Yiwang Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9436072/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Dual Triplet Sensitization Strategy for Efficient and Stable Triplet–Triplet Annihilation Upconversion Perovskite Solar Cells. CCS Chemistry, 2023, 5, 729-740.	4.6	23
2	Defect Passivation Effect of Chemical Groups on Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2022, 14, 34161-34170.	4.0	33
3	Realizing high-performance organic solar cells through precise control of HOMO driving force based on ternary alloy strategy. Journal of Energy Chemistry, 2022, 65, 133-140.	7.1	18
4	Wide Voltage Aqueous Asymmetric Supercapacitors: Advances, Strategies, and Challenges. Advanced Functional Materials, 2022, 32, 2108107.	7.8	90
5	Allâ€Green Solventâ€Processed Planar Heterojunction Organic Solar Cells with Outstanding Power Conversion Efficiency of 16%. Advanced Functional Materials, 2022, 32, 2107567.	7.8	58
6	A Regularityâ€Based Fullerene Interfacial Layer for Efficient and Stable Perovskite Solar Cells via Bladeâ€Coating. Advanced Functional Materials, 2022, 32, 2105917.	7.8	14
7	Manipulating the Interlayer Spacing of 3D MXenes with Improved Stability and Zincâ€lon Storage Capability. Advanced Functional Materials, 2022, 32, 2109524.	7.8	97
8	Novel Narrow Bandgap Terpolymer Donors Enables Record Performance for Semitransparent Organic Solar Cells Based on Allâ€Narrow Bandgap Semiconductors. Advanced Functional Materials, 2022, 32, .	7.8	52
9	Iron-based nanocomposites implanting in N, P Co-doped carbon nanosheets as efficient oxygen reduction electrocatalysts for Zn-Air batteries. Composites Communications, 2022, 29, 100994.	3.3	16
10	Printable and stable all-polymer solar cells based on non-conjugated polymer acceptors with excellent mechanical robustness. Science China Chemistry, 2022, 65, 182-189.	4.2	31
11	Inhibiting excessive molecular aggregation to achieve highly efficient and stabilized organic solar cells by introducing a star-shaped nitrogen heterocyclic-ring acceptor. Energy and Environmental Science, 2022, 15, 384-394.	15.6	62
12	Optimizing Microenvironment of Asymmetric N,Sâ€Coordinated Singleâ€Atom Fe via Axial Fifth Coordination toward Efficient Oxygen Electroreduction. Small, 2022, 18, e2105387.	5.2	72
13	Diammonium Molecular Configurationâ€Induced Regulation of Crystal Orientation and Carrier Dynamics for Highly Efficient and Stable 2D/3D Perovskite Solar Cells. Angewandte Chemie - International Edition, 2022, 61, .	7.2	68
14	Diammonium Molecular Configurationâ€Induced Regulation of Crystal Orientation and Carrier Dynamics for Highly Efficient and Stable 2D/3D Perovskite Solar Cells. Angewandte Chemie, 2022, 134, .	1.6	28
15	Colloidal chemistry in perovskite precursor solution. Science Bulletin, 2022, 67, 561-564.	4.3	12
16	Acetic Acidâ€Assisted Synergistic Modulation of Crystallization Kinetics and Inhibition of Sn ²⁺ Oxidation in Tinâ€Based Perovskite Solar Cells. Advanced Functional Materials, 2022, 32, 2109631.	7.8	95
17	Highly efficient and stable ZnO-based MA-free perovskite solar cells via overcoming interfacial mismatch and deprotonation reaction. Chemical Engineering Journal, 2022, 431, 134235.	6.6	28
18	Recent Developments of nâ€Type Organic Thermoelectric Materials: Influence of Structure Modification on Molecule Arrangement and Solution Processing. ChemSusChem, 2022, 15, .	3.6	13

#	Article	IF	CITATIONS
19	Highâ€Energy Aqueous Asymmetric Supercapacitors via Synergistic Design of Electrodes Derived from Hierarchical Vanadium Dioxide Nanocomposites. ChemElectroChem, 2022, 9, .	1.7	0
20	Deciphering the Precursor–Performance Relationship of Singleâ€Atom Iron Oxygen Electroreduction Catalysts via Isomer Engineering. Small, 2022, 18, e2106122.	5.2	9
21	High Energy and Power Zinc Ion Capacitors: A Dual-Ion Adsorption and Reversible Chemical Adsorption Coupling Mechanism. ACS Nano, 2022, 16, 2877-2888.	7.3	87
22	The synergistic effects of central core size and end group engineering on performance of narrow bandgap nonfullerene acceptors. Chemical Engineering Journal, 2022, 435, 135020.	6.6	14
23	Manipulating the electronic configuration of Fe–N ₄ sites by an electron-withdrawing/donating strategy with improved oxygen electroreduction performance. Materials Chemistry Frontiers, 2022, 6, 1209-1217.	3.2	10
24	Advancements in organic small molecule hole-transporting materials for perovskite solar cells: past and future. Journal of Materials Chemistry A, 2022, 10, 5044-5081.	5.2	69
25	Surface microstructural engineering of silicone elastomers for high performance adhesive surface-enabled mechanical energy harvesters. Journal of Materials Chemistry A, 2022, 10, 9643-9654.	5.2	5
26	A general enlarging shear impulse approach to green printing large-area and efficient organic photovoltaics. Energy and Environmental Science, 2022, 15, 2130-2138.	15.6	38
27	Simultaneously Integrate Iron Single Atom and Nanocluster Triggered Tandem Effect for Boosting Oxygen Electroreduction. Small, 2022, 18, e2107225.	5.2	72
28	Uncovering the Mechanism of Poly(ionicâ€ŀiquid)s Multiple Inhibition of Ion Migration for Efficient and Stable Perovskite Solar Cells. Advanced Energy Materials, 2022, 12, .	10.2	36
29	Nonfused Ring Electron Acceptors for Efficient Organic Solar Cells Enabled by Multiple Intramolecular Conformational Locks. ACS Applied Energy Materials, 2022, 5, 5136-5145.	2.5	16
30	Oligomerâ€Assisted Photoactive Layers Enable >18 % Efficiency of Organic Solar Cells. Angewandte Chemie - International Edition, 2022, 61, .	7.2	43
31	N-Doped Carbon Coated SnS/rGO Composite with Superior Cyclic Stability as Anode for Lithium-Ion Batteries. Industrial & Engineering Chemistry Research, 2022, 61, 4339-4347.	1.8	4
32	Reducing Photovoltaic Property Loss of Organic Solar Cells in Bladeâ€Coating by Optimizing Microâ€Nanomorphology via Nonhalogenated Solvent. Advanced Energy Materials, 2022, 12, .	10.2	45
33	Ferroelectric Polymer Drives Performance Enhancement of Nonâ€fullerene Organic Solar Cells. Angewandte Chemie, 2022, 134, .	1.6	3
34	Ferroelectric Polymer Drives Performance Enhancement of Nonâ€fullerene Organic Solar Cells. Angewandte Chemie - International Edition, 2022, 61, .	7.2	29
35	Pseudoâ€Planar Heterojunction Organic Photovoltaics with Optimized Light Utilization for Printable Solar Windows. Advanced Materials, 2022, 34, e2201604.	11.1	30
36	Halogen-free donor polymers based on dicyanobenzotriazole for additive-free organic solar cells. Chemical Engineering Journal, 2022, 442, 136068.	6.6	6

#	Article	IF	CITATIONS
37	Recent progress in organic solar cells (Part I material science). Science China Chemistry, 2022, 65, 224-268.	4.2	349
38	Rational Regulation of the Molecular Aggregation Enables A Facile Bladeâ€Coating Process of Largeâ€area Allâ€Polymer Solar Cells with Record Efficiency. Small, 2022, 18, e2200734.	5.2	14
39	Hierarchically nitrogen-doped mesoporous carbon nanospheres with dual ion adsorption capability for superior rate and ultra-stable zinc ion hybrid supercapacitors. Science China Materials, 2022, 65, 2401-2411.	3.5	17
40	Elimination of Interfacial Lattice Mismatch and Detrimental Reaction by Selfâ€Assembled Layer Dualâ€Passivation for Efficient and Stable Inverted Perovskite Solar Cells. Advanced Energy Materials, 2022, 12, .	10.2	75
41	Regulation of Crystallinity and Vertical Phase Separation Enables Highâ€Efficiency Thick Organic Solar Cells. Advanced Functional Materials, 2022, 32, .	7.8	29
42	A Bionic Interface to Suppress the Coffeeâ€Ring Effect for Reliable and Flexible Perovskite Modules with a Nearâ€90% Yield Rate. Advanced Materials, 2022, 34, e2201840.	11.1	54
43	Recent progress in organic solar cells (Part II device engineering). Science China Chemistry, 2022, 65, 1457-1497.	4.2	157
44	Breaking the Scaling Relationship Limit: From Single-Atom to Dual-Atom Catalysts. Accounts of Materials Research, 2022, 3, 584-596.	5.9	73
45	Quantum Dot Hybridization of Piezoelectric Polymer Films for Non-Transfer Integration of Flexible Biomechanical Energy Harvesters. ACS Applied Materials & Interfaces, 2022, 14, 29934-29944.	4.0	4
46	Reactive Inhibition Strategy for Tripleâ€cation Mixedâ€halide Perovskite Ink with Prolonged Shelfâ€ŀife. Advanced Energy Materials, 2022, 12, .	10.2	16
47	NIR Photodetectors with Highly Efficient Detectivity Enabled by 2D Fluorinated Dithienopicenocarbazoleâ€Based Ultraâ€Narrow Bandgap Acceptors. Advanced Functional Materials, 2022, 32, .	7.8	24
48	AIE Molecules UVâ€Filtering Effect Improves the Photostability of Organic Solar Cells. Advanced Optical Materials, 2022, 10, .	3.6	9
49	3D Networkâ€Assisted Crystallization for Fully Printed Perovskite Solar Cells with Superior Irradiation Stability. Advanced Functional Materials, 2022, 32, .	7.8	8
50	High molecular weight polymeric acceptors based on semi-perfluoroalkylated perylene diimides for pseudo-planar heterojunction all-polymer organic solar cells. Polymer, 2022, 255, 125114.	1.8	5
51	Cementitious grain-boundary passivation for flexible perovskite solar cells with superior environmental stability and mechanical robustness. Science Bulletin, 2021, 66, 527-535.	4.3	54
52	1,2,4-Triazoline-3,5-dione substituted perylene diimides as near infrared acceptors for bulk heterojunction organic solar cells. Dyes and Pigments, 2021, 187, 109108.	2.0	8
53	Recent Advances of PEDOT in Flexible Energy Conversion and Storage Devices. Acta Chimica Sinica, 2021, 79, 853.	0.5	3
54	A novel AIE molecule as a hole transport layer enables efficient and stable perovskite solar cells. Chemical Communications, 2021, 57, 4015-4018.	2.2	10

#	Article	IF	CITATIONS
55	Revealing Morphology Evolution in Highly Efficient Bulk Heterojunction and Pseudoâ€Planar Heterojunction Solar Cells by Additives Treatment. Advanced Energy Materials, 2021, 11, 2003390.	10.2	106
56	An <i>in situ</i> bifacial passivation strategy for flexible perovskite solar module with mechanical robustness by roll-to-roll fabrication. Journal of Materials Chemistry A, 2021, 9, 5759-5768.	5.2	48
57	Ultra-flexible and waterproof perovskite photovoltaics for washable power source applications. Chemical Communications, 2021, 57, 6320-6323.	2.2	12
58	Coupling of EDLC and the reversible redox reaction: oxygen functionalized porous carbon nanosheets for zinc-ion hybrid supercapacitors. Journal of Materials Chemistry A, 2021, 9, 15404-15414.	5.2	62
59	Pyrolysis-free polymer-based oxygen electrocatalysts. Energy and Environmental Science, 2021, 14, 2789-2808.	15.6	55
60	Tremendously enhanced photocurrent enabled by triplet–triplet annihilation up-conversion for high-performance perovskite solar cells. Energy and Environmental Science, 2021, 14, 3532-3541.	15.6	29
61	Narrow band-gap materials with overlapping absorption simultaneously increase the open circuit voltage and average visible transmittance of semitransparent organic solar cells. Journal of Materials Chemistry A, 2021, 9, 5711-5719.	5.2	34
62	Highly porous Mn ₃ O ₄ nanosheets with <i>in situ</i> coated carbon enabling fully screen-printed planar supercapacitors with remarkable volumetric performance. Journal of Materials Chemistry A, 2021, 9, 4273-4280.	5.2	11
63	Structural similarity induced improvement in the performance of organic solar cells based on novel terpolymer donors. Journal of Materials Chemistry A, 2021, 9, 9238-9247.	5.2	32
64	Green quasi-solid-state planar asymmetric supercapacitors with high working voltage and extraordinary volumetric energy density. Journal of Materials Chemistry A, 2021, 9, 14363-14371.	5.2	14
65	Enriching redox active sites by interconnected nanowalls-like nickel cobalt phospho-sulfide nanosheets for high performance supercapacitors. Chinese Chemical Letters, 2021, 32, 3553-3557.	4.8	14
66	Evaporationâ€Free Organic Solar Cells with High Efficiency Enabled by Dry and Nonimmersive Sintering Strategy. Advanced Functional Materials, 2021, 31, 2010764.	7.8	8
67	Novel polymer acceptors achieving 10.18% efficiency for all-polymer solar cells. Journal of Energy Chemistry, 2021, 53, 63-68.	7.1	23
68	Rapid Microwave-Assisted Synthesis of SnO ₂ Quantum Dots for Efficient Planar Perovskite Solar Cells. ACS Applied Energy Materials, 2021, 4, 1887-1893.	2.5	37
69	Over 70% Fill Factor of Allâ€Polymer Solar Cells Guided by the Law of Similarity and Intermiscibility. Solar Rrl, 2021, 5, 2100019.	3.1	6
70	Enabling 2.4-V aqueous supercapacitors through the rational design of an integrated electrode of hollow vanadium trioxide/carbon nanospheres. Science China Materials, 2021, 64, 2163-2172.	3.5	18
71	A non-wetting and conductive polyethylene dioxothiophene hole transport layer for scalable and flexible perovskite solar cells. Science China Chemistry, 2021, 64, 834-843.	4.2	21
72	Ionic Liquid-Induced Ostwald Ripening Effect for Efficient and Stable Tin-Based Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2021, 13, 15420-15428.	4.0	34

#	Article	IF	CITATIONS
73	Regulation of the Miscibility of the Active Layer by Random Terpolymer Acceptors to Realize High-Performance All-Polymer Solar Cells. ACS Applied Polymer Materials, 2021, 3, 1923-1931.	2.0	10
74	Theoretical Study of Excited State Charge Transfer Characteristics based on A–D–A and A–DAâ€2D–A Ty Nonfullerene Acceptors. Journal of Physical Chemistry C, 2021, 125, 10250-10259.	/pe _{1.5}	40
75	Wearable Tinâ€Based Perovskite Solar Cells Achieved by a Crystallographic Size Effect. Angewandte Chemie - International Edition, 2021, 60, 14693-14700.	7.2	53
76	Wearable Tinâ€Based Perovskite Solar Cells Achieved by a Crystallographic Size Effect. Angewandte Chemie, 2021, 133, 14814-14821.	1.6	12
77	Highâ€Efficiency (16.93%) Pseudoâ€Planar Heterojunction Organic Solar Cells Enabled by Binary Additives Strategy. Advanced Functional Materials, 2021, 31, 2102291.	7.8	68
78	High-κ La2O3 as an anode modifier to reduce leakage current for efficient perovskite solar cells. Surfaces and Interfaces, 2021, 24, 101102.	1.5	3
79	Directional Crystallization by Floating Self-Assembly for Efficient and Stable Tin-based Perovskite Solar Cells. Chemistry of Materials, 2021, 33, 4362-4372.	3.2	20
80	Bending-stability Interfacial Layer as Dual Electron Transport Layer for Flexible Organic Photovoltaics. Chinese Journal of Polymer Science (English Edition), 2021, 39, 1441-1447.	2.0	23
81	Layer-by-Layer Solution-Processed Organic Solar Cells with Perylene Diimides as Acceptors. ACS Applied Materials & Interfaces, 2021, 13, 29876-29884.	4.0	14
82	Current Development toward Commercialization of Metalâ€Halide Perovskite Photovoltaics. Advanced Optical Materials, 2021, 9, 2100390.	3.6	15
83	Silicon Naphthalocyanine Tetraimides: Cathode Interlayer Materials for Highly Efficient Organic Solar Cells. Angewandte Chemie - International Edition, 2021, 60, 19053-19057.	7.2	43
84	Molecular Control of Carbonâ€Based Oxygen Reduction Electrocatalysts through Metal Macrocyclic Complexes Functionalization. Advanced Energy Materials, 2021, 11, 2100866.	10.2	60
85	Spontaneous Formation of Upper Gradient 2D Structure for Efficient and Stable Quasiâ€2D Perovskites. Advanced Materials, 2021, 33, e2101823.	11.1	36
86	Releasing Nanocapsules for Highâ€Throughput Printing of Stable Perovskite Solar Cells. Advanced Energy Materials, 2021, 11, 2101291.	10.2	18
87	Silicon Naphthalocyanine Tetraimides: Cathode Interlayer Materials for Highly Efficient Organic Solar Cells. Angewandte Chemie, 2021, 133, 19201-19205.	1.6	2
88	Thickness-Insensitive Anode Interface Layer for High-Efficiency Organic Solar Cells. ACS Applied Materials & Interfaces, 2021, 13, 39844-39853.	4.0	11
89	Recent Developments of Microenvironment Engineering of Singleâ€Atom Catalysts for Oxygen Reduction toward Desired Activity and Selectivity. Advanced Functional Materials, 2021, 31, 2103857.	7.8	77
90	Electrodeposition of poly(3,4-ethylenedioxythiophene) coated manganese dioxide nanospheres for flexible asymmetric planar supercapacitor with superior energy density. Journal of Power Sources, 2021, 506, 230176.	4.0	20

#	Article	IF	CITATIONS
91	A Highly Tolerant Printing for Scalable and Flexible Perovskite Solar Cells. Advanced Functional Materials, 2021, 31, 2107726.	7.8	43
92	Novel efficient accptor1-acceptor2 type copolymer donors: Vinyl induced planar geometry and high performance organic solar cells. Chemical Engineering Journal, 2021, 419, 129532.	6.6	12
93	Highly crystalline acceptor materials based on benzodithiophene with different amount of fluorine substitution on alkoxyphenyl conjugated side chains for organic photovoltaics. Materials Reports Energy, 2021, 1, 100059.	1.7	2
94	Molecular crowding agents engineered to make bioinspired electrolytes for high-voltage aqueous supercapacitors. EScience, 2021, 1, 83-90.	25.0	69
95	Obstructing interfacial reaction between NiOx and perovskite to enable efficient and stable inverted perovskite solar cells. Chemical Engineering Journal, 2021, 426, 131357.	6.6	50
96	Minimization of ion transport resistance: diblock copolymer micelle derived nitrogen-doped hierarchically porous carbon spheres for superior rate and power Zn-ion capacitors. Journal of Materials Chemistry A, 2021, 9, 8435-8443.	5.2	45
97	Fast assembly of MXene hydrogels by interfacial electrostatic interaction for supercapacitors. Chemical Communications, 2021, 57, 10731-10734.	2.2	24
98	Toward efficient perovskite solar cells by planar imprint for improved perovskite film quality and granted bifunctional barrier. Journal of Materials Chemistry A, 2021, 9, 16178-16186.	5.2	21
99	Regulating Favorable Morphology Evolution by a Simple Liquid-Crystalline Small Molecule Enables Organic Solar Cells with over 17% Efficiency and a Remarkable <i>J</i> _{sc} of 26.56 mA/cm ² . Chemistry of Materials, 2021, 33, 430-440.	3.2	49
100	Reply to the â€~Comment on "Tremendously enhanced photocurrent enabled by triplet–triplet annihilation up-conversion for high-performance perovskite solar cellsâ€â€™ by L. Nienhaus and T. W. Schmidt, <i>Energy Environ. Sci.</i> , 2021, 14 , 10.1039/D1EE01446C. Energy and Environmental Science, 2021, 14, 6053-6054.	15.6	2
101	A Biomimetic Self‧hield Interface for Flexible Perovskite Solar Cells with Negligible Lead Leakage. Advanced Functional Materials, 2021, 31, 2106460.	7.8	54
102	Enhanced Efficiency and Excellent Thermostability in Organic Photovoltaics via Ternary Strategy with Twisted Conjugated Compound. Small, 2021, 17, e2103537.	5.2	12
103	Synthesis and property study of phthalocyanine tetraimides as solution processable electron acceptors. Dyes and Pigments, 2020, 173, 107980.	2.0	6
104	Flexible perovskite solar cells: device design and perspective. Flexible and Printed Electronics, 2020, 5, 013002.	1.5	17
105	Coaxial electrospun free-standing and mechanically stable hierarchical porous carbon nanofiber membranes for flexible supercapacitors. Carbon, 2020, 160, 80-87.	5.4	75
106	Subnaphthalocyanine triimides: potential three-dimensional solution processable acceptors for organic solar cells. Journal of Materials Chemistry C, 2020, 8, 2186-2195.	2.7	12
107	Lowâ€Temperatureâ€Processed WO _{<i>x</i>} as Electron Transfer Layer for Planar Perovskite Solar Cells Exceeding 20% Efficiency. Solar Rrl, 2020, 4, 1900499.	3.1	36
108	Boosting Oxygen Reduction of Single Iron Active Sites via Geometric and Electronic Engineering: Nitrogen and Phosphorus Dual Coordination. Journal of the American Chemical Society, 2020, 142, 2404-2412.	6.6	680

#	Article	IF	CITATIONS
109	Regulating Voltage Window and Energy Density of Aqueous Asymmetric Supercapacitors by Pineconeâ€Like Hollow Fe ₂ O ₃ /MnO ₂ Nanoâ€Heterostructure. Advanced Materials Interfaces, 2020, 7, 1901729.	1.9	35
110	Stable Triple Cation Perovskite Precursor for Highly Efficient Perovskite Solar Cells Enabled by Interaction with 18C6 Stabilizer. Advanced Functional Materials, 2020, 30, 1908613.	7.8	65
111	Recent advances of computational chemistry in organic solar cell research. Journal of Materials Chemistry C, 2020, 8, 15920-15939.	2.7	59
112	A General Electrodeposition Strategy for Fabricating Ultrathin Nickel Cobalt Phosphate Nanosheets with Ultrahigh Capacity and Rate Performance. ACS Nano, 2020, 14, 14201-14211.	7.3	120
113	Innenrücktitelbild: Stretchable Perovskite Solar Cells with Recoverable Performance (Angew. Chem.) Tj ETQq1	1	4 rgBT /Ove
114	Printable and Largeâ€Area Organic Solar Cells Enabled by a Ternary Pseudoâ€Planar Heterojunction Strategy. Advanced Functional Materials, 2020, 30, 2003223.	7.8	59
115	Engineering efficient bifunctional electrocatalysts for rechargeable zinc–air batteries by confining Fe–Co–Ni nanoalloys in nitrogen-doped carbon nanotube@nanosheet frameworks. Journal of Materials Chemistry A, 2020, 8, 25919-25930.	5.2	58
116	Understanding the Mechanism between Antisolvent Dripping and Additive Doping Strategies on the Passivation Effects in Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 56151-56160.	4.0	35
117	Isomeric Effect of Wide Bandgap Polymer Donors with High Crystallinity to Achieve Efficient Polymer Solar Cells. Macromolecular Rapid Communications, 2020, 41, e2000454.	2.0	10
118	Covalently Sandwiching MXene by Conjugated Microporous Polymers with Excellent Stability for Supercapacitors. Small Methods, 2020, 4, 2000434.	4.6	57
119	Atomic Layer Deposition of Metal Oxides in Perovskite Solar Cells: Present and Future. Small Methods, 2020, 4, 2000588.	4.6	21
120	Concerted regulation on vertical orientation and film quality of two-dimensional ruddlesden-popper perovskite layer for efficient solar cells. Science China Chemistry, 2020, 63, 1675-1683.	4.2	9
121	Printable Hole Transport Layer for 1.0 cm ² Organic Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 52028-52037.	4.0	21
122	Hole transport layers for organic solar cells: recent progress and prospects. Journal of Materials Chemistry A, 2020, 8, 11478-11492.	5.2	99
123	Stretchable Perovskite Solar Cells with Recoverable Performance. Angewandte Chemie - International Edition, 2020, 59, 16602-16608.	7.2	122
124	Stretchable Perovskite Solar Cells with Recoverable Performance. Angewandte Chemie, 2020, 132, 16745.	1.6	8
125	Wide Band-gap Two-dimension Conjugated Polymer Donors with Different Amounts of Chlorine Substitution on Alkoxyphenyl Conjugated Side Chains for Non-fullerene Polymer Solar Cells. Chinese Journal of Polymer Science (English Edition), 2020, 38, 797-805.	2.0	15
126	Reducing Energy Loss and Morphology Optimization Manipulated by Molecular Geometry Engineering for Heteroâ€junction Organic Solar Cells. Chinese Journal of Chemistry, 2020, 38, 1553-1559.	2.6	19

#	Article	IF	CITATIONS
127	Bio-inspired vertebral design for scalable and flexible perovskite solar cells. Nature Communications, 2020, 11, 3016.	5.8	173
128	Twoâ€Dimension Conjugated Acceptors Based on Benzodi(cyclopentadithiophene) Core with Thiopheneâ€Fused Ending Group for Efficient Polymer Solar Cells. Solar Rrl, 2020, 4, 2000071.	3.1	12
129	Zn–Air Batteries: Simultaneously Integrating Single Atomic Cobalt Sites and Co ₉ S ₈ Nanoparticles into Hollow Carbon Nanotubes as Trifunctional Electrocatalysts for Zn–Air Batteries to Drive Water Splitting (Small 10/2020). Small, 2020, 16, 2070053.	5.2	1
130	Stabilized and Operational PbI ₂ Precursor Ink for Large-Scale Perovskite Solar Cells via Two-Step Blade-Coating. Journal of Physical Chemistry C, 2020, 124, 8129-8139.	1.5	23
131	The role of dipole moment in two fused-ring electron acceptor and one polymer donor based ternary organic solar cells. Materials Chemistry Frontiers, 2020, 4, 1507-1518.	3.2	22
132	An Effective Method for Recovering Nonradiative Recombination Loss in Scalable Organic Solar Cells. Advanced Functional Materials, 2020, 30, 2000417.	7.8	31
133	Regulated Crystallization of Efficient and Stable Tin-Based Perovskite Solar Cells via a Self-Sealing Polymer. ACS Applied Materials & Interfaces, 2020, 12, 14049-14056.	4.0	95
134	A generalized one-step in situ formation of metal sulfide/reduced graphene oxide nanosheets toward high-performance supercapacitors. Science China Materials, 2020, 63, 1898-1909.	3.5	48
135	Preparation of efficient inverted tin-based perovskite solar cells <i>via</i> the bidentate coordination effect of 8-hydroxyquinoline. Chemical Communications, 2020, 56, 4007-4010.	2.2	56
136	Highâ€₽erformance Pseudoplanar Heterojunction Ternary Organic Solar Cells with Nonfullerene Alloyed Acceptor. Advanced Functional Materials, 2020, 30, 1909760.	7.8	89
137	Polyolefin Elastomer as the Anode Interfacial Layer for Improved Mechanical and Air Stabilities in Nonfullerene Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 10706-10716.	4.0	24
138	Simultaneously Integrating Single Atomic Cobalt Sites and Co ₉ S ₈ Nanoparticles into Hollow Carbon Nanotubes as Trifunctional Electrocatalysts for Zn–Air Batteries to Drive Water Splitting. Small, 2020, 16, e1906735.	5.2	98
139	Asymmetric Acceptors with Fluorine and Chlorine Substitution for Organic Solar Cells toward 16.83% Efficiency. Advanced Functional Materials, 2020, 30, 2000456.	7.8	164
140	Introducing Porphyrin Units by Random Copolymerization Into NDI-Based Acceptor for All Polymer Solar Cells. Frontiers in Chemistry, 2020, 8, 310.	1.8	7
141	An efficient and stable tin-based perovskite solar cell passivated by aminoguanidine hydrochloride. Journal of Materials Chemistry C, 2020, 8, 7786-7792.	2.7	25
142	"Double-Acceptor-Type―Random Conjugated Terpolymer Donors for Additive-Free Non-Fullerene Organic Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 20741-20749.	4.0	15
143	Controlling Crystal Growth via an Autonomously Longitudinal Scaffold for Planar Perovskite Solar Cells. Advanced Materials, 2020, 32, e2000617.	11.1	118
144	Thioether Bond Modification Enables Boosted Photovoltaic Performance of Nonfullerene Polymer Solar Cells. ACS Applied Materials & Interfaces, 2019, 11, 32218-32224.	4.0	16

#	Article	IF	CITATIONS
145	A General Approach for Labâ€toâ€Manufacturing Translation on Flexible Organic Solar Cells. Advanced Materials, 2019, 31, e1903649.	11.1	114
146	Construction of facile ion and electron diffusion by hierarchical core-branch Zn substituted Ni–Co–S nanocomposite for high-performance asymmetric supercapacitors. Carbon, 2019, 153, 531-538.	5.4	58
147	Silver Mesh Electrodes via Electroless Deposition-Coupled Inkjet-Printing Mask Technology for Flexible Polymer Solar Cells. Langmuir, 2019, 35, 9713-9720.	1.6	20
148	Hierarchical Nanosheets/Walls Structured Carbonâ€Coated Porous Vanadium Nitride Anodes Enable Wideâ€Voltageâ€Window Aqueous Asymmetric Supercapacitors with High Energy Density. Advanced Science, 2019, 6, 1900550.	5.6	61
149	Unraveling the Morphology in Solution-Processed Pseudo-Bilayer Planar Heterojunction Organic Solar Cells. ACS Applied Materials & Interfaces, 2019, 11, 26213-26221.	4.0	38
150	Waterâ€Resistant and Flexible Perovskite Solar Cells via a Glued Interfacial Layer. Advanced Functional Materials, 2019, 29, 1902629.	7.8	89
151	A Mechanically Robust Conducting Polymer Network Electrode for Efficient Flexible Perovskite Solar Cells. Joule, 2019, 3, 2205-2218.	11.7	175
152	Exploring Overall Photoelectric Applications by Organic Materials Containing Symmetric Donor Isomers. Chemistry of Materials, 2019, 31, 8810-8819.	3.2	12
153	Flexible Solar Cells: A General Approach for Labâ€ŧoâ€Manufacturing Translation on Flexible Organic Solar Cells (Adv. Mater. 41/2019). Advanced Materials, 2019, 31, 1970294.	11.1	5
154	Toward Scalable PbS Quantum Dot Solar Cells Using a Tailored Polymeric Hole Conductor. ACS Energy Letters, 2019, 4, 2850-2858.	8.8	61
155	Electroless deposition of silver grids flexible transparent electrode integrated by ultra-violet nanoimprint lithography. Organic Electronics, 2019, 75, 105408.	1.4	17
156	Nacre-inspired crystallization and elastic "brick-and-mortar―structure for a wearable perovskite solar module. Energy and Environmental Science, 2019, 12, 979-987.	15.6	114
157	Seleno twisted benzodiperylenediimides: facile synthesis and excellent electron acceptors for additive-free organic solar cells. Chemical Communications, 2019, 55, 703-706.	2.2	12
158	A Terminally Tetrafluorinated Nonfullerene Acceptor for Wellâ€₽erforming Alloy Ternary Solar Cells. Advanced Functional Materials, 2019, 29, 1805872.	7.8	70
159	A novel alkylsilyl-fused copolymer-based non-fullerene solar cell with over 12% efficiency. Journal of Materials Chemistry A, 2019, 7, 4145-4152.	5.2	17
160	Morphological optimization by rational matching of the donor and acceptor boosts the efficiency of alkylsilyl fused ring-based polymer solar cells. Journal of Materials Chemistry A, 2019, 7, 4847-4854.	5.2	10
161	Amphiphilic Fullerenes Employed to Improve the Quality of Perovskite Films and the Stability of Perovskite Solar Cells. ACS Applied Materials & amp; Interfaces, 2019, 11, 24782-24788.	4.0	55
162	Incorporation of two electron acceptors to improve the electron mobility and stability of perovskite solar cells. Journal of Materials Chemistry C, 2019, 7, 8344-8349.	2.7	14

#	Article	IF	CITATIONS
163	Covalent Connection of Polyaniline with MoS ₂ Nanosheets toward Ultrahigh Rate Capability Supercapacitors. ACS Sustainable Chemistry and Engineering, 2019, 7, 11540-11549.	3.2	66
164	Vertical Distribution to Optimize Active Layer Morphology for Efficient All-Polymer Solar Cells by J71 as a Compatibilizer. Macromolecules, 2019, 52, 4359-4369.	2.2	38
165	Enhanced performance and stability of p–i–n perovskite solar cells by utilizing an AIE-active cathode interlayer. Journal of Materials Chemistry A, 2019, 7, 15662-15672.	5.2	21
166	Fe ₃ O ₄ -Encapsulating N-doped porous carbon materials as efficient oxygen reduction reaction electrocatalysts for Zn–air batteries. Chemical Communications, 2019, 55, 7538-7541.	2.2	33
167	Fused selenophene-thieno[3,2- <i>b</i>]thiophene–selenophene (ST)-based narrow-bandgap electron acceptor for efficient organic solar cells with small voltage loss. Chemical Communications, 2019, 55, 8258-8261.	2.2	42
168	Specific interaction between fluorine atoms and thiol groups accounting for higher domain purity and photostability in narrowband BHJ systems. Journal of Polymer Science, Part B: Polymer Physics, 2019, 57, 941-951.	2.4	1
169	Miscibility Tuning for Optimizing Phase Separation and Vertical Distribution toward Highly Efficient Organic Solar Cells. Advanced Science, 2019, 6, 1900565.	5.6	87
170	Solventâ€Assisted Lowâ€Temperature Crystallization of SnO ₂ Electronâ€Transfer Layer for Highâ€Efficiency Planar Perovskite Solar Cells. Advanced Functional Materials, 2019, 29, 1900557.	7.8	59
171	Perovskite Solar Cells: Highâ€Performance Perovskite Solar Cells with Excellent Humidity and Thermoâ€Stability via Fluorinated Perylenediimide (Adv. Energy Mater. 18/2019). Advanced Energy Materials, 2019, 9, 1970064.	10.2	8
172	Facile and Scalable Fabrication of Nitrogen-Doped Porous Carbon Nanosheets for Capacitive Energy Storage with Ultrahigh Energy Density. ACS Applied Materials & Interfaces, 2019, 11, 20029-20036.	4.0	19
173	Random copolymerization realized high efficient polymer solar cells with a record fill factor near 80%. Nano Energy, 2019, 61, 228-235.	8.2	31
174	Additive-free non-fullerene organic solar cells with random copolymers as donors over 9% power conversion efficiency. Chinese Chemical Letters, 2019, 30, 1161-1167.	4.8	19
175	Hole Transportation: Enhanced Hole Transportation for Inverted Tinâ€Based Perovskite Solar Cells with High Performance and Stability (Adv. Funct. Mater. 18/2019). Advanced Functional Materials, 2019, 29, 1970117.	7.8	4
176	Double Acceptor Block-Containing Copolymers with Deep HOMO Levels for Organic Solar Cells: Adjusting Carboxylate Substituent Position for Planarity. ACS Applied Materials & Interfaces, 2019, 11, 15853-15860.	4.0	20
177	Improvement in the Efficiency of Alkylsilyl Functionalized Copolymer for Polymer Solar Cells: Faceâ€On Orientation Enhanced by Random Copolymerization. Solar Rrl, 2019, 3, 1900122.	3.1	17
178	Subphthalocyanine Triimides: Solution Processable Bowl-Shaped Acceptors for Bulk Heterojunction Solar Cells. Organic Letters, 2019, 21, 3382-3386.	2.4	38
179	Highâ€Performance Perovskite Solar Cells with Excellent Humidity and Thermoâ€6tability via Fluorinated Perylenediimide. Advanced Energy Materials, 2019, 9, 1900198.	10.2	205
180	Thick polyfluorene-based polyelectrolytes realized by regulation of conjugated backbone as cathode interface layers for efficient polymer solar cells. Journal of Power Sources, 2019, 423, 26-33.	4.0	7

#	Article	IF	CITATIONS
181	Hierarchical nickel cobalt sulfide nanosheet on MOF-derived carbon nanowall arrays with remarkable supercapacitive performance. Carbon, 2019, 147, 146-153.	5.4	75
182	A bendable nickel oxide interfacial layer <i>via</i> polydopamine crosslinking for flexible perovskite solar cells. Chemical Communications, 2019, 55, 3666-3669.	2.2	47
183	Co ₃ O ₄ Supraparticleâ€Based Bubble Nanofiber and Bubble Nanosheet with Remarkable Electrochemical Performance. Advanced Science, 2019, 6, 1900107.	5.6	59
184	A rational comparison of the effects of halogen atoms incorporated into the polymer donors on the performance of polymer solar cells. Organic Electronics, 2019, 70, 86-92.	1.4	11
185	Highly Efficient Flexible Polymer Solar Cells with Robust Mechanical Stability. Advanced Science, 2019, 6, 1801180.	5.6	49
186	Enhanced Hole Transportation for Inverted Tinâ€Based Perovskite Solar Cells with High Performance and Stability. Advanced Functional Materials, 2019, 29, 1808059.	7.8	133
187	In situ nanoarchitecturing and active-site engineering toward highly efficient carbonaceous electrocatalysts. Nano Energy, 2019, 59, 207-215.	8.2	54
188	Asymmetric Wideâ€Bandgap Polymers Simultaneously Improve the Openâ€Circuit Voltage and Shortâ€Circuit Current for Organic Photovoltaics. Macromolecular Rapid Communications, 2019, 40, e1800906.	2.0	21
189	Introducing an identical benzodithiophene donor unit for polymer donors and small-molecule acceptors to unveil the relationship between the molecular structure and photovoltaic performance of non-fullerene organic solar cells. Journal of Materials Chemistry A, 2019, 7, 26351-26357.	5.2	18
190	Non-halogenated-solvent-processed highly efficient organic solar cells with a record open circuit voltage enabled by noncovalently locked novel polymer donors. Journal of Materials Chemistry A, 2019, 7, 27394-27402.	5.2	20
191	Construction of a hierarchical carbon coated Fe ₃ O ₄ nanorod anode for 2.6 V aqueous asymmetric supercapacitors with ultrahigh energy density. Journal of Materials Chemistry A, 2019, 7, 27313-27322.	5.2	33
192	Miscibility Matching and Bimolecular Crystallization Affording High-Performance Ternary Nonfullerene Solar Cells. Chemistry of Materials, 2019, 31, 10211-10224.	3.2	38
193	Nondestructive Transfer Strategy for High-Efficiency Flexible Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2019, 11, 47003-47007.	4.0	11
194	Double acceptor block-based copolymers for efficient organic solar cells: side-chain and ï€-bridge engineered high open-circuit voltage and small driving force. Polymer Chemistry, 2019, 10, 6227-6235.	1.9	3
195	A 1 â€A 2 Type Wide Bandgap Polymers for Highâ€Performance Polymer Solar Cells: Energy Loss and Morphology. Solar Rrl, 2019, 3, 1800291.	3.1	15
196	Single-strand and ladder-type polymeric acceptors based on regioisomerically-pure perylene diimides towards all-polymer solar cells. Polymer, 2019, 162, 108-115.	1.8	13
197	Fluorobenzotriazole (FTAZ)â€Based Polymer Donor Enables Organic Solar Cells Exceeding 12% Efficiency. Advanced Functional Materials, 2019, 29, 1808828.	7.8	61
198	Bithiazole-based copolymer with deep HOMO level and noncovalent conformational lock for organic photovoltaics. Organic Electronics, 2019, 64, 110-116.	1.4	13

#	Article	IF	CITATIONS
199	Nonhalogen Solventâ€Processed Asymmetric Wideâ€Bandgap Polymers for Nonfullerene Organic Solar Cells with Over 10% Efficiency. Advanced Functional Materials, 2018, 28, 1706517.	7.8	65
200	Roll-To-Roll Printing of Meter-Scale Composite Transparent Electrodes with Optimized Mechanical and Optical Properties for Photoelectronics. ACS Applied Materials & Interfaces, 2018, 10, 8917-8925.	4.0	26
201	When Al-Doped Cobalt Sulfide Nanosheets Meet Nickel Nanotube Arrays: A Highly Efficient and Stable Cathode for Asymmetric Supercapacitors. ACS Nano, 2018, 12, 3030-3041.	7.3	185
202	Dye-Incorporated Polynaphthalenediimide Acceptor for Additive-Free High-Performance All-Polymer Solar Cells. Angewandte Chemie, 2018, 130, 4670-4674.	1.6	10
203	Dyeâ€Incorporated Polynaphthalenediimide Acceptor for Additiveâ€Free Highâ€Performance Allâ€Polymer Solar Cells. Angewandte Chemie - International Edition, 2018, 57, 4580-4584.	7.2	114
204	Recent Progress on the Longâ€Term Stability of Perovskite Solar Cells. Advanced Science, 2018, 5, 1700387.	5.6	348
205	Ternary thick active layer for efficient organic solar cells. Journal of Materials Science, 2018, 53, 8398-8408.	1.7	6
206	Vertical Stratification Engineering for Organic Bulk-Heterojunction Devices. ACS Nano, 2018, 12, 4440-4452.	7.3	77
207	Hierarchical 1D nanofiber-2D nanosheet-shaped self-standing membranes for high-performance supercapacitors. Journal of Materials Chemistry A, 2018, 6, 9161-9171.	5.2	45
208	Postâ€Treatmentâ€Free Main Chain Donor and Side Chain Acceptor (Dâ€ <i>s</i> â€A) Copolymer for Efficient Nonfullerene Solar Cells with a Small Voltage Loss. Macromolecular Rapid Communications, 2018, 39, e1700706.	2.0	11
209	Dithienopicenocarbazole-Based Acceptors for Efficient Organic Solar Cells with Optoelectronic Response Over 1000 nm and an Extremely Low Energy Loss. Journal of the American Chemical Society, 2018, 140, 2054-2057.	6.6	369
210	Distributed Feedback Lasers Based on MAPbBr ₃ . Advanced Materials Technologies, 2018, 3, 1700253.	3.0	77
211	Grain Boundary Modification via F4TCNQ To Reduce Defects of Perovskite Solar Cells with Excellent Device Performance. ACS Applied Materials & Interfaces, 2018, 10, 1909-1916.	4.0	115
212	Synergetic Contribution of Boron and Fe–N _{<i>x</i>} Species in Porous Carbons toward Efficient Electrocatalysts for Oxygen Reduction Reaction. ACS Energy Letters, 2018, 3, 252-260.	8.8	269
213	Highly stable Al-doped ZnO by ligand-free synthesis as general thickness-insensitive interlayers for organic solar cells. Science China Chemistry, 2018, 61, 127-134.	4.2	25
214	Alkylsilyl Functionalized Copolymer Donor for Annealingâ€Free High Performance Solar Cells with over 11% Efficiency: Crystallinity Induced Small Driving Force. Advanced Functional Materials, 2018, 28, 1800606.	7.8	47
215	DR3TBDTT Based Ternary Blends Containing Conjugated Polymers: Crystallization Determines Morphology and Performance. Chinese Journal of Chemistry, 2018, 36, 437-442.	2.6	7
216	Conjugated polymers based on 1,8â€naphthalene monoimide with high electron mobility. Journal of Polymer Science Part A, 2018, 56, 276-281.	2.5	9

#	Article	IF	CITATIONS
217	Semiâ€perfluoroalkylated perylene diimides for conjugated polymers with high molecular weight and high electron mobility. Journal of Polymer Science Part A, 2018, 56, 116-124.	2.5	12
218	Cerium oxide as an efficient electron extraction layer for p–i–n structured perovskite solar cells. Chemical Communications, 2018, 54, 471-474.	2.2	61
219	A green route to a novel hyperbranched electrolyte interlayer for nonfullerene polymer solar cells with over 11% efficiency. Chemical Communications, 2018, 54, 563-566.	2.2	39
220	A facile approach towards chemical modification of Ag nanowires by PEDOT as a transparent electrode for organic solar cells. Journal of Materials Chemistry C, 2018, 6, 312-319.	2.7	19
221	Nitrogenâ€Doped Hierarchically Porous Carbon Materials with Enhanced Performance for Supercapacitor. ChemElectroChem, 2018, 5, 515-522.	1.7	37
222	Fluorine-induced self-doping and spatial conformation in alcohol-soluble interlayers for highly-efficient polymer solar cells. Journal of Materials Chemistry A, 2018, 6, 423-433.	5.2	23
223	Regulation of the Polar Groups in n-Type Conjugated Polyelectrolytes as Electron Transfer Layer for Inverted Polymer Solar Cells. Macromolecules, 2018, 51, 8197-8204.	2.2	36
224	Highâ€Performance Semitransparent Ternary Organic Solar Cells. Advanced Functional Materials, 2018, 28, 1800627.	7.8	109
225	Self-doped polymer with fluorinated phenylene as hole transport layer for efficient polymer solar cells. Organic Electronics, 2018, 61, 207-214.	1.4	14
226	Mapping Nonfullerene Acceptors with a Novel Wide Bandgap Polymer for High Performance Polymer Solar Cells. Advanced Energy Materials, 2018, 8, 1801214.	10.2	47
227	An Electron Acceptor with Broad Visible–NIR Absorption and Unique Solid State Packing for Asâ€Cast High Performance Binary Organic Solar Cells. Advanced Functional Materials, 2018, 28, 1802324.	7.8	116
228	Cross-linked graphene/carbon nanotube networks with polydopamine "glue―for flexible supercapacitors. Composites Communications, 2018, 10, 73-80.	3.3	43
229	Highly Efficient Organic Solar Cells Based on S,N-Heteroacene Non-Fullerene Acceptors. Chemistry of Materials, 2018, 30, 5429-5434.	3.2	194
230	Chiral ZnO nanoparticles for detection of dopamine. Materials Science and Engineering C, 2018, 93, 739-745.	3.8	34
231	Large-scale ultra-adhesive and mechanically flexible silver grids transparent electrodes by solution process. Organic Electronics, 2018, 61, 296-303.	1.4	14
232	Photonic Nanostructures Patterned by Thermal Nanoimprint Directly into Organoâ€Metal Halide Perovskites. Advanced Materials, 2017, 29, 1605003.	11.1	170
233	2D Heterostructures Derived from MoS ₂ â€Templated, Cobaltâ€Containing Conjugated Microporous Polymer Sandwiches for the Oxygen Reduction Reaction and Electrochemical Energy Storage. ChemElectroChem, 2017, 4, 709-715.	1.7	30
234	Random copolymers containing tetrafluorophenylene unit with deep HOMO energy levels for solar cell applications. Synthetic Metals, 2017, 226, 71-79.	2.1	9

#	Article	IF	CITATIONS
235	Multi-Chlorine-Substituted Self-Assembled Molecules As Anode Interlayers: Tuning Surface Properties and Humidity Stability for Organic Photovoltaics. ACS Applied Materials & Interfaces, 2017, 9, 9204-9212.	4.0	14
236	Butanedithiol Solvent Additive Extracting Fullerenes from Donor Phase To Improve Performance and Photostability in Polymer Solar Cells. ACS Applied Materials & amp; Interfaces, 2017, 9, 9918-9925.	4.0	32
237	Alternating terpolymers based on tunable Bi-donors with manipulating energy levels and molecular geometry. Chemical Research in Chinese Universities, 2017, 33, 305-311.	1.3	4
238	Fluorinated Reduced Graphene Oxide as an Efficient Hole-Transport Layer for Efficient and Stable Polymer Solar Cells. ACS Omega, 2017, 2, 2010-2016.	1.6	41
239	Indiumâ€Free Perovskite Solar Cells Enabled by Impermeable Tinâ€Oxide Electron Extraction Layers. Advanced Materials, 2017, 29, 1606656.	11.1	88
240	Facile Approach to Perylenemonoimide with Short Side Chains for Nonfullerene Solar Cells. Journal of Organic Chemistry, 2017, 82, 5926-5931.	1.7	19
241	Room temperature processed polymers for high-efficient polymer solar cells with power conversion efficiency over 9%. Nano Energy, 2017, 37, 32-39.	8.2	50
242	Effect of substituents of twisted benzodiperylenediimides on non-fullerene solar cells. Organic Electronics, 2017, 47, 72-78.	1.4	9
243	Self-encapsulated semi-transparent perovskite solar cells with water-soaked stability and metal-free electrode. Organic Electronics, 2017, 48, 308-313.	1.4	18
244	Highly and homogeneously conductive conjugated polyelectrolyte hole transport layers for efficient organic solar cells. Journal of Materials Chemistry A, 2017, 5, 14689-14696.	5.2	29
245	Musselâ€Inspired, Biomimeticsâ€Assisted Selfâ€Assembly of Co ₃ O ₄ on Carbon Fibers for Flexible Supercapacitors. ChemElectroChem, 2017, 4, 2269-2277.	1.7	18
246	n-Type conjugated electrolytes cathode interlayer with thickness-insensitivity for highly efficient organic solar cells. Journal of Materials Chemistry A, 2017, 5, 13807-13816.	5.2	39
247	Photonic Nanostructures: Photonic Nanostructures Patterned by Thermal Nanoimprint Directly into Organoâ€Metal Halide Perovskites (Adv. Mater. 12/2017). Advanced Materials, 2017, 29, .	11.1	4
248	Synergistic effect of processing additives and thermal annealing in organic solar cells: the "Morphology of Magic― Physical Chemistry Chemical Physics, 2017, 19, 10581-10589.	1.3	16
249	Crystallization and conformation engineering of solution-processed polymer transparent electrodes with high conductivity. Journal of Materials Chemistry C, 2017, 5, 382-389.	2.7	36
250	Novel Copolymers Based Tetrafluorobenzene and Difluorobenzothiadiazole for Organic Solar Cells with Prominent Open Circuit Voltage and Stability. Macromolecular Rapid Communications, 2017, 38, 1600556.	2.0	22
251	Optimization of perovskite by 3D twisted diketopyrrolopyrrole for efficient perovskite solar cells. Materials Chemistry Frontiers, 2017, 1, 1179-1184.	3.2	12
252	N-type Self-Doping of Fluorinate Conjugated Polyelectrolytes for Polymer Solar Cells: Modulation of Dipole, Morphology, and Conductivity. ACS Applied Materials & Interfaces, 2017, 9, 1145-1153.	4.0	33

#	Article	IF	CITATIONS
253	Ternary organic solar cells: compatibility controls for morphology evolution of active layers. Journal of Materials Chemistry C, 2017, 5, 10801-10812.	2.7	29
254	Solar Cells: Nucleation and Crystallization Control via Polyurethane to Enhance the Bendability of Perovskite Solar Cells with Excellent Device Performance (Adv. Funct. Mater. 41/2017). Advanced Functional Materials, 2017, 27, .	7.8	1
255	Rollâ€toâ€Roll Fabrication of Flexible Orientated Graphene Transparent Electrodes by Shear Force and Oneâ€Step Reducing Postâ€Treatment. Advanced Materials Technologies, 2017, 2, 1700138.	3.0	24
256	A pinecone-inspired hierarchical vertically aligned nanosheet array electrode for high-performance asymmetric supercapacitors. Journal of Materials Chemistry A, 2017, 5, 23349-23360.	5.2	41
257	Improved Glass Transition Temperature towards Thermal Stability via Thiols Solvent Additive versus DIO in Polymer Solar Cells. Macromolecular Rapid Communications, 2017, 38, 1700428.	2.0	33
258	Wearable Largeâ€5cale Perovskite Solarâ€Power Source via Nanocellular Scaffold. Advanced Materials, 2017, 29, 1703236.	11.1	152
259	Nucleation and Crystallization Control via Polyurethane to Enhance the Bendability of Perovskite Solar Cells with Excellent Device Performance. Advanced Functional Materials, 2017, 27, 1703061.	7.8	175
260	Non-halogenated solvent-processed single-junction polymer solar cells with 9.91% efficiency and improved photostability. Nano Energy, 2017, 41, 27-34.	8.2	37
261	Large-Scale Stretchable Semiembedded Copper Nanowire Transparent Conductive Films by an Electrospinning Template. ACS Applied Materials & amp; Interfaces, 2017, 9, 26468-26475.	4.0	69
262	Effective Network Formation of PEDOT by in-situ Polymerization Using Novel Organic Template and Nanocomposite Supercapacitor. Electrochimica Acta, 2017, 247, 871-879.	2.6	33
263	Perovskite Solar Cells: Indium-Free Perovskite Solar Cells Enabled by Impermeable Tin-Oxide Electron Extraction Layers (Adv. Mater. 27/2017). Advanced Materials, 2017, 29, .	11.1	0
264	Antibacterial zinc oxide hybrid with gelatin coating. Materials Science and Engineering C, 2017, 81, 321-326.	3.8	45
265	Thermal Conductivity of Methylammonium Lead Halide Perovskite Single Crystals and Thin Films: A Comparative Study. Journal of Physical Chemistry C, 2017, 121, 28306-28311.	1.5	93
266	A facile <i>in situ</i> approach to ion gel based polymer electrolytes for flexible lithium batteries. RSC Advances, 2017, 7, 54391-54398.	1.7	23
267	Wearable Electronics: Wearable Largeâ€6cale Perovskite Solarâ€Power Source via Nanocellular Scaffold (Adv. Mater. 42/2017). Advanced Materials, 2017, 29, .	11.1	0
268	Self-assembled diblock conjugated polyelectrolytes as electron transport layers for organic photovoltaics. RSC Advances, 2017, 7, 24345-24352.	1.7	8
269	Crystalline and active additive for optimization morphology and absorption of narrow bandgap polymer solar cells. Journal of Polymer Science Part A, 2017, 55, 726-733.	2.5	4
270	Investigation of supramolecular interactions between liquid crystals and PCBM for improved morphological stability in solar cells. Materials Chemistry Frontiers, 2017, 1, 683-692.	3.2	8

#	Article	IF	CITATIONS
271	Nitrogen-doped porous carbon/graphene nanosheets derived from two-dimensional conjugated microporous polymer sandwiches with promising capacitive performance. Materials Chemistry Frontiers, 2017, 1, 278-285.	3.2	62
272	Triple Dipole Effect from Selfâ€Assembled Smallâ€Molecules for High Performance Organic Photovoltaics. Advanced Materials, 2016, 28, 4852-4860.	11.1	55
273	Versatile Molybdenum Isopropoxide for Efficient Mesoporous Perovskite Solar Cells: Simultaneously Optimized Morphology and Interfacial Engineering. Journal of Physical Chemistry C, 2016, 120, 15089-15095.	1.5	8
274	Twoâ€Dimensional Coreâ€6helled Porous Hybrids as Highly Efficient Catalysts for the Oxygen Reduction Reaction. Angewandte Chemie - International Edition, 2016, 55, 6858-6863.	7.2	127
275	Twoâ€Dimensional Coreâ€Shelled Porous Hybrids as Highly Efficient Catalysts for the Oxygen Reduction Reaction. Angewandte Chemie, 2016, 128, 6972-6977.	1.6	23
276	3-Dimensional ZnO/CdS nanocomposite with high mobility as an efficient electron transport layer for inverted polymer solar cells. Physical Chemistry Chemical Physics, 2016, 18, 12175-12182.	1.3	18
277	In situ polymerization of ethylenedioxythiophene from sulfonated carbon nanotube templates: toward high efficiency ITO-free solar cells. Journal of Materials Chemistry A, 2016, 4, 6645-6652.	5.2	37
278	Post-annealing to recover the reduced open-circuit voltage caused by solvent annealing in organic solar cells. Journal of Materials Chemistry A, 2016, 4, 6158-6166.	5.2	28
279	High conductive PEDOT via post-treatment by halobenzoic for high-efficiency ITO-free and transporting layer-free organic solar cells. Organic Electronics, 2016, 33, 316-323.	1.4	17
280	Polyfluorene Electrolytes Interfacial Layer for Efficient Polymer Solar Cells: Controllably Interfacial Dipoles by Regulation of Polar Groups. ACS Applied Materials & Interfaces, 2016, 8, 9821-9828.	4.0	32
281	Tetrafluoroquinoxaline based polymers for non-fullerene polymer solar cells with efficiency over 9%. Nano Energy, 2016, 30, 312-320.	8.2	94
282	High-Performance Polymer Solar Cells Realized by Regulating the Surface Properties of PEDOT:PSS Interlayer from Ionic Liquids. ACS Applied Materials & Interfaces, 2016, 8, 27018-27025.	4.0	16
283	Counterion induced facile self-doping and tunable interfacial dipoles of small molecular electrolytes for efficient polymer solar cells. Nano Energy, 2016, 27, 492-498.	8.2	48
284	Crystallization and Optical Compensation by Fluorinated Rod Liquid Crystals for Ternary Organic Solar Cells. Journal of Physical Chemistry C, 2016, 120, 18462-18472.	1.5	10
285	Highly-efficient polymer solar cells realized by tailoring conjugated skeleton of alcohol-soluble conjugated electrolytes. Solar Energy Materials and Solar Cells, 2016, 157, 644-651.	3.0	3
286	Safe and flexible ion gel based composite electrolyte for lithium batteries. Journal of Materials Chemistry A, 2016, 4, 14132-14140.	5.2	46
287	A homogeneous ethanedithiol doped ZnO electron transporting layer for polymer solar cells. Journal of Materials Chemistry C, 2016, 4, 8738-8744.	2.7	15
288	Optical Properties of Benzotriazole-Based Conjugated Polyelectrolytes. Macromolecules, 2016, 49, 6343-6349.	2.2	7

#	Article	IF	CITATIONS
289	In situ implanting carbon nanotube-gold nanoparticles into ZnO as efficient nanohybrid cathode buffer layer for polymer solar cells. Organic Electronics, 2016, 38, 350-356.	1.4	16
290	Interface-induced face-on orientation of the active layer by self-assembled diblock conjugated polyelectrolytes for efficient organic photovoltaic cells. Journal of Materials Chemistry A, 2016, 4, 18478-18489.	5.2	33
291	Pure- or mixed-solvent assisted treatment for crystallization dynamics of planar lead halide perovskite solar cells. Solar Energy Materials and Solar Cells, 2016, 155, 166-175.	3.0	19
292	Amphiphilic fullerene derivative as effective interfacial layer for inverted polymer solar cells. Organic Electronics, 2016, 37, 35-41.	1.4	13
293	Flexible, hole transporting layer-free and stable CH 3 NH 3 PbI 3 /PC 61 BM planar heterojunction perovskite solar cells. Organic Electronics, 2016, 30, 281-288.	1.4	69
294	Alcohol-soluble interfacial fluorenes for inverted polymer solar cells: sequence induced spatial conformation dipole moment. Physical Chemistry Chemical Physics, 2016, 18, 2219-2229.	1.3	8
295	Engineering the Morphology of Carbon Materials: 2D Porous Carbon Nanosheets for Highâ€Performance Supercapacitors. ChemElectroChem, 2016, 3, 822-828.	1.7	85
296	Assembly of quantum dots in polymer solar cells driven by orientational switching of mesogens under electric field. Solar Energy, 2016, 129, 184-191.	2.9	7
297	Let-7a suppresses macrophage infiltrations and malignant phenotype of Ewing sarcoma via STAT3/NF-κB positive regulatory circuit. Cancer Letters, 2016, 374, 192-201.	3.2	26
298	Diketopyrrolopyrrole-based conjugated polymers as additives to optimize morphology for polymer solar cells. Chinese Journal of Polymer Science (English Edition), 2016, 34, 491-504.	2.0	47
299	Enhancing the grain size of organic halide perovskites by sulfonate-carbon nanotube incorporation in high performance perovskite solar cells. Chemical Communications, 2016, 52, 5674-5677.	2.2	77
300	Surface treatment by binary solvents induces the crystallization of a small molecular donor for enhanced photovoltaic performance. Physical Chemistry Chemical Physics, 2016, 18, 735-742.	1.3	13
301	Controllable length and density ZnO@CdS core/shell as electron transport layer for optimization of organic solar cells. Journal of Materials Science: Materials in Electronics, 2016, 27, 3557-3564.	1.1	1
302	Synergistic dispersible graphene: Sulfonated carbon nanotubes integrated with PEDOT for large-scale transparent conductive electrodes. Carbon, 2016, 98, 15-23.	5.4	22
303	Versatile MoS2 Nanosheets in ITO-Free and Semi-transparent Polymer Power-generating Class. Scientific Reports, 2015, 5, 12161.	1.6	19
304	Low Work-function Poly(3,4-ethylenedioxylenethiophene): Poly(styrene sulfonate) as Electron-transport Layer for High-efficient and Stable Polymer Solar Cells. Scientific Reports, 2015, 5, 12839.	1.6	44
305	Controlled Dual Drug Release and <l>ln</l> <l>Vitro</l> Cytotoxicity of Electrospun Poly(lactic-co-glycolic acid) Nanofibers Encapsulated with Micelles. Journal of Biomedical Nanotechnology, 2015, 11, 428-435.	0.5	28
306	Rollâ€ŧoâ€Roll Production of Graphene Hybrid Electrodes for Highâ€Efficiency, Flexible Organic Photoelectronics. Advanced Materials Interfaces, 2015, 2, 1500445.	1.9	29

#	Article	IF	CITATIONS
307	In Situ Photocatalytically Heterostructured ZnOAg Nanoparticle Composites as Effective Cathodeâ€Modifying Layers for Airâ€Processed Polymer Solar Cells. Chemistry - A European Journal, 2015, 21, 11899-11906.	1.7	6
308	Straightforward Generation of Pillared, Microporous Graphene Frameworks for Use in Supercapacitors. Advanced Materials, 2015, 27, 6714-6721.	11.1	137
309	A Facile approach to NiCoO ₂ intimately standing on nitrogen doped graphene sheets by one-step hydrothermal synthesis for supercapacitors. Journal of Materials Chemistry A, 2015, 3, 7121-7131.	5.2	106
310	Novel photovoltaic donor 1–acceptor–donor 2–acceptor terpolymers with tunable energy levels based on a difluorinated benzothiadiazole acceptor. RSC Advances, 2015, 5, 12087-12093.	1.7	12
311	Homogeneous Cu2ZnSnSe4 nanocrystals/graphene oxide nanocomposites as hole transport layer for polymer solar cells. Chemical Physics Letters, 2015, 622, 1-8.	1.2	8
312	Sulfonate Poly(aryl ether sulfone)-Modified PEDOT:PSS as Hole Transport Layer and Transparent Electrode for High Performance Polymer Solar Cells. Journal of Physical Chemistry C, 2015, 119, 1943-1952.	1.5	21
313	Formation of cathode buffer layer by surface segregation of fluoroalkyl-modified ZnO for polymer solar cells. RSC Advances, 2015, 5, 23213-23223.	1.7	8
314	In Situ Formation of ZnO in Graphene: A Facile Way To Produce a Smooth and Highly Conductive Electron Transport Layer for Polymer Solar Cells. ACS Applied Materials & Interfaces, 2015, 7, 16078-16085.	4.0	28
315	A comprehensive study of sulfonated carbon materials as conductive composites for polymer solar cells. Physical Chemistry Chemical Physics, 2015, 17, 4137-4145.	1.3	64
316	A Versatile Buffer Layer for Polymer Solar Cells: Rendering Surface Potential by Regulating Dipole. Advanced Functional Materials, 2015, 25, 3164-3171.	7.8	11
317	Structure Evolution of Fluorinated Conjugated Polymers Based on Benzodithiophene and Benzothiadiazole for Photovoltaics. Journal of Physical Chemistry C, 2015, 119, 8038-8045.	1.5	5
318	Amphiphilic fullerene/ZnO hybrids as cathode buffer layers to improve charge selectivity of inverted polymer solar cells. Nanoscale, 2015, 7, 9194-9203.	2.8	22
319	Control of the oxidation level of graphene oxide for high efficiency polymer solar cells. RSC Advances, 2015, 5, 49182-49187.	1.7	23
320	One-dimensional graphene nanoribbons hybridized with carbon nanotubes as cathode and anode interfacial layers for high performance solar cells. RSC Advances, 2015, 5, 49614-49622.	1.7	18
321	Polymeric AIE-based nanoprobes for biomedical applications: recent advances and perspectives. Nanoscale, 2015, 7, 11486-11508.	2.8	485
322	A Facile Approach To Fabricate High-Performance Polymer Solar Cells with an Annealing-Free and Simple Device of Three Layers. Journal of Physical Chemistry C, 2015, 119, 11619-11624.	1.5	4
323	Amphiphilic fullerenes modified 1D ZnO arrayed nanorods–2D graphene hybrids as cathode buffer layers for inverted polymer solar cells. Journal of Materials Chemistry A, 2015, 3, 10890-10899.	5.2	18
324	Poly(3-butylthiophene) Inducing Crystallization of Small Molecule Donor for Enhanced Photovoltaic Performance. Journal of Physical Chemistry C, 2015, 119, 23310-23318.	1.5	15

#	Article	IF	CITATIONS
325	N-Type Alcohol-Soluble Small Molecules as an Interfacial Layer for Efficient and Stable Polymer Solar Cells. Journal of Physical Chemistry C, 2015, 119, 25887-25897.	1.5	28
326	Nanofibrous and Graphene-Templated Conjugated Microporous Polymer Materials for Flexible Chemosensors and Supercapacitors. Chemistry of Materials, 2015, 27, 7403-7411.	3.2	164
327	Tuning joint sequence for donor–acceptor polymers based on fluorinated benzothiadiazole with thiophene/furan bridecakes. Polymer, 2015, 78, 154-160.	1.8	10
328	Alcohol-Soluble n-Type Conjugated Polyelectrolyte as Electron Transport Layer for Polymer Solar Cells. Macromolecules, 2015, 48, 5578-5586.	2.2	97
329	Interfacial engineering of ZnO nanoarrays as electron transport layer for polymer solar cells. Organic Electronics, 2015, 26, 487-494.	1.4	8
330	Enhanced Power-Conversion Efficiency in Inverted Bulk Heterojunction Solar Cells using Liquid-Crystal-Conjugated Polyelectrolyte Interlayer. ACS Applied Materials & Interfaces, 2015, 7, 19024-19033.	4.0	39
331	Solution-processed small molecules based on benzodithiophene and difluorobenzothiadiazole for inverted organic solar cells. Polymer Chemistry, 2015, 6, 7726-7736.	1.9	15
332	High charge mobility polymers based on a new di(thiophen-2-yl)thieno[3,2-b]thiophene for transistors and solar cells. Polymer Chemistry, 2015, 6, 7684-7692.	1.9	7
333	Elastomers uploaded electrospun nanofibrous membrane as solid state polymer electrolytes for lithium-ion batteries. RSC Advances, 2015, 5, 82960-82967.	1.7	2
334	Liquid-crystalline ionic liquids modified conductive polymers as a transparent electrode for indium-free polymer solar cells. Journal of Materials Chemistry A, 2015, 3, 22316-22324.	5.2	19
335	Disulfide-crosslinked poly(L-glutamic acid) grafted mesoporous silica nanoparticles and their potential application in drug delivery. Chemical Research in Chinese Universities, 2015, 31, 890-894.	1.3	3
336	Alternative alcohol-soluble conjugated small molecule electrolytes for high-efficiency inverted polymer solar cells. Physical Chemistry Chemical Physics, 2015, 17, 3637-3646.	1.3	8
337	Poly(3-butylthiophene) nanowires inducing crystallization of poly(3-hexylthiophene) for enhanced photovoltaic performance. Journal of Materials Chemistry C, 2015, 3, 809-819.	2.7	23
338	Tunable size and sensitization of ZnO nanoarrays as electron transport layers for enhancing photocurrent of photovoltaic devices. Journal of Materials Chemistry C, 2015, 3, 828-835.	2.7	12
339	A mechanistic investigation of morphology evolution in P3HT–PCBM films induced by liquid crystalline molecules under external electric field. Physical Chemistry Chemical Physics, 2015, 17, 387-397.	1.3	27
340	Surface modifications of halloysite nanotubes with superparamagnetic Fe3O4 nanoparticles and carbonaceous layers for efficient adsorption of dyes in water treatment. Chemical Research in Chinese Universities, 2014, 30, 971-977.	1.3	35
341	Hairy polymeric nanocapsules with ph-responsive shell and thermoresponsive brushes: Tunable permeability for controlled release of water-soluble drugs. Journal of Polymer Science Part A, 2014, 52, 2202-2216.	2.5	19
342	Novel Poly(<scp>B</scp> enzonorbornadiene) Derivatives Prepared by a Threeâ€ <scp>D</scp> imensional Geometry Bimetallic Nickel Catalyst with Good Processability for Electrospinning. Macromolecular Materials and Engineering, 2014, 299, 470-477.	1.7	4

#	Article	IF	CITATIONS
343	Nanostructuring compatibilizers of block copolymers for organic photovoltaics. Polymer International, 2014, 63, 593-606.	1.6	17
344	Sequential Structure, Crystallization, and Properties of Biodegradable Poly(ethylene) Tj ETQq0 0 0 rgBT /Overloc Physics, 2014, 53, 1231-1243.	k 10 Tf 50 0.4	9707 Td (Tere 2
345	Poly(<i>N</i> â€vinylpyrrolidone)â€Decorated Reduced Graphene Oxide with ZnO Grown In Situ as a Cathode Buffer Layer for Polymer Solar Cells. Chemistry - A European Journal, 2014, 20, 17178-17184.	1.7	19
346	Crystallization and degradation behaviors of poly(butylene succinate)/poly(Z-l-lysine) composites. Thermochimica Acta, 2014, 575, 279-284.	1.2	4
347	Fabrication of aggregation induced emission dye-based fluorescent organic nanoparticles via emulsion polymerization and their cell imaging applications. Polymer Chemistry, 2014, 5, 399-404.	1.9	229
348	Polymerizable aggregation-induced emission dye-based fluorescent nanoparticles for cell imaging applications. Polymer Chemistry, 2014, 5, 356-360.	1.9	216
349	Inverted polymer solar cells with a low-temperature ramp annealed sol–gel derived aluminum-doped ZnO nano-ridge film as a cathode buffer layer. Chemical Physics Letters, 2014, 592, 96-102.	1.2	3
350	Highly Efficient Inverted Organic Solar Cells Through Material and Interfacial Engineering of Indacenodithieno[3,2â€ <i>b</i>]thiopheneâ€Based Polymers and Devices. Advanced Functional Materials, 2014, 24, 1465-1473.	7.8	132
351	A General Route to Enhance Polymer Solar Cell Performance using Plasmonic Nanoprisms. Advanced Energy Materials, 2014, 4, 1400206.	10.2	118
352	A fully bio-based waterborne polyurethane dispersion from vegetable oils: From synthesis of precursors by thiol-ene reaction to study of final material. Progress in Organic Coatings, 2014, 77, 53-60.	1.9	102
353	Performance Enhancement of Bulk Heterojunction Solar Cells with Direct Growth of CdSâ€Clusterâ€Decorated Graphene Nanosheets. Chemistry - A European Journal, 2014, 20, 6010-6018.	1.7	11
354	Photovoltaic performance enhancement of P3HT/PCBM solar cells driven by incorporation of conjugated liquid crystalline rod-coil block copolymers. Journal of Materials Chemistry C, 2014, 2, 3835-3845.	2.7	43
355	Universal and Versatile MoO ₃ -Based Hole Transport Layers for Efficient and Stable Polymer Solar Cells. Journal of Physical Chemistry C, 2014, 118, 9930-9938.	1.5	53
356	Efficient all polymer solar cells from layer-evolved processing of a bilayer inverted structure. Journal of Materials Chemistry C, 2014, 2, 416-420.	2.7	37
357	Fabrication of water-dispersible and biocompatible red fluorescent organic nanoparticles via PEGylation of aggregate induced emission enhancement dye and their cell imaging applications. Colloids and Surfaces B: Biointerfaces, 2014, 113, 435-441.	2.5	52
358	N,O-chelating bidentate Ni (II) and Pd (II) complexes for copolymerization of norbornene and norbornene ester. Journal of Organometallic Chemistry, 2014, 752, 100-108.	0.8	14
359	Substituent effects and activation mechanism of norbornene polymerization catalyzed by three-dimensional geometry α-diimine palladium complexes. Polymer Chemistry, 2014, 5, 1210-1218.	1.9	27
360	Direct Anisotropic Growth of CdS Nanocrystals in Thermotropic Liquid Crystal Templates for Heterojunction Optoelectronics. Chemistry - A European Journal, 2014, 20, 11488-11495.	1.7	10

#	Article	IF	CITATIONS
361	Optical Engineering of Uniformly Decorated Graphene Oxide Nanoflakes via in Situ Growth of Silver Nanoparticles with Enhanced Plasmonic Resonance. ACS Applied Materials & Interfaces, 2014, 6, 21069-21077.	4.0	23
362	Crystallization and shear-induced formation of organogels in novel poly[(butylene succinate)-co -diolisobutyl]-[polyhedral oligomeric silsesquioxane] copolyesters. Polymer International, 2014, 63, 626-632.	1.6	3
363	Hybrid Network Sulfonated Polynorbornene/Silica Membranes with Enhanced Proton Conductivity by Doped Phosphotungstic Acid. Fuel Cells, 2014, 14, 26-34.	1.5	14
364	Self-assembled buffer layer from conjugated diblock copolymers with ethyleneoxide side chains for high efficiency polymer solar cells. Journal of Materials Chemistry C, 2014, 2, 8054-8064.	2.7	15
365	Aggregation-induced emission dye based luminescent silica nanoparticles: facile preparation, biocompatibility evaluation and cell imaging applications. RSC Advances, 2014, 4, 10060.	1.7	62
366	Nanostructured hybrid ZnO@CdS nanowalls grown in situ for inverted polymer solar cells. Journal of Materials Chemistry C, 2014, 2, 1018-1027.	2.7	51
367	Large-Scale Flexible and Highly Conductive Carbon Transparent Electrodes via Roll-to-Roll Process and Its High Performance Lab-Scale Indium Tin Oxide-Free Polymer Solar Cells. Chemistry of Materials, 2014, 26, 6293-6302.	3.2	83
368	Dye-Sensitized Nanoarrays with Discotic Liquid Crystals as Interlayer for High-Efficiency Inverted Polymer Solar Cells. ACS Applied Materials & Interfaces, 2014, 6, 17848-17856.	4.0	8
369	Self-assembly of discotic liquid crystal decorated ZnO nanoparticles for efficient hybrid solar cells. RSC Advances, 2014, 4, 3627-3632.	1.7	23
370	Electrospun poly(<scp>l</scp> -lactide) nanofibers loaded with paclitaxel and water-soluble fullerenes for drug delivery and bioimaging. New Journal of Chemistry, 2014, 38, 6223-6229.	1.4	30
371	Glycosylated aggregation induced emission dye based fluorescent organic nanoparticles: preparation and bioimaging applications. RSC Advances, 2014, 4, 24189.	1.7	25
372	Enhanced performance for organic bulk heterojunction solar cells by cooperative assembly of ter(ethylene oxide) pendants. Polymer Chemistry, 2014, 5, 4480-4487.	1.9	14
373	Solution processed and self-assembled polymerizable fullerenes/metal oxide as an interlayer for high efficient inverted polymer solar cells. Journal of Materials Chemistry C, 2014, 2, 10282-10290.	2.7	12
374	PEGylation and cell imaging applications of AIE based fluorescent organic nanoparticles via ring-opening reaction. Polymer Chemistry, 2014, 5, 689-693.	1.9	97
375	Versatile Electron-Collecting Interfacial Layer by in Situ Growth of Silver Nanoparticles in Nonconjugated Polyelectrolyte Aqueous Solution for Polymer Solar Cells. Journal of Physical Chemistry B, 2014, 118, 11563-11572.	1.2	17
376	Optimization of the Power Conversion Efficiency of Room Temperatureâ€Fabricated Polymer Solar Cells Utilizing Solution Processed Tungsten Oxide and Conjugated Polyelectrolyte as Electrode Interlayer. Advanced Functional Materials, 2014, 24, 3986-3995.	7.8	41
377	In Situ Fabricating One-Dimensional Donor–Acceptor Core–Shell Hybrid Nanobeams Network Driven by Self-Assembly of Diblock Copolythiophenes. Macromolecules, 2014, 47, 1757-1767.	2.2	13
378	Self-Assembled Conjugated Polyelectrolyte–Ionic Liquid Crystal Complex as an Interlayer for Polymer Solar Cells: Achieving Performance Enhancement via Rapid Liquid Crystal-Induced Dipole Orientation. Macromolecules, 2014, 47, 1623-1632.	2.2	42

#	Article	IF	CITATIONS
379	Novel controlled drug delivery system for multiple drugs based on electrospun nanofibers containing nanomicelles. Journal of Biomaterials Science, Polymer Edition, 2014, 25, 257-268.	1.9	35
380	Norbornene/ <i>n</i> -Butyl methacrylate copolymerization over α-Diimine nickel and palladium catalysts supported on multiwalled carbon nanotubes. Journal of Polymer Science Part A, 2014, 52, 3213-3220.	2.5	7
381	Multiple drug-loaded electrospun PLGA/gelatin composite nanofibers encapsulated with mesoporous ZnO nanospheres for potential postsurgical cancer treatment. RSC Advances, 2014, 4, 28011-28019.	1.7	46
382	Facile fabrication of thermally responsive Pluronic F127-based nanocapsules for controlled release of doxorubicin hydrochloride. Colloid and Polymer Science, 2014, 292, 1521-1530.	1.0	14
383	Novel Donor–Acceptor Random Copolymers Containing Phenanthrocarbazole and Diketopyrrolopyrrole for Organic Photovoltaics and the Significant Molecular Geometry Effect on Their Performance. Journal of Physical Chemistry C, 2014, 118, 6038-6045.	1.5	19
384	Cooperative Assembly of Pyrene-Functionalized Donor/Acceptor Blend for Ordered Nanomorphology by Intermolecular Noncovalent π–π Interactions. ACS Applied Materials & Interfaces, 2014, 6, 8115-8123.	4.0	9
385	Sequential effect and enhanced conductivity of star-shaped diblock liquid-crystalline copolymers for solid electrolytes. Journal of Power Sources, 2014, 247, 786-793.	4.0	29
386	Free Mesogen Assisted Assembly of the Star-shaped Liquid-crystalline Copolymer/Polyethylene Oxide Solid Electrolytes for Lithium Ion Batteries. Electrochimica Acta, 2014, 118, 33-40.	2.6	35
387	Vinylâ€addition type norbornene copolymer containing sulfonated biphenyl pendant groups for proton exchange membranes. Journal of Applied Polymer Science, 2013, 127, 2280-2289.	1.3	5
388	Novel Ni and Pd(benzocyclohexanâ€ketonaphthylimino) ₂ complexes for copolymerization of norbornene with octene. Journal of Applied Polymer Science, 2013, 128, 216-223.	1.3	19
389	Inter-crosslinking through both donor and acceptor with unsaturated bonds for highly efficient and stable organic solar cells. Polymer Chemistry, 2013, 4, 5637.	1.9	14
390	Non-halogenated solvents for environmentally friendly processing of high-performance bulk-heterojunction polymer solar cells. Energy and Environmental Science, 2013, 6, 3241.	15.6	168
391	Understanding the mechanism of poly(3-hexylthiophene)-b-poly(4-vinylpyridine) as a nanostructuring compatibilizer for improving the performance of poly(3-hexylthiophene)/ZnO-based hybrid solar cells. Journal of Materials Chemistry A, 2013, 1, 10881.	5.2	13
392	Controlling morphology and improving the photovoltaic performances of P3HT/ZnO hybrid solar cells via P3HT-b-PEO as an interfacial compatibilizer. New Journal of Chemistry, 2013, 37, 236-244.	1.4	31
393	Silica-supported Ni(II) complex bearing [O^N] ligand and copolymerization to afford silica hybrid polynorbornenes nanocomposites. High Performance Polymers, 2013, 25, 287-300.	0.8	4
394	Electrostatic Self-Assembled Metal Oxide/Conjugated Polyelectrolytes as Electron-Transporting Layers for Inverted Solar Cells with High Efficiency. Journal of Physical Chemistry C, 2013, 117, 24804-24814.	1.5	49
395	Novel Donorâ€Acceptor Copolymers Based on Dithienosilole and Ketone Modified Thieno[3,4â€ <i>b</i>]thiophene for Photovoltaic Application. Chinese Journal of Chemistry, 2013, 31, 1455-1462.	2.6	8
396	Electrospinning of Poly(L-lactide) Nanofibers Encapsulated with Water-Soluble Fullerenes for Bioimaging Application. ACS Applied Materials & Interfaces, 2013, 5, 680-685.	4.0	48

#	Article	IF	CITATIONS
397	Diketopyrrolopyrroleâ€based liquid crystalline conjugated donor–acceptor copolymers with reduced band gap for polymer solar cells. Journal of Polymer Science Part A, 2013, 51, 258-266.	2.5	15
398	A novel planar Dâ€A alternating copolymer with Dâ€A integrated structures exhibiting Hâ€aggregate behaviors for polymer solar cells. Journal of Polymer Science Part A, 2013, 51, 624-634.	2.5	20
399	Donor–acceptorâ€integrated conjugated polymers based on carbazole[3,4â€ <i>c</i> :5,6â€ <i>c</i>]bis[1,2,5]thiadiazole with tight π–π stacking for photovoltaics. Journal of Polymer Science Part A, 2013, 51, 565-574.	2.5	10
400	A round robin study of polymer solar cells and small modules across China. Solar Energy Materials and Solar Cells, 2013, 117, 382-389.	3.0	10
401	Facile fabrication and cell imaging applications of aggregation-induced emission dye-based fluorescent organic nanoparticles. Polymer Chemistry, 2013, 4, 4317.	1.9	113
402	Hybrid polyelectrolytes based on stable sulfonated polynorbornene with higher proton conductivity and lower methanol permeability. Journal of Power Sources, 2013, 242, 725-731.	4.0	8
403	Modulation of the molecular geometry of carbazolebis(thiadiazole)-based conjugated polymers for photovoltaic applications. Polymer Chemistry, 2013, 4, 2480.	1.9	9
404	Fine dispersion and self-assembly of ZnO nanoparticles driven by P3HT-b-PEO diblocks for improvement of hybrid solar cells performance. New Journal of Chemistry, 2013, 37, 195-203.	1.4	27
405	Nickel(II) Complexes with Three-Dimensional Geometry α-Diimine Ligands: Synthesis and Catalytic Activity toward Copolymerization of Norbornene. Organometallics, 2013, 32, 2291-2299.	1.1	63
406	Preparation and characterization of electrospun PLGA/gelatin nanofibers as a drug delivery system by emulsion electrospinning. Journal of Biomaterials Science, Polymer Edition, 2013, 24, 972-985.	1.9	67
407	Influences of charge of conjugated polymer electrolytes cathode interlayer for bulk-heterojunction polymer solar cells. Organic Electronics, 2013, 14, 1551-1561.	1.4	22
408	Self-Organized Hole Transport Layers Based on Polythiophene Diblock Copolymers for Inverted Organic Solar Cells with High Efficiency. Chemistry of Materials, 2013, 25, 897-904.	3.2	57
409	Efficiency and Air-Stability Improvement of Flexible Inverted Polymer Solar Cells Using ZnO/Poly(ethylene glycol) Hybrids as Cathode Buffer Layers. ACS Applied Materials & Interfaces, 2013, 5, 5763-5770.	4.0	85
410	High Efficiency of Poly(3-hexylthiophene)/[6,6]-phenyl C61 Butyric Acid Methyl Ester Bulk Heterojunction Solar Cells through Precrystallining of Poly(3-hexylthiophene) Based Layer. ACS Applied Materials & Interfaces, 2013, 5, 5986-5993.	4.0	4
411	Photovoltaics of donor–acceptor polymers based on benzodithiophene with lateral thiophenyl and fluorinated benzothiadiazole. Journal of Polymer Science Part A, 2013, 51, 1506-1511.	2.5	23
412	Controlled release of brefeldin A from electrospun PEG–PLLA nanofibers and their in vitro antitumor activity against HepG2 cells. Materials Science and Engineering C, 2013, 33, 2513-2518.	3.8	14
413	Experimental Investigation and Theoretical Calculation of Molecular Architectures on Carbazole for Photovoltaics. Journal of Physical Chemistry C, 2013, 117, 9581-9589.	1.5	13
414	Self-Assembly of Diblock Polythiophenes with Discotic Liquid Crystals on Side Chains for the Formation of a Highly Ordered Nanowire Morphology. ACS Applied Materials & amp; Interfaces, 2013, 5, 8321-8328.	4.0	26

#	Article	IF	CITATIONS
415	Hybrid Bulk Heterojunction Solar Cells Based on the Cooperative Interaction of Liquid Crystals within Quantum Dots and Diblock Copolymers. ACS Applied Materials & Interfaces, 2013, 5, 11692-11702.	4.0	17
416	Vinylâ€addition type norbornene copolymers containing flexible spacers and sulfonated pendant groups for proton exchange membranes. Journal of Applied Polymer Science, 2013, 128, 3540-3547.	1.3	7
417	Mesogen-controlled ion channel of star-shaped hard-soft block copolymers for solid-state lithium-ion battery. Journal of Polymer Science Part A, 2013, 51, 4341-4350.	2.5	16
418	The effect of photocrosslinkable groups on thermal stability of bulk heterojunction solar cells based on donor-acceptor-conjugated polymers. Journal of Polymer Science Part A, 2013, 51, 4156-4166.	2.5	21
419	Novel phenanthrocarbazole based donor-acceptor random and alternating copolymers for photovoltaics. Journal of Polymer Science Part A, 2013, 51, 4885-4893.	2.5	10
420	Mussel inspired modification of carbon nanotubes using RAFT derived stimuli-responsive polymers. RSC Advances, 2013, 3, 21817.	1.7	67
421	Synthesis and cytotoxicity of brefeldin A conjugated monomethoxy-poly(ethylene) Tj ETQq1 1 0.784314 rgBT /C 986-998.	Overlock 10 1.9	0 Tf 50 507 To 2
422	Novel proton exchange membranes with dimensional stability and permeability resistance based on sulfonate polynorbornenes. Journal of Polymer Engineering, 2013, 33, 275-283.	0.6	0
423	Hybrid polymers based on sulfonated polynorbornene with enhanced proton conductivity for direct methanol fuel cells. High Performance Polymers, 2012, 24, 756-764.	0.8	1
424	Copolymerization of norbornene with styrene catalyzed by Ni{CF3C(O)CHC[N(naphthyl)]CH3}2/B(C6F5)3 and transparent films. Journal of Polymer Engineering, 2012, 32, .	0.6	3
425	Preparation and Characterization of a Novel Optical Material Based on Zinc-Tetraphenylporphyrin. Advanced Materials Research, 2012, 476-478, 1254-1257.	0.3	Ο
426	Copolymerization of 5-norbornene-2-metheneoxy-trimethylsilyl with methyl system. Journal of Polymer Engineering, 2012, 32, 415-423.	0.6	0
427	Macromol. Biosci. 12/2012. Macromolecular Bioscience, 2012, 12, n/a-n/a.	2.1	Ο
428	Can morphology tailoring based on functionalized fullerene nanostructures improve the performance of organic solar cells?. Journal of Materials Chemistry, 2012, 22, 18768.	6.7	16
429	Integration of light-harvesting complexes into the polymer bulk heterojunction P3HT/PCBM device for efficient photovoltaic cells. Journal of Materials Chemistry, 2012, 22, 7342.	6.7	18
430	Transesterification-Induced Evolution of Structure and Morphology in Poly(trimethylene) Tj ETQq0 0 0 rgBT /Ove 51, 2361-2376.	rlock 10 T 0.4	f 50 147 Td († 4
431	Interfacial Nanostructuring of ZnO Nanoparticles by Fullerene Surface Functionalization for "Annealing-Free―Hybrid Bulk Heterojunction Solar Cells. Journal of Physical Chemistry C, 2012, 116, 3486-3491.	1.5	22
432	Sulfonated poly(ether sulfone ether ketone ketone)/sulfonated poly(ether sulfone) blend membranes with reduced methanol permeability. High Performance Polymers, 2012, 24, 153-160.	0.8	5

#	Article	IF	CITATIONS
433	Cooperative Assembly Donor–Acceptor System Induced by Intermolecular Hydrogen Bonds Leading to Oriented Nanomorphology for Optimized Photovoltaic Performance. Journal of Physical Chemistry C, 2012, 116, 714-721.	1.5	33
434	Mesogen induced self-assembly for hybrid bulk heterojunction solar cells based on a liquid crystal D–A copolymer and ZnO nanocrystals. Journal of Materials Chemistry, 2012, 22, 6259.	6.7	25
435	Liquid Crystal Helps ZnO Nanoparticles Self-Assemble for Performance Improvement of Hybrid Solar Cells. Journal of Physical Chemistry C, 2012, 116, 6332-6339.	1.5	31
436	Surface modification of hydroxyapatite nanoparticles by poly(l-phenylalanine) via ROP of l-phenylalanine N-carboxyanhydride (Pha-NCA). Applied Surface Science, 2012, 258, 2850-2855.	3.1	26
437	Surface-initiated addition polymerization of norbornene by a Pd(II) catalyst bearing acetylacetone ligand on the glass slide. Applied Surface Science, 2012, 258, 3779-3784.	3.1	2
438	Microporous gel electrolytes based on amphiphilic poly(vinylidene fluoride-co-hexafluoropropylene) for lithium batteries. Applied Surface Science, 2012, 258, 4983-4989.	3.1	22
439	Enhanced conductivity of novel star branched liquid crystalline copolymer based on poly(ethylene) Tj ETQq1 1	0.784314 r 3.1	gBT ₃ /Overlock
440	A Novel Thiophene Derivativeâ€based Conjugated Polymer for Polymer Solar Cells with High Openâ€circuit Voltage. Chinese Journal of Chemistry, 2012, 30, 2219-2224.	2.6	19
441	Antimicrobial Hydantoinâ€grafted Poly(εâ€caprolactone) by Ringâ€opening Polymerization and Click Chemistry. Macromolecular Bioscience, 2012, 12, 1721-1730.	2.1	22
442	Ni(II) and Pd(II) complexes bearing benzocyclohexane–ketoarylimine for copolymerization of norbornene with 5â€norborneneâ€2â€carboxylic ester. Journal of Polymer Science Part A, 2012, 50, 4695-4704.	2.5	24
443	Photovoltaic performance enhancement in P3HT/ZnO hybrid bulk-heterojunction solar cells induced by semiconducting liquid crystal ligands. Organic Electronics, 2012, 13, 2757-2762.	1.4	24
444	Origin of the efficiency improvement in pre-annealed P3HT/PCBM solar cells with LiF/Al electrodes. Chemical Physics Letters, 2012, 553, 36-40.	1.2	16
445	Tuning the photovoltaic parameters of thiophene-linked donor–acceptor liquid crystalline copolymers for organic photovoltaics. Polymer Chemistry, 2012, 3, 710.	1.9	9
446	Hybrid bulk heterojunction solar cells based on poly(3-hexylthiophene) and ZnO nanoparticles modified by side-chain functional polythiophenes. Thin Solid Films, 2012, 526, 120-126.	0.8	15
447	Sulfonated copoly(norbornene)s bearing sultone pendant groups and application as proton exchange membranes candidates. Journal of Polymer Research, 2012, 19, 1.	1.2	9
448	In situ growth nanocomposites composed of rodlike ZnO nanocrystals arranged by nanoparticles in a self-assembling diblock copolymer for heterojunction optoelectronics. Journal of Materials Chemistry, 2012, , .	6.7	6
449	Homo―and copolymerization of norbornene and 5â€norborneneâ€2â€yl acetate with bisâ€(<i>β</i> â€ketonaphthylamino)palladium(II)/B(C ₆ F ₅) ₃ catalytic system. Polymers for Advanced Technologies, 2012, 23, 483-490.	1.6	12
450	Crystallization behavior and mechanical strength of poly(butylene succinateâ€ <i>co</i> â€ethylene) Tj ETQq0 Engineering and Science, 2012, 52, 2506-2517.	0 0 rgBT /O 1.5	verlock 10 Tf 5 11

#	Article	IF	CITATIONS
451	A novel approach to electrospinning of pristine and aligned MEH-PPV using binary solvents. Journal of Materials Chemistry, 2012, 22, 5523.	6.7	26
452	Antimicrobial Hydantoin ontaining Polyesters. Macromolecular Bioscience, 2012, 12, 1068-1076.	2.1	18
453	Crystallization, morphology, and mechanical properties of poly(butylene succinate)/poly(ethylene) Tj ETQq1 1 0.7 52, 2063-2070.	784314 rg 1.5	BT /Overlock 13
454	Synthesis and characterization of biodegradable poly(butylene) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 627 Td (sud Journal of Applied Polymer Science, 2012, 125, 3092-3099.	ccinate)â€ 1.3	<i>co</i> â€ 3
455	The fluorescence of Mg–Al–Eu ternary layered hydroxides response to tryptophan. Luminescence, 2012, 27, 223-228.	1.5	5
456	Synthesis of thienoselenadiazole-containing conjugated copolymers and their application in polymer solar cells. Polymer Journal, 2012, 44, 978-981.	1.3	8
457	Cross-linked zwitterionic polyelectrolytes based on sulfonated poly(ether sulfone) with high proton conductivity for direct methanol fuel cells. Journal of Power Sources, 2012, 212, 13-21.	4.0	13
458	Self-assembled mesogens modified fullerene for efficiently stable bulk heterojunction solar cells. Solar Energy Materials and Solar Cells, 2012, 97, 34-42.	3.0	14
459	Direct application of P3HT-DOPO@ZnO nanocomposites in hybrid bulk heterojunction solar cells via grafting P3HT onto ZnO nanoparticles. Solar Energy Materials and Solar Cells, 2012, 97, 64-70.	3.0	19
460	Ordered microstructure induced by orientation behavior of liquid-crystal polythiophene for performance improvement of hybrid solar cells. Solar Energy Materials and Solar Cells, 2012, 96, 266-275.	3.0	33
461	Efficient bulk heterojunction polymer solar cells using PEDOT/PSS doped with solution-processed MoO3 as anode buffer layer. Solar Energy Materials and Solar Cells, 2012, 102, 66-70.	3.0	40
462	Approach to a block polymer precursor from poly(3-hexylthiophene) nitroxide-mediated in situ polymerization for stabilization of poly(3-hexylthiophene)/ZnO hybrid solar cells. Thin Solid Films, 2012, 520, 6299-6306.	0.8	9
463	Approach to cross-linked polynorbornene/ZnO nanocomposites through nitroxide-mediated free radical graft polymerization and in situ hydrolysis. Optical Materials, 2012, 34, 1563-1569.	1.7	3
464	Photocrosslinkable liquid-crystalline polythiophenes with oriented nanostructure and stabilization for photovoltaics. Organic Electronics, 2012, 13, 104-113.	1.4	13
465	Photocrosslinkable liquid–crystalline polymers for stable photovoltaics by adjusting side-chains spacing and fullerene size to control intercalation. Organic Electronics, 2012, 13, 1443-1455.	1.4	20
466	Studies on high performance nonvolatile polyimides coating: Gamma ray initiated bulk copolymerization of vinyl polar monomer and maleimide-terminated polyimides with flexible backbone and the modifications. Progress in Organic Coatings, 2012, 73, 33-41.	1.9	7
467	Observations of energy transfer and anisotropic behavior in ZnO nanoparticles surface-modified by liquid-crystalline ligands. Journal of Luminescence, 2012, 132, 2114-2121.	1.5	7
468	Nickel(II) complexes bearing the bis(βâ€ketoamino) ligand for the copolymerization of norbornene with a higher 1â€alkene. Journal of Applied Polymer Science, 2012, 124, 1323-1332.	1.3	13

#	Article	IF	CITATIONS
469	Characterization of the mechanical properties, crystallization, and enzymatic degradation behavior of poly(butylene succinateâ€coâ€ethyleneoxideâ€coâ€ <scp>DL</scp> â€lactide) copolyesters. Journal of Applied Polymer Science, 2012, 123, 2272-2282.	1.3	7
470	Crosslinked electrolytes based on poly(butoxymethylenenorbornene) for proton exchange membrane. Journal of Applied Polymer Science, 2012, 123, 3225-3233.	1.3	10
471	Morphology and hydrogenâ€bond restricted crystallization of poly(butylene succinate)/cellulose diacetate blends. Journal of Applied Polymer Science, 2012, 124, 3124-3131.	1.3	23
472	Coexistence of two conformational isomeric chains in a zinc(II) phosphonate induced by π···π stacking interactions. Structural Chemistry, 2012, 23, 91-96.	1.0	5
473	SYNTHESIS AND PROPERTIES OF MESOGEN JACKETED LIQUID CRYSTALLINE POLYACETYLENE BEARING LATERAL TERPHENYL WITH DIFFERENT SPACERS. Acta Polymerica Sinica, 2012, 011, 1439-1444.	0.0	Ο
474	Mesogens Mediated Self-Assembly in Applications of Bulk Heterojunction Solar Cells Based on a Conjugated Polymer with Narrow Band Gap. Macromolecules, 2011, 44, 2698-2706.	2.2	34
475	Bilayer porous scaffold based on poly-(É>-caprolactone) nanofibrous membrane and gelatin sponge for favoring cell proliferation. Applied Surface Science, 2011, 258, 1670-1676.	3.1	18
476	Influence of water-soluble polythiophene as an interfacial layer on the P3HT/PCBM bulk heterojunction organic photovoltaics. Journal of Materials Chemistry, 2011, 21, 13780.	6.7	53
477	Fluorescence and phase transitions of Mg-Al-Eu ternary layered double hydroxides – dependence on annealing. Clay Minerals, 2011, 46, 487-493.	0.2	4
478	Solid-state supramolecular chemistry of zinc tetraphenylporphyrin and zinc phthalocyanine with bis(pyridyl) ligands. Journal of Molecular Structure, 2011, 1002, 145-150.	1.8	18
479	Fluorescence of Mg-Al-Eu Ternary Layered Double Hydroxide Sensitivity to Phenylalanine. Journal of Fluorescence, 2011, 21, 1677-1682.	1.3	15
480	Synthesis and properties of novel ferroelectric liquid crystalline polyacetylenes containing terphenyl mesogens with chiral groups. Journal of Thermal Analysis and Calorimetry, 2011, 105, 995-1006.	2.0	6
481	Copolymerization of norbornene and n-butyl methacrylate catalyzed by bis-(β-ketoamino)nickel(II)/B(C6F5)3 catalytic system. Polymer Bulletin, 2011, 66, 1149-1161.	1.7	18
482	Electrospinning and characterization of konjac glucomannan/chitosan nanofibrous scaffolds favoring the growth of bone mesenchymal stem cells. Carbohydrate Polymers, 2011, 85, 681-686.	5.1	37
483	Mechanical and thermal properties of polypeptide modified hydroxyapatite/poly(L-lactide) nanocomposites. Science China Chemistry, 2011, 54, 431-437.	4.2	13
484	Sulfonated carbon nanotubes/sulfonated poly(ether sulfone ether ketone ketone) composites for polymer electrolyte membranes. Polymers for Advanced Technologies, 2011, 22, 1747-1752.	1.6	54
485	Ni(II) and Pd(II) complexes bearing novel bis(βâ€ketoamino) ligand and their catalytic activity toward copolymerization of norbornene and 5â€norborneneâ€2â€yl acetate combined with B(C ₆ F ₅) ₃ . Journal of Polymer Science Part A, 2011, 49, 3304-3313.	2.5	26
486	Copolymerization of norbornene with methoxycarbonylnorbornene catalyzed by Ni{CF ₃ C(O)CHC[N(naphthyl)]CH ₃ } ₂ /B(C ₆ F ₅) <s catalytic system and good processability for Dry/Wet phase inversion and electrospinning technique. Journal of Polymer Science Part A, 2011, 49, 4425-4432.</s 	sub>3 <td>یلی 16</td>	یلی 16

#	Article	IF	CITATIONS
487	Enhanced Photoluminescence, Mesomorphism and Conformation of Liquidâ€Crystalline Conjugated Polymers with Terphenyl Mesogen Pendants. Macromolecular Chemistry and Physics, 2011, 212, 24-41.	1.1	12
488	Preparation of Nanosilica/Polynorbornene Nanocomposite by Covalently Immobilized Silica‣upported Acetylacetonate Palladium(II) Dichloride Catalyst. Macromolecular Chemistry and Physics, 2011, 212, 2378-2388.	1.1	12
489	Transesterificationâ€induced cocrystallization of poly(trimethylene terephthalate) and poly(butylene) Tj ETQq1 1	0,784314 1.3	rgBT /Overl
490	Vinylâ€addition copolymerization of norbornene and polar norbornene derivatives using novel bis(βâ€ketoamino)Ni(II)/B(C ₆ F ₅) ₃ /AlEt ₃ catalytic systems. Journal of Applied Polymer Science, 2011, 120, 2008-2016.	1.3	10
491	Stable crosslinked vinylâ€additionâ€ŧype polynorbornene graft copolymer protonâ€exchange membranes. Journal of Applied Polymer Science, 2011, 121, 1166-1175.	1.3	18
492	Synthesis of novel biodegradable poly(butylene succinate) copolyesters composing of isosorbide and poly(ethylene glycol). Journal of Applied Polymer Science, 2011, 121, 2291-2300.	1.3	18
493	Bamboo fibers @ poly(ethylene glycol)â€reinforced poly(butylene succinate) biocomposites. Journal of Applied Polymer Science, 2011, 122, 2456-2466.	1.3	34
494	Enhancement of the ultraviolet emission of ZnO nanorods by terphenyl liquid-crystalline ligands modification. Applied Surface Science, 2011, 257, 8788-8793.	3.1	15
495	Photoluminescence of Eu-doped ZnAl-LDH depending on phase transitions caused by annealing temperatures. Journal of Luminescence, 2011, 131, 701-704.	1.5	12
496	Synthesis of transparent ZnO/PMMA nanocomposite films through free-radical copolymerization of asymmetric zinc methacrylate acetate and in-situ thermal decomposition. Journal of Luminescence, 2011, 131, 1701-1706.	1.5	52
497	Novel approach toward poly(butylene succinate)/single-walled carbon nanotubes nanocomposites with interfacial-induced crystallization behaviors and mechanical strength. Polymer, 2011, 52, 3587-3596.	1.8	64
498	Synthesis and Characterization of a New Type of Smart Hydroxyapatite-PNIPAM Hybrid Nanopatrticles. Advanced Materials Research, 2011, 396-398, 35-39.	0.3	1
499	A Dft Study of Styrene Polymerization using Neutral (2Z, 4E)-4-(Methylimino)Pent-2-En-2-Ol Nickel(Ii). Progress in Reaction Kinetics and Mechanism, 2011, 36, 18-26.	1.1	0
500	Synthesis of Fe ₃ O ₄ @PbS Hybrid Nanoparticles Through the Combination of Surface-Initiated Atom Transfer Radical Polymerization and Acidolysis by H ₂ S. Journal of Nanoscience and Nanotechnology, 2011, 11, 98-105.	0.9	8
501	FABRICATION AND PROPERTIES OF SILICONE RUBBER/ ZnO NANOCOMPOSITES VIA <i>IN SITU</i> SURFACE HYDROSILYLATION. Surface Review and Letters, 2011, 18, 33-38.	0.5	18
502	In situ preparation and fluorescence quenching properties of polythiophene/ZnO nanocrystals hybrids through atom-transfer radical polymerization and hydrolysis. Applied Surface Science, 2010, 256, 2948-2955.	3.1	24
503	Effects of substitution and terminal groups for liquid-crystallinity enhanced luminescence of disubstituted polyacetylenes carrying chromophoric terphenyl pendants. Science China Chemistry, 2010, 53, 1302-1315.	4.2	7
504	Synthesis and characterization of poly(ether sulfone ether ketone ketone) grafted poly(sulfopropyl) Tj ETQq0 0 C	rgBT /Ove	rlock 10 Tf 5

Materials Science, 2010, 45, 1610-1616.

#	Article	IF	CITATIONS
505	Synthesis and photoluminescence of Eu-doped Zn/Al layered double hydroxides. Journal of Materials Science, 2010, 45, 6417-6423.	1.7	36
506	Melt reaction and structural analysis based on poly(butylene terephthalate) and oligo(lactic acid) with addition of butanediol. Journal of Thermal Analysis and Calorimetry, 2010, 99, 269-275.	2.0	2
507	Synthesis and thermal analysis of disubstituted propiolates bearing terphenylene mesogen. Journal of Thermal Analysis and Calorimetry, 2010, 99, 391-397.	2.0	2
508	Synthesis and characterization of sulfonated poly(ether sulfone ether ketone ketone) for proton exchange membranes. Journal of Applied Polymer Science, 2010, 117, 1436-1445.	1.3	3
509	Stably dispersible P3HT/ZnO nanocomposites with tunable luminescence by in-situ hydrolysis and copolymerization of zinc methacrylate. Journal of Luminescence, 2010, 130, 2332-2338.	1.5	7
510	Structure and photoluminescence of Mg–Al–Eu ternary hydrotalcite-like layered double hydroxides. Journal of Solid State Chemistry, 2010, 183, 2222-2226.	1.4	57
511	Novel poly(butylene succinate-co-lactic acid) copolyesters: Synthesis, crystallization, and enzymatic degradation. Polymer Degradation and Stability, 2010, 95, 1920-1927.	2.7	38
512	Photoluminescent, liquidâ€crystalline, and electrochemical properties of <i>para</i> â€phenyleneâ€based alternating conjugated copolymers. Journal of Polymer Science Part A, 2010, 48, 434-442.	2.5	9
513	Luminescent mesogen jacketed poly(1â€alkyne) bearing lateral terphenyl with hexyloxy tail. Journal of Polymer Science Part A, 2010, 48, 5679-5692.	2.5	22
514	Preparation and biodegradation of copolyesters based on poly(ethylene terephthalate) and poly(ethylene glycol)/oligo(lactic acid) by transesterification. Polymer Engineering and Science, 2010, 50, 76-83.	1.5	11
515	Synthesis and Properties of Light-Emitting Polythiophene Derivatives Bearing Terphenyl Mesogenic Pendant. Molecular Crystals and Liquid Crystals, 2010, 518, 70-83.	0.4	5
516	Orientation Behavior of Bulk Heterojunction Solar Cells Based on Liquid-Crystalline Polyfluorene and Fullerene. Journal of Physical Chemistry C, 2010, 114, 18001-18011.	1.5	17
517	Liquid crystallinity and enhanced photoluminescence of terphenyl-containing poly(1-alkynes) with tuning spacers and tails. Synthetic Metals, 2010, 160, 892-905.	2.1	3
518	Synthesis and Helical Conformation of New Optically Active Liquid Crystalline Polythiophene Containing Cyanoterphenyl Mesogen Pendant. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2010, 26, 971-980.	2.2	1
519	Preparation and Hydrolytic Degradation of Poly(hexylene Terephthalate-co-Lactide) co-Polyesters From Melting Polycondensation. Journal of Biomaterials Science, Polymer Edition, 2009, 20, 99-114.	1.9	8
520	GRAFTING POLY(N-ISOPROPYL ACRYLAMIDE) FROM POLY(VINYLIDENE FLUORIDE) MIROFILTRATION, MEMBRANES VIA DIRECT SURFACE-INITIATED, ATOM TRANSFER RADICAL POLYMERIZATION, AND TEMPERATURE SENSITIVITY. Surface Review and Letters, 2009, 16, 111-121.	0.5	14
521	Synthesis of Proton-conducting Electrolytes Based on Poly(vinylidene) Tj ETQq1 1 0.784314 rgBT /Overlock 10 Tf Polymers, 2009, 21, 484-500.	50 107 T 0.8	d (fluoride: 5
522	In Vivo Evaluation of Butylene Terephthalate-ethylene Oxide-DL, Lactide Polymer as Porous Scaffolds for Tissue Engineering. Journal of Bioactive and Compatible Polymers, 2009, 24, 43-55.	0.8	3

#	Article	IF	CITATIONS
523	Preparation of Polymer@PbS hybrid nanofibers by surface-initiated atom transfer radical polymerization and acidolysis by H2S. Materials Letters, 2009, 63, 1425-1427.	1.3	6
524	Preparation of silica hollow fibers by surface-initiated atom transfer radical polymerization from electrospun fiber templates. Materials Letters, 2009, 63, 1803-1806.	1.3	8
525	A label-free amperometric immunosensor based on biocompatible conductive redox chitosan-ferrocene/gold nanoparticles matrix. Biosensors and Bioelectronics, 2009, 25, 852-857.	5.3	121
526	A versatile approach for the fabrication of Au hollow nanoparticles based on poly(styrene-co-2-aminoethyl methacrylate) template. Journal of Materials Science, 2009, 44, 4710-4714.	1.7	4
527	Preparation of silica microtubes by surface-initiated atom transfer radical polymerization from microfiber templates. Polymer Bulletin, 2009, 62, 615-627.	1.7	4
528	Copolymerization of norbornene and 5â€norborneneâ€2â€yl acetate using novel bis(βâ€ketonaphthylamino)Ni(II)/B(C ₆ F ₅) ₃ /AlEt ₃ catalytic system. Journal of Polymer Science Part A, 2009, 47, 3990-4000.	2.5	30
529	A novel type of optically active helical liquid crystalline polymers: Synthesis and characterization of poly(<i>p</i> â€phenylene)s containing terphenyl mesogen with different terminal groups. Journal of Polymer Science Part A, 2009, 47, 4723-4735.	2.5	16
530	Preparation and optical properties of ZnO@PPEGMA nanoparticles. Applied Surface Science, 2009, 255, 7158-7163.	3.1	37
531	Synthesis and Properties of Polyacetylenes Containing Terphenyl Pendent Group with Different Spacers. Macromolecules, 2009, 42, 1454-1461.	2.2	33
532	Synthesis and Helical Conformation of Novel Optically Active Liquid Crystalline Poly(<i>p</i> -phenylene)s Containing Cyanoterphenyl Mesogen as Pendant. Macromolecules, 2009, 42, 5053-5061.	2.2	24
533	Synthesis and properties of liquid crystalline conjugated disubstituted polyacetylene containing cyanoterphenyl mesogenic pendant. Synthetic Metals, 2009, 159, 576-582.	2.1	7
534	Synthesis and properties of polyacetylenes containing bis(4-alkylphenyl)terephthalate as pendant and methyleneoxy as spacer. Synthetic Metals, 2009, 159, 1649-1656.	2.1	14
535	Synthesis and properties of monopolyacetylenes with terphenyl mesogens groups linked at waist position. Synthetic Metals, 2009, 159, 2049-2055.	2.1	6
536	A Versatile Approach to the Fabrication of Palladium Hollow Spheres with Aluminiumoxide Nanoparticles as Template. Journal of Nanoscience and Nanotechnology, 2009, 9, 5790-5794.	0.9	0
537	Photopolymerization of glycerin triglycidyl ether based systems. Journal Wuhan University of Technology, Materials Science Edition, 2008, 23, 795-798.	0.4	1
538	Synthesis and properties of polymer brushes composed of poly(diphenylacetylene) main chain and poly(ethylene glycol) side chains. European Polymer Journal, 2008, 44, 3732-3740.	2.6	21
539	Facilely dispersible magnetic nanoparticles prepared by a surface-initiated atom transfer radical polymerization. Materials Letters, 2008, 62, 4542-4544.	1.3	10

540 Melting bulk reaction between poly(butylene terephthalate) and poly(ethylene) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50,62 Td (glycol)/<sc

#	Article	IF	CITATIONS
541	Synthesis of Aliphatic-Aromatic Copolyesters by a Melting Bulk Reaction Between Poly(butylene) Tj ETQq1 1 0.784	1314 rgBT 0.8	/Overlock
542	Polymerization of n-butyl methylacrylate using bis(β- ketoamino)nickel(II)/MAO catalytic systems. E-Polymers, 2008, 8, .	1.3	0
543	Study on biodegradable aromatic/aliphatic copolyesters. Brazilian Journal of Chemical Engineering, 2008, 25, 321-335.	0.7	49
544	PREPARATION OF POLYMER BRUSHES FROM POLY(VINYLIDENE FLUORIDE) SURFACES BY UV IRRADIATION PRETREATMENT. Surface Review and Letters, 2007, 14, 23-30.	0.5	5
545	ELECTROLESS PLATING OF COPPER ON POLYTETRAFLUOROETHYLENE FILMS MODIFIED BY SURFACE-INITIATED FREE RADICAL POLYMERIZATION OF 4-VINYLPYRIDINE. Surface Review and Letters, 2007, 14, 241-253.	0.5	2
546	Preparation and characterization of aliphatic/aromatic copolyesters based on bisphenol-A terephthalate, hexylene terephthalate and lactide mioties. Reactive and Functional Polymers, 2007, 67, 396-407.	2.0	20
547	Polymerization of styrene using bis(β-ketoamino)nickel(II)/methylaluminoxane catalytic systems. Journal of Applied Polymer Science, 2007, 105, 500-509.	1.3	12
548	Controlled grafting from poly(vinylidene fluoride) microfiltration membranes via reverse atom transfer radical polymerization and antifouling properties. Polymer, 2007, 48, 7604-7613.	1.8	90
549	Addition polymerization of norbornene using bis(βâ€ketoamino)nickel(II)/tris(pentafluorophenyl)borane catalytic systems. Journal of Polymer Science Part A, 2007, 45, 4733-4743.	2.5	27
550	Controlled grafting from poly(vinylidene fluoride) films by surface-initiated reversible addition–fragmentation chain transfer polymerization. Journal of Polymer Science Part A, 2006, 44, 3071-3082.	2.5	57
551	Atom transfer radical polymerization directly from poly(vinylidene fluoride): Surface and antifouling properties. Journal of Polymer Science Part A, 2006, 44, 3434-3443.	2.5	113
552	Synthesis and properties of polyacetylenes with directly attached bis(4-alkoxyphenyl)terephthalate mesogens as pendants. Journal of Polymer Science Part A, 2006, 44, 2499-2509.	2.5	25
553	Preparing polymer brushes on polytetrafluoroethylene films by free radical polymerization. Applied Surface Science, 2006, 253, 983-988.	3.1	9
554	Low-κ nanocomposite films based on polyimides with grafted polyhedral oligomeric silsesquioxane. Journal of Applied Polymer Science, 2006, 99, 2226-2232.	1.3	35
555	Controlled grafting of polymer brushes on poly(vinylidene fluoride) films by surface-initiated atom transfer radical polymerization. Journal of Applied Polymer Science, 2006, 101, 3704-3712.	1.3	48
556	Preparing polymer brushes on poly(vinylidene fluoride) films by free radical polymerization. Journal of Applied Polymer Science, 2006, 101, 857-862.	1.3	9
557	Fluorinated polyimides grafted with poly(ethylene glycol) side chains by the RAFT-mediated process and their membranes. Materials Chemistry and Physics, 2005, 94, 195-201.	2.0	17
558	Preparation of Hollow Silica Nanospheres by Surface-Initiated Atom Transfer Radical Polymerization on Polymer Latex Templates. Advanced Functional Materials, 2005, 15, 113-117.	7.8	71

#	Article	IF	CITATIONS
559	Nanoporous SiLK® Dielectric Films Prepared from Free-Radical Graft Polymerization and Thermolysis. Macromolecular Chemistry and Physics, 2005, 206, 2483-2489.	1.1	7
560	SURFACE MODIFICATION OF POLY(VINYLIDENE FLUORIDE) FILMS BY CONTROLLED GRAFTING POLYMER BRUSHES. Surface Review and Letters, 2005, 12, 709-712.	0.5	21
561	Hydrolytic and Enzymatic Degradation of Liquid-Crystalline Aromatic/Aliphatic Copolyesters. Biomacromolecules, 2004, 5, 11-16.	2.6	22
562	New approach to nanocomposites of polyimides containing polyhedral oligomeric silsesquioxane for dielectric applications. Materials Letters, 2004, 58, 3716-3719.	1.3	74
563	Photorefractive material based on a polymer containing photoconductors and nonlinear chromophores. Optics Communications, 2003, 228, 341-348.	1.0	9
564	Thermotropic aromatic/lactide copolyesters with solubilizing side chains on aromatic rings. Polymer, 2003, 44, 5513-5520.	1.8	16
565	The design, fabrication and property study for photorefractive applications of novel organic materials. Optical Materials, 2003, 23, 253-259.	1.7	2
566	Design, Synthesis, and Properties of New Biodegradable Aromatic/Aliphatic Liquid Crystalline Copolyesters. Biomacromolecules, 2003, 4, 974-980.	2.6	31
567	Thermotropic Aromatic/Lactide Copolyesters with Lateral Methoxyethyleneoxy Substituents. Chemistry of Materials, 2003, 15, 694-698.	3.2	11
568	Synthesis and characterization of photorefractive materials based on polymers containing photoconductors and nonlinear chromophores. Materials Letters, 2003, 57, 4372-4377.	1.3	8
569	Poly(vinylidene fluoride) with Grafted Poly(ethylene glycol) Side Chains via the RAFT-Mediated Process and Pore Size Control of the Copolymer Membranes. Macromolecules, 2003, 36, 9451-9457.	2.2	123
570	Synthesis and characterization of bi-functional photorefractive polymers. Polymer, 2001, 42, 1101-1107.	1.8	22
571	Electroabsorption and orientationally enhanced electroabsorption grating in an azo-dye—doped photorefractive composite. Journal of the Optical Society of America B: Optical Physics, 1999, 16, 366.	0.9	4
572	A novel effective electro-optical chromophore for the photorefractive performance in poly(N-vinylcarbazole) based composite. Solid State Communications, 1998, 106, 299-302.	0.9	9
573	Bi-functional host polymer based low glass transition temperature photorefractive composite. Solid State Communications, 1998, 108, 295-299.	0.9	10
574	An optimized nonlinear optical chromophore in a low-glass-transition-temperature photorefractive polymer. Journal Physics D: Applied Physics, 1998, 31, 2245-2248.	1.3	11
575	Electrostrictive behavior observed in a low glass-transition temperature photorefractive polymeric composite during a two-beam coupling experiment. Applied Physics Letters, 1998, 72, 2939-2941.	1.5	7
576	A fast-response and short-wavelength nonlinear optical chromophore for a photorefractive composite. Applied Physics Letters, 1998, 73, 3629-3631.	1.5	7

#	Article	IF	CITATIONS
577	Influence of Atomic Defect on the Deformation Properties of Nanowires Subjected to Uniaxial Tension. Advanced Materials Research, 0, 873, 139-146.	0.3	0