
Takahiko Akiyama

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9435905/publications.pdf Version: 2024-02-01

Τλκλμικό Δκιγληλ

#	Article	IF	CITATIONS
1	Visible-Light-Driven Enantioselective Radical Addition to Imines Enabled by the Excitation of a Chiral Phosphoric Acid–Imine Complex. ACS Catalysis, 2022, 12, 5209-5216.	11.2	18
2	Enantioselective Friedel–Crafts Alkylation Reaction of Pyrroles with <i>N</i> -Unprotected Alkynyl Trifluoromethyl Ketimines. Organic Letters, 2022, 24, 4699-4703.	4.6	10
3	Visible-Light-Driven C–S Bond Formation Based on Electron Donor–Acceptor Excitation and Hydrogen Atom Transfer Combined System. ACS Organic & Inorganic Au, 2021, 1, 23-28.	4.0	39
4	Catalytic trifluoromethylation of iodoarenes by use of 2-trifluoromethylated benzimidazoline as trifluoromethylating reagent. Beilstein Journal of Organic Chemistry, 2020, 16, 2442-2447.	2.2	2
5	Enantioselective Synthesis of 2â€Substituted Indoles Bearing Trifluoromethyl Moiety by the Friedelâ€Crafts Alkylation Reaction of 4,7â€Dihydroindole with N â^'H Trifluoromethyl Ketimines. ChemCatChem, 2020, 12, 4784-4787.	3.7	13
6	Radical Hydroalkylation and Hydroacylation of Alkenes by the Use of Benzothiazoline under Thermal Conditions. Journal of Organic Chemistry, 2020, 85, 12715-12723.	3.2	15
7	Oxidative Kinetic Resolution of Acyclic Amines Based on Equilibrium Control. Organic Letters, 2020, 22, 3128-3134.	4.6	7
8	Enantioselective Dehydroxyhydrogenation of 3-Indolylmethanols by the Combined Use of Benzothiazoline and Chiral Phosphoric Acid: Construction of a Tertiary Carbon Center. Organic Letters, 2020, 22, 2225-2229.	4.6	17
9	Benzothiazolines as radical transfer reagents: hydroalkylation and hydroacylation of alkenes by radical generation under photoirradiation conditions. Chemical Communications, 2019, 55, 11171-11174.	4.1	32
10	Enantioselective Friedel–Crafts Alkylation Reaction of Indoles with α-Trifluoromethylated β-Nitrostyrenes Catalyzed by Chiral BINOL Metal Phosphate. ACS Catalysis, 2019, 9, 6903-6909.	11.2	36
11	Enantioselective Synthesis of 1-Substituted 1,2,3,4-Tetrahydroisoquinolines through 1,3-Dipolar Cycloaddition by a Chiral Phosphoric Acid. Synlett, 2019, 30, 1541-1545.	1.8	6
12	Diastereoselective Synthesis of CF ₃ -Substituted Spiroisochromans by [1,5]-Hydride Shift/Cyclization/Intramolecular Friedel–Crafts Reaction Sequence. Organic Letters, 2019, 21, 2383-2387.	4.6	33
13	Enantioselective Friedel–Crafts Alkylation Reaction of Heteroarenes with Nâ€Unprotected Trifluoromethyl Ketimines by Means of Chiral Phosphoric Acid. Chemistry - A European Journal, 2019, 25, 5677-5681.	3.3	31
14	Ligand-free trifluoromethylation of iodoarenes by use of 2-Aryl-2-trifluoromethylbenzimidazoline as new trifluoromethylating reagent. Journal of Fluorine Chemistry, 2019, 219, 29-31.	1.7	3
15	Reduction of Nitroarenes to Anilines with a Benzothiazoline: Application to Enantioselective Synthesis of 2-Arylquinoline Derivatives. Synlett, 2019, 30, 499-502.	1.8	5
16	Asymmetric Reduction of Trifluoromethyl Alkynyl Ketimines by Chiral Phosphoric Acid and Benzothiazoline. Synlett, 2018, 29, 1607-1610.	1.8	14
17	Highly diastereoselective synthesis of tricyclic fused-pyrans by sequential hydride shift mediated double C(sp ³)–H bond functionalization. Chemical Science, 2018, 9, 7327-7331.	7.4	47
18	Chiral Magnesium Bisphosphate-Catalyzed Asymmetric Double C(sp ³)–H Bond Functionalization Based on Sequential Hydride Shift/Cyclization Process. Journal of the American Chemical Society, 2018, 140, 6203-6207.	13.7	114

#	Article	IF	CITATIONS
19	Niobium(<scp>v</scp>)-catalyzed defluorinative triallylation of α,α,α-trifluorotoluene derivatives by triple C–F bond activation. Organic and Biomolecular Chemistry, 2017, 15, 1767-1770.	2.8	22
20	Dynamic Kinetic Resolution Approach for the Asymmetric Synthesis of Tetrahydrobenzodiazepines Using Transfer Hydrogenation by Chiral Phosphoric Acid. Chemistry - A European Journal, 2016, 22, 8078-8083.	3.3	37
21	Enantiodivergent Atroposelective Synthesis of Chiral Biaryls by Asymmetric Transfer Hydrogenation: Chiral Phosphoric Acid Catalyzed Dynamic Kinetic Resolution. Angewandte Chemie, 2016, 128, 11814-11818.	2.0	71
22	Enantiodivergent Atroposelective Synthesis of Chiral Biaryls by Asymmetric Transfer Hydrogenation: Chiral Phosphoric Acid Catalyzed Dynamic Kinetic Resolution. Angewandte Chemie - International Edition, 2016, 55, 11642-11646.	13.8	167
23	Versatile and highly efficient oxidative C(sp ³)–H bond functionalization of tetrahydroisoquinoline promoted by bifunctional diethyl azodicarboxylate (DEAD): scope and mechanistic insights. Organic Chemistry Frontiers, 2016, 3, 1259-1264.	4.5	25
24	Remarkable Differences in Reactivity between Benzothiazoline and Hantzsch Ester as a Hydrogen Donor in Chiral Phosphoric Acid Catalyzed Asymmetric Reductive Amination of Ketones. Chemistry - an Asian Journal, 2016, 11, 274-279.	3.3	12
25	Chiral Phosphoric Acid Catalyzed Kinetic Resolution of Indolines Based on a Selfâ€Redox Reaction. Angewandte Chemie - International Edition, 2016, 55, 3148-3152.	13.8	56
26	Transformation of Trifluorotoluenes Triggered by Titanium(Ⅳ) Chlorideâ€Catalyzed Hydrodefluorination using Hydrosilanes. Advanced Synthesis and Catalysis, 2016, 358, 62-66.	4.3	28
27	Cluster Preface: BINOL Phosphates for Chemistry. Synlett, 2016, 27, 542-545.	1.8	11
28	Synthesis of 3â€Arylâ€1â€ŧrifluoromethyltetrahydroisoquinolines by BrÃ,nsted Acidâ€Catalyzed C(<i>sp</i> ³)H Bond Functionalization. Advanced Synthesis and Catalysis, 2015, 357, 901-906.	4.3	51
29	Benzothiazoline: Versatile Hydrogen Donor for Organocatalytic Transfer Hydrogenation. Accounts of Chemical Research, 2015, 48, 388-398.	15.6	146
30	B(C ₆ F ₅) ₃ -Catalyzed Hydrodesulfurization Using Hydrosilanes – Metal-Free Reduction of Sulfides. Organic Letters, 2015, 17, 3366-3369.	4.6	35
31	Chiral Phosphoric Acid Catalyzed Asymmetric Synthesis of 2-Substituted 2,3-Dihydro-4-quinolones by a Protecting-Group-Free Approach. Organic Letters, 2015, 17, 3202-3205.	4.6	50
32	Stronger BrÃ,nsted Acids: Recent Progress. Chemical Reviews, 2015, 115, 9277-9306.	47.7	570
33	Chiral phosphoric acid catalyzed oxidative kinetic resolution of cyclic secondary amine derivatives including tetrahydroquinolines by hydrogen transfer to imines. Chemical Communications, 2015, 51, 16648-16651.	4.1	35
34	Enantioselective synthesis of fused heterocycles with contiguous stereogenic centers by chiral phosphoric acid catalyzed symmetry breaking. Chemical Communications, 2015, 51, 16107-16110.	4.1	16
35	Enantioselective Synthesis of Chiral Biaryl Chlorides/Iodides by a Chiral Phosphoric Acid Catalyzed Sequential Halogenation Strategy. Advanced Synthesis and Catalysis, 2015, 357, 35-40.	4.3	18
36	γ-Silylboronates in the chiral BrÃ,nsted acid-catalysed allylboration of aldehydes. Chemical Communications, 2015, 51, 5246-5249.	4.1	41

#	Article	IF	CITATIONS
37	Phosphoric Acid Bridged Cobalt Bis(dicarbollide) Ion as a Highly Efficient Catalyst for the Organocatalytic Hydrogenation of Ketimines. Synlett, 2014, 25, 795-798.	1.8	9
38	Chiral Phosphoricâ€Acidâ€Catalyzed Transfer Hydrogenation of Ethyl Ketimine Derivatives by Using Benzothiazoline. Chemistry - A European Journal, 2014, 20, 7616-7620.	3.3	35
39	Expeditious synthesis of 1-aminoindane derivatives achieved by [1,4]-hydride shift mediated C(sp3)–H bond functionalization. Chemical Communications, 2014, 50, 3729.	4.1	49
40	2.16 The Bimolecular and Intramolecular Mannich and Related Reactions. , 2014, , 629-681.		9
41	Asymmetric Transfer Hydrogenation of Ketimines by Indoline as Recyclable Hydrogen Donor. Organic Letters, 2014, 16, 5312-5315.	4.6	37
42	Stereoselective construction of all-carbon quaternary center by means of chiral phosphoric acid: highly enantioselective Friedel–Crafts reaction of indoles with β,β-disubstituted nitroalkenes. Chemical Science, 2014, 5, 1799-1803.	7.4	74
43	Double C(sp ³)–H Bond Functionalization Mediated by Sequential Hydride Shift/Cyclization Process: Diastereoselective Construction of Polyheterocycles. Journal of the American Chemical Society, 2014, 136, 3744-3747.	13.7	126
44	Enantioselective Fluorination of β-Ketoesters Catalyzed by Chiral Sodium Phosphate: Remarkable Enhancement of Reactivity by Simultaneous Utilization of Metal Enolate and Metal Phosphate. Chemistry Letters, 2014, 43, 137-139.	1.3	23
45	Chiral Phosphoric Acid-Catalyzed Oxidative Kinetic Resolution of Indolines Based on Transfer Hydrogenation to Imines. Journal of the American Chemical Society, 2013, 135, 11740-11743.	13.7	122
46	Prediction of suitable catalyst by 1H NMR: asymmetric synthesis of multisubstituted biaryls by chiral phosphoric acid catalyzed asymmetric bromination. Chemical Science, 2013, 4, 4235.	7.4	45
47	Chiral Copper(II) Phosphate Catalyzed Enantioselective Synthesis of Isochromene Derivatives by Sequential Intramolecular Cyclization and Asymmetric Transfer Hydrogenation of <i>o</i> â€Alkynylacetophenones. Angewandte Chemie - International Edition, 2013, 52, 13284-13288.	13.8	97
48	Hydrodefluorinations of trifluorotoluenes by LiAlH4 and TiCl4. Journal of Fluorine Chemistry, 2013, 152, 81-83.	1.7	25
49	Enantioselective Transfer Hydrogenation of Difluoromethyl Ketimines Using Benzothiazoline as a Hydrogen Donor in Combination with a Chiral Phosphoric Acid. Asian Journal of Organic Chemistry, 2013, 2, 943-946.	2.7	22
50	Enantioselective Synthesis of Multisubstituted Biaryl Skeleton by Chiral Phosphoric Acid Catalyzed Desymmetrization/Kinetic Resolution Sequence. Journal of the American Chemical Society, 2013, 135, 3964-3970.	13.7	262
51	Molecular iodine catalyzed transfer hydrogenation: reduction of aldimines, ketimines, and α-imino esters. Tetrahedron Letters, 2013, 54, 3977-3981.	1.4	16
52	Singapore Visit Report, Observing Trends and Enhancing Ties with Singapore in the Field of Organic Synthesis. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2013, 71, 639-641.	0.1	0
53	6.3 C–C Bond Formation: Mannich Reaction. , 2012, , 69-96.		4
54	Concise Route to 3-Arylisoquinoline Skeleton by Lewis Acid Catalyzed C(sp3)–H Bond Functionalization and Its Application to Formal Synthesis of (±)-Tetrahydropalmatine. Organic Letters, 2012, 14, 1436-1439.	4.6	77

#	Article	IF	CITATIONS
55	Chiral Phosphoric Acid Catalyzed Enantioselective Transfer Deuteration of Ketimines by Use of Benzothiazoline As a Deuterium Donor: Synthesis of Optically Active Deuterated Amines. Organic Letters, 2012, 14, 3312-3315.	4.6	71
56	Enantioselective organocatalytic reductive amination of aliphatic ketones by benzothiazoline as hydrogen donor. Chemical Communications, 2012, 48, 4573.	4.1	60
57	Kinetic Resolution in Chiral Phosphoric Acid Catalyzed Aldol Reactions: Enantioselective Robinsonâ€Type Annulation Reactions. European Journal of Organic Chemistry, 2012, 2012, 4508-4514.	2.4	35
58	Transfer hydrogenation of imines with carboxyl-tailed benzothiazoline as readily removable hydrogen donor. Tetrahedron Letters, 2012, 53, 416-418.	1.4	20
59	Chiral Phosphoric Acid Catalyzed Enantioselective Synthesis of β-Amino-α,α-difluoro Carbonyl Compounds. Organic Letters, 2011, 13, 1860-1863.	4.6	122
60	Selective Activation of Enantiotopic C(sp ³)â^'Hydrogen by Means of Chiral Phosphoric Acid: Asymmetric Synthesis of Tetrahydroquinoline Derivatives. Journal of the American Chemical Society, 2011, 133, 6166-6169.	13.7	243
61	Expeditious Construction of a Carbobicyclic Skeleton via sp ³ -Câ^'H Functionalization: Hydride Shift from an Aliphatic Tertiary Position in an Internal Redox Process. Journal of the American Chemical Society, 2011, 133, 2424-2426.	13.7	150
62	Rapid Access to 3-Aryltetralin Skeleton via C(sp3)–H Bond Functionalization: Investigation on the Substituent Effect of Aromatic Ring Adjacent to C–H Bond in Hydride Shift/Cyclization Sequence. Chemistry Letters, 2011, 40, 1386-1388.	1.3	51
63	Chiral Phosphoric Acid Catalyzed Transfer Hydrogenation: Facile Synthetic Access to Highly Optically Active Trifluoromethylated Amines. Angewandte Chemie - International Edition, 2011, 50, 8180-8183.	13.8	143
64	BrÃ,nsted Acid Catalyzed Reductive Amination with Benzothiazoline as a Highly Efficient Hydrogen Donor. Synlett, 2011, 2011, 1251-1254.	1.8	8
65	Development of Chiral Bronsted Acid and its Application to Asymmetric Synthesis. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2011, 69, 913-925.	0.1	14
66	Niobium-catalyzed Activation of CF3 Group on Alkene: Synthesis of Substituted Indenes. Chemistry Letters, 2010, 39, 867-869.	1.3	19
67	Enantioselective Friedel–Crafts Alkylation of Indoles, Pyrroles, and Furans with Trifluoropyruvate Catalyzed by Chiral Phosphoric Acid. Chemistry - an Asian Journal, 2010, 5, 470-472.	3.3	62
68	Enantioselective Organocatalytic Transfer Hydrogenation of αâ€Imino Esters by Utilization of Benzothiazoline as Highly Efficient Reducing Agent. Advanced Synthesis and Catalysis, 2010, 352, 1846-1850.	4.3	92
69	Synthesis and Properties of Phosphoroselenoic Acids and Their salts Bearing Binaphthyl Groups. Phosphorus, Sulfur and Silicon and the Related Elements, 2010, 185, 964-973.	1.6	17
70	Expeditious Synthesis of Benzopyrans via Lewis Acid-Catalyzed Câ^'H Functionalization: Remarkable Enhancement of Reactivity by an <i>Ortho</i> Substituent. Organic Letters, 2010, 12, 1732-1735.	4.6	128
71	Enantioselective Friedel–Crafts alkylation reaction of indoles with α,β-unsaturated acyl phosphonates catalyzed by chiral phosphoric acid. Chemical Communications, 2010, 46, 4112.	4.1	56
72	Chiral BrÃ,nsted acid catalyzed asymmetric Friedel–Crafts alkylation reaction of indoles with α,β-unsaturated ketones: short access to optically active 2- and 3-substituted indole derivatives. Organic and Biomolecular Chemistry, 2010, 8, 5448.	2.8	69

#	Article	IF	CITATIONS
73	Enantioselective Mannich-Type Reaction Catalyzed by a Chiral Phosphoric Acid Bearing an (<i>S</i>)-Biphenol Backbone. Synlett, 2009, 2009, 1664-1666.	1.8	27
74	Enantioselective Robinsonâ€Type Annulation Reaction Catalyzed by Chiral Phosphoric Acids. Angewandte Chemie - International Edition, 2009, 48, 4226-4228.	13.8	114
75	Expedient Synthesis of Nâ€Fused Indoles: A CF Activation and CH Insertion Approach. Angewandte Chemie - International Edition, 2009, 48, 8070-8073.	13.8	74
76	Chiral Phosphoric Acid Catalyzed Desymmetrization of <i>meso</i> â€1,3â€Diones: Asymmetric Synthesis of Chiral Cyclohexenones. Angewandte Chemie - International Edition, 2009, 48, 9652-9654.	13.8	112
77	Chiral BrÃ,nsted acid-catalyzed hydrophosphonylation of imines—DFT study on the effect of substituents of phosphoric acid. Tetrahedron, 2009, 65, 4950-4956.	1.9	69
78	BrÃ,nsted acid-catalyzed Nazarov cyclization of pyrrole derivatives accelerated by microwave irradiation. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 3764-3766.	2.2	22
79	Enantioselective Aza-Darzens Reaction Catalyzed by A Chiral Phosphoric Acid. Organic Letters, 2009, 11, 2445-2447.	4.6	132
80	Expeditious Construction of Quinazolines via BrÃ,nsted Acid-induced C–H Activation: Further Extension of " <i>tert</i> -Amino Effect― Chemistry Letters, 2009, 38, 524-525.	1.3	112
81	Dual Functionalization of Allene: Facile Construction of Heteropolycycles Mediated by BrÃ,nsted Acid. Chemistry Letters, 2009, 38, 628-629.	1.3	14
82	Chiral Phosphoric Acid Catalyzed Enantioselective Friedel–Crafts Alkylation of Indoles with Nitroalkenes: Cooperative Effect of 3â€Ã Molecular Sieves. Angewandte Chemie - International Edition, 2008, 47, 4016-4018.	13.8	284
83	Vinylogous Mannichâ€Type Reaction Catalyzed by an Iodineâ€Substituted Chiral Phosphoric Acid. Advanced Synthesis and Catalysis, 2008, 350, 399-402.	4.3	101
84	CC Coupling Reactions of Superstrong CF ₃ Groups with C(sp ²)–H Bonds: Reactivity and Synthetic Utility of Zeroâ€Valent Niobium Catalyst. Chemistry - an Asian Journal, 2008, 3, 261-271.	3.3	34
85	Preparation of β-Amino Esters by a Chiral BrÃ,nsted Acid Catalyzed Mannich-Type Reaction. Synthesis, 2008, 2008, 1319-1322.	2.3	6
86	Mechanistic Study on the Base-Promoted Reaction of Allylphenylsilanes to Alkenylsilanols. Bulletin of the Chemical Society of Japan, 2008, 81, 623-629.	3.2	6
87	Carbocyclization Reaction of Malonate Derivatives with AllyIsilane Moiety Mediated by AlCl3-n-Bu3N. Bulletin of the Chemical Society of Japan, 2007, 80, 972-978.	3.2	3
88	Low-valent Niobium-mediated Synthesis of Indenes: Intramolecular Coupling Reaction of CF3Group with Alkene C–H Bond. Chemistry Letters, 2007, 36, 24-25.	1.3	29
89	Low-Valent Niobium-Catalyzed Reduction of α,α,α-Trifluorotoluenes. Organic Letters, 2007, 9, 1497-1499.	4.6	83
90	Chiral BrÃ,nsted Acid Catalyzed Enantioselective Mannich-Type Reaction. Journal of the American Chemical Society, 2007, 129, 6756-6764.	13.7	284

6

#	Article	IF	CITATIONS
91	Hydrodefluorinations by low-valent niobium catalyst. Journal of Fluorine Chemistry, 2007, 128, 1158-1167.	1.7	48
92	Synthesis of nitrogen-containing compounds using chromium Fischer carbene complexes. Chemical Record, 2007, 7, 104-114.	5.8	10
93	Stronger BrÃ,nsted Acids. Chemical Reviews, 2007, 107, 5744-5758.	47.7	2,085
94	Synthesis of pyrroles: reaction of chromium N-alkylaminocarbene complexes with α,β-unsaturated aldehydes. Chemical Communications, 2006, , 2271-2273.	4.1	13
95	Low-Valent Niobium-Mediated Double Activation of Câ ^{°°} F/Câ ^{°°} H Bonds:Â Fluorene Synthesis fromo-Arylated α,α,α-Trifluorotoluene Derivatives. Journal of the American Chemical Society, 2006, 128, 1434-1435.	13.7	170
96	One-pot synthesis of chiral dehydroproline esters: [3+2]-type cycloaddition reaction of allenylstannane and α-imino ester. Tetrahedron, 2006, 62, 11304-11310.	1.9	8
97	Chiral BrÃ,nsted Acid-Catalyzed Inverse Electron-Demand Aza Dielsâ `Alder Reaction. Journal of the American Chemical Society, 2006, 128, 13070-13071.	13.7	385
98	Mechanism of oil-in-water emulsification using a water-soluble amphiphilic polymer and lipophilic surfactant. Journal of Colloid and Interface Science, 2006, 300, 141-148.	9.4	25
99	Chiral BrÃุnsted Acid Catalyzed Enantioselective Aza-Diels–Alder Reaction of Brassard's Diene with Imines. Angewandte Chemie - International Edition, 2006, 45, 4796-4798.	13.8	218
100	Recent Progress in Chiral BrÃ,nsted Acid Catalysis. Advanced Synthesis and Catalysis, 2006, 348, 999-1010.	4.3	868
101	Mannich-Type Reaction in Water in the Presence of a Surfactant. Synthesis, 2006, 2006, 4075-4080.	2.3	1
102	Stereoselective Synthesis of Tetrahydrofuran by Diasteroselective [3+2] Cycloaddition Reaction of Chiral Allylsilane with a-Keto Ester. Heterocycles, 2006, 67, 369.	0.7	8
103	[3+2] Cycloaddition Reactions of Cyclopropylmethylsilanes and α-Keto Aldehydes: Trans- and Cis-selective Formation of 2-Silylmethyltetrahydrofurans. Chemistry Letters, 2005, 34, 538-539.	1.3	29
104	Enantioselective three-component synthesis of 4-arylated dehydroprolines: [3+2] annulation of allenylstannane and α-imino ester. Tetrahedron Letters, 2005, 46, 8563-8566.	1.4	12
105	Enantioselective Mannich-Type Reaction Catalyzed by a Chiral BrÃ,nsted Acid Derived from TADDOL. Advanced Synthesis and Catalysis, 2005, 347, 1523-1526.	4.3	134
106	HCl-Catalyzed Stereoselective Mannich Reaction in H2O-SDS System. Synlett, 2005, 2005, 322-324.	1.8	81
107	Mannich-Type Reaction Promoted by an Ionic Liquid. Synlett, 2005, 2005, 1024-1026.	1.8	49
108	Montmorillonite K10 Catalyzed Nucleophilic Addition Reaction to Aldimines in Water. Synthesis, 2005, 2005, 2606-2608.	2.3	12

7

#	Article	IF	CITATIONS
109	Chiral BrÃ,nsted Acid Catalyzed Enantioselective Hydrophosphonylation of Imines:  Asymmetric Synthesis of α-Amino Phosphonates. Organic Letters, 2005, 7, 2583-2585.	4.6	289
110	Cu(I)-Catalyzed Enantioselective [3 + 2] Cycloaddition Reaction of 1-Alkylallenylsilane with α-Imino Ester:  Asymmetric Synthesis of Dehydroproline Derivatives. Organic Letters, 2005, 7, 1051-1053.	4.6	44
111	Enantioselective Mannich-Type Reaction Catalyzed by a Chiral BrÃ,nsted Acid. Angewandte Chemie - International Edition, 2004, 43, 1566-1568.	13.8	1,448
112	A Novel Approach to 2-Arylated Quinolines:  Electrocyclization of Alkynyl Imines via Vinylidene Complexes. Organic Letters, 2004, 6, 353-355.	4.6	102
113	Synthesis of Aryl-substituted Quinoline Derivatives via BrÃ,nsted Acid-catalyzed [4+2] Aza Diels–Alder Reaction. Chemistry Letters, 2004, 33, 922-923.	1.3	26
114	Stereoselective synthesis of CF3-substituted aziridines by Lewis acid-mediated aziridination of aldimines with diazoacetates. Tetrahedron Letters, 2003, 44, 4011-4013.	1.4	49
115	Cu(I)-Catalyzed Enantioselective [2 + 2] Cycloaddition of 1-Methoxyallenylsilane with α-Imino Ester: Chiral Synthesis of α,β-Unsaturated Acylsilanes. Organic Letters, 2003, 5, 3691-3693.	4.6	58
116	Synthesis of a novel crown ether derived from chiro-inositol and its catalytic activity on the asymmetric Michael addition. Chemical Communications, 2003, , 1734.	4.1	93
117	Novel Thermal Reaction of Fischer Carbene Complexes with Imines:  Synthesis of β-Methoxy Allylic Amine Derivatives. Organic Letters, 2002, 4, 3967-3969.	4.6	13
118	BrÃ,nsted Acid-Catalyzed Mannich-Type Reactions in Aqueous Media. Advanced Synthesis and Catalysis, 2002, 344, 338-347.	4.3	67
119	The Asymmetric [3+2] Cycloaddition Reaction of Chiral Alkenyl Fischer Carbene Complexes with Imines:Â Synthesis of Optically Pure 2,5-Disubstituted-3-pyrrolidinones. Journal of the American Chemical Society, 2001, 123, 7182-7183.	13.7	52
120	Lewis acid-mediated [3+2] cycloaddition of allyltriisopropylsilane to N-sulfonyl aldimines. Tetrahedron Letters, 2001, 42, 3889-3892.	1.4	19
121	A highly stereo-divergent Mannich-type reaction catalyzed by BrÃ,nsted acid in aqueous media. Tetrahedron Letters, 2001, 42, 4025-4028.	1.4	43
122	Novel [3 + 2] Cycloaddition Reaction of Alkenyl Fischer Carbene Complexes with Imines Leading to 3-Pyrroline Derivatives. Journal of the American Chemical Society, 2000, 122, 11741-11742.	13.7	43
123	Chiral syntheses of 2,3,5-trisubstituted pyrrolidines by silicon-directed cyclization of allylsilanes bearing a sulfonamide moiety. Tetrahedron Letters, 1999, 40, 4219-4222.	1.4	14
124	BrÃ,nsted acid-catalyzed aza Diels-Alder reaction of Danishefsky's diene with aldimine generated in situ from aldehyde and amine in aqueous media. Tetrahedron Letters, 1999, 40, 7831-7834.	1.4	72
125	Scandium trifluoromethanesulfonate-catalyzed chemoselective allylation reactions of carbonyl compounds with tetraallylgermane in aqueous media. Tetrahedron, 1999, 55, 7499-7508.	1.9	29
126	Stereoselective synthesis of cyclopentanols by Lewis acid-mediated [3+2] annulation of allyldiisopropylphenylsilane with α,β-unsaturated diesters. Tetrahedron Letters, 1998, 39, 7885-7888.	1.4	27

#	Article	IF	CITATIONS
127	Scandium trifluoromethanesulfonate-catalyzed chemoselective allylation reactions of carbonyl compounds with tetraallylgermane in aqueous media. Tetrahedron Letters, 1997, 38, 853-856.	1.4	43
128	Asymmetric synthesis of tetrahydrofurans by diastereoselective [3+2] cycloaddition of allylsilanes with α-keto esters bearing an optically active cyclitol as a chiral auxiliary. Tetrahedron Letters, 1994, 35, 8401-8404.	1.4	60
129	Enzymatic resolution of racemic 1,2:5,6-di-O-cyclohexylidene and 1,2:3,4-di-O-cyclohexylidene-myo-inositol. Bioorganic and Medicinal Chemistry, 1993, 1, 155-159.	3.0	10
130	A new efficient method for resolution of myo-inositol derivatives by enzyme catalyzed regio- and enantio-selective esterification in organic solvent. Tetrahedron Letters, 1992, 33, 1911-1914.	1.4	33
131	The preparation of optically active Δ2-isoxazolines via addition of nitrile oxides to chiral acryloyl esters bearing cyclitols as auxiliaries. Tetrahedron Letters, 1992, 33, 5763-5766.	1.4	42
132	A concise synthesis of (â^')-conduritol F from l-quebrachitol via AlCl3-n-Bu4NI mediated demethylation. Tetrahedron Letters, 1991, 32, 5593-5596.	1.4	42
133	AlCl3-N,N-dimethylaniline: A new benzyl and allyl ether cleavage reagent Tetrahedron Letters, 1991, 32, 1321-1324.	1.4	85
134	Diastereoselective reduction of α-keto esters bearing chiro-inositol derivatives as chiral auxiliaries. Tetrahedron Letters, 1991, 32, 1335-1338.	1.4	48
135	The Selective Protection of Uridine with ap-Methoxybenzyl Chloride: A Synthesis of 2′-O-Methyluridine. Bulletin of the Chemical Society of Japan, 1990, 63, 3356-3357.	3.2	30
136	Chiral synthesis of D-myo-inositol 1-phosphate starting from L-quebrachitol. Tetrahedron Letters, 1990, 31, 1433-1434.	1.4	41
137	Hydrogen-Bond Catalysis or BrÃ _, nsted-Acid Catalysis? General Considerations. , 0, , 5-14.		7
138	Chiral Calcium Phosphate Catalyzed Enantioselective Synthesis of All-Carbon Quaternary Center by Friedel–Crafts Alkylation Reaction of Pyrroles and Trifluoromethylated Nitrostyrenes. Synthesis, 0, , .	2.3	3