Whole-genome sequences of two turkey adenovirus types reveal the existence of two unknown lineages that merit the establishment of novel species within the genus Aviadenovirus. Journal of General Virology, 2014, 95, 156-170.	2.9	31
146	Genomic Resources Notes Accepted 1 August 2014-30 September 2014. Molecular Ecology Resources, 2015, 15, 228-229.	4.8	31
147	Single nucleotide polymorphisms derived from ancestral populations show no evidence for biased diversity estimates inDrosophila melanogaster. Molecular Ecology, 2002, 11, 947-950.	3.9	30
148	The Evolution of Phenotypic Plasticity in Response to Temperature Stress. Genome Biology and Evolution, 2020, 12, 2429-2440.	2.5	30
149	A multilocus microsatellite phylogeny of the Drosophila virilis group. Heredity, 2004, 93, 161-165.	2.6	29
150	Contrasting patterns of natural variation in global <i>Drosophila melanogaster</i> populations. Molecular Ecology, 2008, 17, 4470-4479.	3.9	29
151	Drosophila Adaptation to Viral Infection through Defensive Symbiont Evolution. PLoS Genetics, 2016, 12, e1006297.	3.5	29
152	Contesting the evidence for non-adaptive plasticity. Nature, 2018, 555, E21-E22.	27.8	29
153	Distinct Patterns of Selective Sweep and Polygenic Adaptation in Evolve and Resequence Studies. Genome Biology and Evolution, 2020, 12, 890-904.	2.5	29
154	QTL analysis of variation in male courtship song characters in Drosophila virilis. Heredity, 2004, 92, 263-269.	2.6	28
155	Highly Structured Asian Drosophila melanogaster Populations: A New Tool for Hitchhiking Mapping?. Genetics, 2006, 172, 287-292.	2.9	28
156	The Genomic Signature of Splicing-Coupled Selection Differs between Long and Short Introns. Molecular Biology and Evolution, 2012, 29, 21-24.	8.9	28
157	Evolution of the spermadhesin gene family. Gene, 2005, 352, 20-29.	2.2	26
158	Ancestral population reconstitution from isofemale lines as a tool for experimental evolution. Ecology and Evolution, 2016, 6, 7169-7175.	1.9	25
159	<i>Drosophila simulans</i> : A Species with Improved Resolution in Evolve and Resequence Studies. G3: Genes, Genomes, Genetics, 2017, 7, 2337-2343.	1.8	25
160	Rapid sex-specific adaptation to high temperature in Drosophila. ELife, 2020, 9, .	6.0	25
161	Microsatellite variation in natural Drosophila melanogaster populations from New South Wales (Australia) and Tasmania. Molecular Ecology, 2001, 10, 1197-1205.	3.9	24
162	Silene tatarica microsatellites are frequently located in repetitive DNA. Journal of Evolutionary Biology, 2006, 19, 1612-1619.	1.7	24

CHRISTIAN SCHLöTTERER

#	Article	IF	CITATIONS
163	Microsatellite variation and differentiation in African and non-African populations ofDrosophila simulans. Molecular Ecology, 2006, 15, 3895-3905.	3.9	24
164	PanGEA: Identification of allele specific gene expression using the 454 technology. BMC Bioinformatics, 2009, 10, 143.	2.6	24
165	Drosophila americana as a Model Species for Comparative Studies on the Molecular Basis of Phenotypic Variation. Genome Biology and Evolution, 2013, 5, 661-679.	2.5	24
166	DNA Motifs Are Not General Predictors of Recombination in Two Drosophila Sister Species. Genome Biology and Evolution, 2019, 11, 1345-1357.	2.5	24
167	Microsatellite Analysis of Drosophila melanogaster Populations Along a Microclimatic Contrast at Lower Nahel Oren Canyon, Mount Carmel, Israel. Molecular Biology and Evolution, 2002, 19, 563-568.	8.9	23
168	A Comparative Study of the Short Term Cold Resistance Response in Distantly Related Drosophila Species: The Role of regucalcin and Frost. PLoS ONE, 2011, 6, e25520.	2.5	23
169	Intra-Specific Regulatory Variation in Drosophila pseudoobscura. PLoS ONE, 2013, 8, e83547.	2.5	23
170	The impact of library preparation protocols on the consistency of allele frequency estimates in P ool― S eq data. Molecular Ecology Resources, 2016, 16, 118-122.	4.8	22
171	Pleiotropic effects of regulatory variation in <i>tan</i> result in correlation of two pigmentation traits in <i>Drosophila melanogaster</i> . Molecular Ecology, 2018, 27, 3207-3218.	3.9	22
172	Neuronal Function and Dopamine Signaling Evolve at High Temperature in Drosophila. Molecular Biology and Evolution, 2020, 37, 2630-2640.	8.9	22
173	Allele excess at neutrally evolving microsatellites and the implications for tests of neutrality. Proceedings of the Royal Society B: Biological Sciences, 2004, 271, 869-874.	2.6	21
174	Gene expression analysis indicates extensive genotype-specific crosstalk between the conjugative F-plasmid and the E. coli chromosome. BMC Microbiology, 2006, 6, 80.	3.3	21
175	Detecting selected haplotype blocks in evolve and resequence experiments. Molecular Ecology Resources, 2021, 21, 93-109.	4.8	20
176	Evaluation of Different Reference Based Annotation Strategies Using RNA-Seq – A Case Study in Drososphila pseudoobscura. PLoS ONE, 2012, 7, e46415.	2.5	20
177	Patterns of microsatellite variation through a transition zone of a chromosomal cline in Drosophila americana. Heredity, 2006, 97, 291-295.	2.6	19
178	Segregating Variation in the Polycomb Group Gene cramped Alters the Effect of Temperature on Multiple Traits. PLoS Genetics, 2011, 7, e1001280.	3.5	19
179	Mapping Accuracy of Short Reads from Massively Parallel Sequencing and the Implications for Quantitative Expression Profiling. PLoS ONE, 2009, 4, e6323.	2.5	19
180	Shifting the paradigm in Evolve and Resequence studies: From analysis of single nucleotide polymorphisms to selected haplotype blocks. Molecular Ecology, 2019, 28, 521-524.	3.9	18

#	Article	IF	CITATIONS
181	COMMENT: Moving beyond singleâ€locus studies to characterize hybridization between oaks (Quercus) Tj ETQc	1 1 0.784 3.9	1314 rgBT /C
182	Characterization of spotted hyena,Crocuta crocutamicrosatellite loci. Molecular Ecology Notes, 2003, 3, 360-362.	1.7	16
183	A major bristle QTL from a selected population of Drosophila uncovers the zinc-finger transcription factor Poils-au-dos, a repressor of achaete–scute. Developmental Biology, 2005, 288, 194-205.	2.0	16
184	High-throughput fecundity measurements in Drosophila. Scientific Reports, 2018, 8, 4469.	3.3	16
185	Ribosomal DNA Probes and Primers. , 1998, , 267-276.		16
186	Microsatellite analysis indicates genetic differentiation of the neo-sex chromosomes in Drosophila americana americana. Heredity, 2000, 85, 610-616.	2.6	15
187	Polymorphic Microsatellites in Antirrhinum (Scrophulariaceae), a Genus With Low Levels of Nuclear Sequence Variability. , 2002, 93, 217-221.		15
188	A microsatellite linkage map for <i>Drosophila montana</i> shows large variation in recombination rates, and a courtship song trait maps to an area of low recombination. Journal of Evolutionary Biology, 2010, 23, 518-527.	1.7	15
189	Low concordance of shortâ€ŧerm and longâ€ŧerm selection responses in experimental <i>Drosophila</i> populations. Molecular Ecology, 2020, 29, 3466-3475.	3.9	15
190	Parallel gene expression evolution in natural and laboratory evolved populations. Molecular Ecology, 2021, 30, 884-894.	3.9	15
191	Secondary Evolve and Resequencing: An Experimental Confirmation of Putative Selection Targets without Phenotyping. Genome Biology and Evolution, 2020, 12, 151-159.	2.5	14
192	Patterns of Microsatellite Variability in the Drosophila Melanogaster Complex. Genetica, 2004, 120, 71-77.	1.1	13
193	Low abundance of Escherichia coli microsatellites is associated with an extremely low mutation rate. Journal of Evolutionary Biology, 2006, 19, 1671-1676.	1.7	13
194	Variation in Male Courtship Song Traits in Drosophila virilis: The Effects of Selection and Drift on Song Divergence at the Intraspecific Level. Behavior Genetics, 2008, 38, 82-92.	2.1	13
195	Non-random genomic integration - an intrinsic property of retrogenes in Drosophila?. BMC Evolutionary Biology, 2010, 10, 114.	3.2	13
196	The DAIBAM MITE element is involved in the origin of one fixed and two polymorphic Drosophila virilis phylad inversions. Fly, 2012, 6, 71-74.	1.7	13
197	High rates of phasing errors in highly polymorphic species with low levels of linkage disequilibrium. Molecular Ecology Resources, 2016, 16, 874-882.	4.8	13
198	Readapting to DCV Infection without Wolbachia: Frequency Changes of Drosophila Antiviral Alleles Can Replace Endosymbiont Protection. Genome Biology and Evolution, 2018, 10, 1783-1791.	2.5	13

#	Article	IF	CITATIONS
199	Regulation of transposable elements: Interplay between TEâ€encoded regulatory sequences and hostâ€specific <i>transâ€</i> acting factors in <i>Drosophila melanogaster</i> . Molecular Ecology, 2017, 26, 5149-5159.	3.9	12
200	An analysis of genetic differentiation among assortatively matingDrosophila melanogasterin Zimbabwe. Journal of Evolutionary Biology, 2004, 17, 493-500.	1.7	11
201	Similar mating and sperm displacement patterns in two highly divergent D. simulans populations from Africa and Europe. Molecular Ecology, 2005, 14, 1511-1515.	3.9	11
202	PoPoolation DB: a user-friendly web-based database for the retrieval of natural polymorphisms in Drosophila. BMC Genetics, 2011, 12, 27.	2.7	11
203	Strong epistatic and additive effects of linked candidate SNPs for Drosophila pigmentation have implications for analysis of genome-wide association studies results. Genome Biology, 2017, 18, 126.	8.8	11
204	A 24 h Age Difference Causes Twice as Much Gene Expression Divergence as 100 Generations of Adaptation to a Novel Environment. Genes, 2019, 10, 89.	2.4	11
205	The genetic architecture of temperature adaptation is shaped by population ancestry and not by selection regime. Genome Biology, 2021, 22, 211.	8.8	11
206	The Transposition Rate Has Little Influence on the Plateauing Level of the P-element. Molecular Biology and Evolution, 2022, 39, .	8.9	11
207	Multiple quantitative trait loci influence intra-specific variation in genital morphology between phylogenetically distinct lines of Drosophila montana. Journal of Evolutionary Biology, 2011, 24, 1879-1886.	1.7	10
208	Non-radioactive analysis of multiplexed microsatellite reactions using a direct blotting-sequencing appartatus. Nucleic Acids Research, 1993, 21, 780-780.	14.5	9
209	Temperature-gradient gel electrophoresis as a screening tool for polymorphisms in multigene families. Electrophoresis, 1995, 16, 722-728.	2.4	9
210	M13mtvh: an improved M13 vector for rapid and simple cloning of PCR products. Trends in Genetics, 1996, 12, 286.	6.7	9
211	A distance-based comparison of basic voting rules. Central European Journal of Operations Research, 2006, 14, 377-386.	1.8	9
212	African Sequence Variation Accounts for Most of the Sequence Polymorphism in Non-African Drosophila melanogaster. Genetics, 2005, 170, 1701-1709.	2.9	8
213	Male-biased genes are overrepresented among novel Drosophila pseudoobscura sex-biased genes. BMC Evolutionary Biology, 2008, 8, 182.	3.2	8
214	Fitness effects for Ace insecticide resistance mutations are determined by ambient temperature. BMC Biology, 2020, 18, 157.	3.8	8
215	The impact of shared ancestral variation on hybrid male lethality – a 16 codon indel in the <i>Drosophila simulans Lhr</i> gene. Journal of Evolutionary Biology, 2008, 21, 551-555.	1.7	7
216	Long-Term Dynamics Among Wolbachia Strains During Thermal Adaptation of Their Drosophila melanogaster Hosts. Frontiers in Genetics, 2020, 11, 482.	2.3	7

CHRISTIAN SCHLĶTTERER

#	Article	IF	CITATIONS
217	Isolation and characterization of microsatellites in Drosophila montana and their cross-species amplification in D. virilis. Molecular Ecology Notes, 2004, 4, 412-414.	1.7	6
218	ms2ms.pl: a PERL script for generating microsatellite data. Molecular Ecology Notes, 2006, 6, 580-581.	1.7	6
219	Isolation and characterization of microsatellite loci from Silene tatarica. Molecular Ecology Notes, 2005, 5, 517-518.	1.7	5
220	E. coli Microcosms Indicate a Tight Link between Predictability of Ecosystem Dynamics and Diversity. PLoS Genetics, 2006, 2, e103.	3.5	5
221	Where Do Male Genes Live?. Science, 2003, 299, 670-671.	12.6	4
222	CANGS DB: a stand-alone web-based database tool for processing, managing and analyzing 454 data in biodiversity studies. BMC Research Notes, 2011, 4, 227.	1.4	4
223	Fine Mapping without Phenotyping: Identification of Selection Targets in Secondary Evolve and Resequence Experiments. Genome Biology and Evolution, 2021, 13, .	2.5	4
224	Highly Parallel Genomic Selection Response in Replicated <i>Drosophila melanogaster</i> Populations with Reduced Genetic Variation. Genome Biology and Evolution, 2021, 13, .	2.5	4
225	Evolution of phenotypic variance in response to a novel hot environment. Molecular Ecology, 2022, 31, 934-945.	3.9	4
226	Long-term gut microbiome dynamics in <i>Drosophila melanogaster</i> reveal environment-specific associations between bacterial taxa at the family level. Proceedings of the Royal Society B: Biological Sciences, 2021, 288, 20212193.	2.6	4
227	Natural variation in Drosophila shows weak pleiotropic effects. Genome Biology, 2022, 23, 116.	8.8	4
228	Non-African Origin of a Local Beneficial Mutation in D. melanogaster. Molecular Biology and Evolution, 2005, 22, 265-272.	8.9	3
229	Polymorphismâ€aware protein databases – a prerequisite for an unbiased proteomic analysis of natural populations. Molecular Ecology Resources, 2017, 17, 1148-1155.	4.8	3
230	Pool-GWAS on reproductive dormancy in <i>Drosophila simulans</i> suggests a polygenic architecture. G3: Genes, Genomes, Genetics, 2022, 12, .	1.8	1
231	Hitchhiking mapping. , 2005, , .		0
232	Patterns of microsatellite variability in the Drosophila melanogaster complex. Contemporary Issues in Genetics and Evolution, 2004, , 71-77.	0.9	0