Rachel L Roper

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/943617/publications.pdf

Version: 2024-02-01

47 papers

5,311 citations

186209
28
h-index

223716 46 g-index

47 all docs

47 docs citations

47 times ranked

5521 citing authors

#	Article	IF	CITATIONS
1	The H-Index in Medicine and Science: Does It Favor H-im or H-er? Successes and Hurdles for Women Faculty. Digestive Diseases and Sciences, 2022, 67, 388-389.	1.1	5
2	SARS-CoV-2 Detection in air samples from inside heating, ventilation, and air conditioning (HVAC) systems- COVID surveillance in student dorms. American Journal of Infection Control, 2022, 50, 330-335.	1.1	13
3	Mosquitoâ€infecting virus Espirito Santo virus inhibits replication and spread of dengue virus. Journal of Medical Virology, 2021, 93, 3362-3373.	2.5	13
4	Discontinuation of Transmission Precautions for COVID-19 Patients. Infectious Diseases in Clinical Practice, 2021, 29, e287-e293.	0.1	2
5	Does Gender Bias Still Affect Women in Science?. Microbiology and Molecular Biology Reviews, 2019, 83, .	2.9	63
6	Simple, Rapid Preparation of Poxvirus DNA for PCR Cloning and Analysis. Methods in Molecular Biology, 2019, 2023, 63-71.	0.4	1
7	Species-Specific Conservation of Linear Antigenic Sites on Vaccinia Virus A27 Protein Homologs of Orthopoxviruses. Viruses, 2019, 11, 493.	1.5	4
8	Development of improved therapeutic mesothelin-based vaccines for pancreatic cancer. PLoS ONE, 2018, 13, e0193131.	1.1	3
9	Poxvirus Safety Analysis in the Pregnant Mouse Model, Vaccinia, and Raccoonpox Viruses. Methods in Molecular Biology, 2017, 1581, 121-129.	0.4	6
10	The effects of diets enriched in omega-3 polyunsaturated fatty acids on systemic vaccinia virus infection. Scientific Reports, 2017, 7, 15999.	1.6	19
11	Murine mesothelin: characterization, expression, and inhibition of tumor growth in a murine model of pancreatic cancer. Journal of Experimental and Clinical Cancer Research, 2016, 35, 39.	3.5	18
12	Genome sequence and comparative virulence of raccoonpox virus: the first North American poxvirus sequence. Journal of General Virology, 2015, 96, 2806-2821.	1.3	11
13	Raccoonpoxvirus safety in immunocompromised and pregnant mouse models. Vaccine, 2014, 32, 3977-3981.	1.7	13
14	Antigen Presentation Assays to Investigate Uncharacterized Immunoregulatory Genes. Methods in Molecular Biology, 2012, 890, 259-271.	0.4	1
15	Deletion of the A35 gene from Modified Vaccinia Virus Ankara increases immunogenicity and isotype switching. Vaccine, 2011, 29, 3276-3283.	1.7	40
16	Vaccinia virus A35R inhibits MHC class II antigen presentation. Virology, 2010, 397, 176-186.	1.1	41
17	The Poxvirus A35 Protein Is an Immunoregulator. Journal of Virology, 2010, 84, 418-425.	1.5	18
18	SARS vaccines: where are we?. Expert Review of Vaccines, 2009, 8, 887-898.	2.0	165

#	Article	lF	Citations
19	Vaccinia virus decreases major histocompatibility complex (MHC) class II antigen presentation, Tâ€cell priming, and peptide association with MHC class II. Immunology, 2009, 128, 381-392.	2.0	32
20	Severe acute respiratory syndrome vaccine efficacy in ferrets: whole killed virus and adenovirus-vectored vaccines. Journal of General Virology, 2008, 89, 2136-2146.	1.3	87
21	Genomic differences of Vaccinia virus clones from Dryvax smallpox vaccine: The Dryvax-like ACAM2000 and the mouse neurovirulent Clone-3. Vaccine, 2007, 25, 8807-8832.	1.7	40
22	Unique SARS-CoV protein nsp1: bioinformatics, biochemistry and potential effects on virulence. Trends in Microbiology, 2007, 15, 51-53.	3.5	31
23	The complete sequence of the bovine torovirus genome. Virus Research, 2006, 115, 56-68.	1.1	59
24	Characterization of the Vaccinia Virus A35R Protein and Its Role in Virulence. Journal of Virology, 2006, 80, 306-313.	1.5	31
25	Comparative evaluation of two severe acute respiratory syndrome (SARS) vaccine candidates in mice challenged with SARS coronavirus. Journal of General Virology, 2006, 87, 641-650.	1.3	145
26	Virulence differences between monkeypox virus isolates from West Africa and the Congo basin. Virology, 2005, 340, 46-63.	1.1	342
27	Complete coding sequences of the rabbitpox virus genome. Journal of General Virology, 2005, 86, 2969-2977.	1.3	41
28	Rapid Response Research - SARS Coronavirus Vaccines and Application of Processes to Other Emerging Infectious Diseases. Current Immunology Reviews, 2005, 1, 185-200.	1.2	11
29	Severe Acute Respiratory Syndrome (SARS): A Year in Review. Annual Review of Medicine, 2005, 56, 357-381.	5.0	150
30	JDotter: a Java interface to multiple dotplots generated by dotter. Bioinformatics, 2004, 20, 279-281.	1.8	102
31	Rapid Preparation of Vaccinia Virus DNA Template for Analysis and Cloning by PCR., 2004, 269, 113-118.		6
32	Base-By-Base: single nucleotide-level analysis of whole viral genome alignments. BMC Bioinformatics, 2004, 5, 96.	1.2	64
33	The Genome Sequence of the SARS-Associated Coronavirus. Science, 2003, 300, 1399-1404.	6.0	1,842
34	Poxvirus Orthologous Clusters: toward Defining the Minimum Essential Poxvirus Genome. Journal of Virology, 2003, 77, 7590-7600.	1.5	254
35	Poxvirus Orthologous Clusters (POCs). Bioinformatics, 2002, 18, 1544-1545.	1.8	62
36	Prostaglandin E2 and cAMP promote B lymphocyte class switching to IgG1. Immunology Letters, 2002, 84, 191-198.	1.1	47

#	Article	IF	CITATIONS
37	Envelope Formation Is Blocked by Mutation of a Sequence Related to the HKD Phospholipid Metabolism Motif in the Vaccinia Virus F13L Protein. Journal of Virology, 1999, 73, 1108-1117.	1.5	38
38	The Envelope Protein Encoded by the A33R Gene Is Required for Formation of Actin-Containing Microvilli and Efficient Cell-to-Cell Spread of Vaccinia Virus. Journal of Virology, 1998, 72, 4192-4204.	1.5	138
39	Mutagenesis of phospholipase D defines a superfamily including a trans-Golgi viral protein required for poxvirus pathogenicity. EMBO Journal, 1997, 16, 4519-4530.	3.5	341
40	Extracellular vaccinia virus envelope glycoprotein encoded by the A33R gene. Journal of Virology, 1996, 70, 3753-3762.	1.5	140
41	Prostaglandin E2 promotes B lymphocyte Ig isotype switching to IgE. Journal of Immunology, 1995, 154, 162-70.	0.4	94
42	Prostaglandin E2 Inhibits B Lymphocyte Activation by a cAMP-Dependent Mechanism: PGE-Inducible Regulatory Proteins. Cellular Immunology, 1994, 154, 296-308.	1.4	49
43	Prostaglandin E2 and cAMP inhibit B lymphocyte activation and simultaneously promote IgE and IgG1 synthesis. Journal of Immunology, 1992, 149, 2984-91.	0.4	70
44	A new view of prostaglandin E regulation of the immune response. Trends in Immunology, 1991, 12, 349-352.	7. 5	506
45	Regulation of B-Cell Tolerance and Triggering by Macrophages and Lymphoid Dendritic Cells. Immunological Reviews, 1990, 117, 135-158.	2.8	36
46	Prostaglandin E2 promotes IL-4-induced IgE and IgG1 synthesis. Journal of Immunology, 1990, 145, 2644-51.	0.4	110
47	Alternative antigen presentation pathways: accessory cells which down-regulate immune responses. Regional Immunology, 1989, 2, 326-39.	0.4	7