Souryadeep Bhattacharyya

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9435774/publications.pdf

Version: 2024-02-01

24 papers 968 citations

16 h-index 23 g-index

25 all docs

25 docs citations

25 times ranked

1598 citing authors

#	Article	IF	CITATIONS
1	Structure Evolution of Chemically Degraded ZIF-8. Journal of Physical Chemistry C, 2022, 126, 9736-9741.	1.5	7
2	Improved slit-shaped microseparator and its integration with a microreactor for modular biomanufacturing. Green Chemistry, 2021, 23, 3700-3714.	4.6	6
3	Extraction of Furfural and Furfural/5-Hydroxymethylfurfural from Mixed Lignocellulosic Biomass-Derived Feedstocks. ACS Sustainable Chemistry and Engineering, 2021, 9, 7489-7498.	3.2	18
4	Controlled Demolition and Reconstruction of Imidazolate and Carboxylate Metal–Organic Frameworks by Acid Gas Exposure and Linker Treatment. Industrial & Engineering Chemistry Research, 2021, 60, 15582-15592.	1.8	4
5	Origins of Acid-Gas Stability Behavior in Zeolitic Imidazolate Frameworks: The Unique High Stability of ZIF-71. Journal of the American Chemical Society, 2021, 143, 18061-18072.	6.6	18
6	Quantitative Correlations for the Durability of Zeolitic Imidazolate Frameworks in Humid SO2. Industrial & Engineering Chemistry Research, 2020, 59, 245-252.	1.8	15
7	Solvent selection for biphasic extraction of 5-hydroxymethylfurfural <i>via</i> multiscale modeling and experiments. Green Chemistry, 2020, 22, 8699-8712.	4.6	28
8	Synthesizing New Hybrid Zeolitic Imidazolate Frameworks by Controlled Demolition and Reconstruction., 2019, 1, 447-451.		7
9	Stability of Zeolitic Imidazolate Frameworks in NO ₂ . Journal of Physical Chemistry C, 2019, 123, 2336-2346.	1.5	35
10	Reactive Adsorption of Humid SO ₂ on Metal–Organic Framework Nanosheets. Journal of Physical Chemistry C, 2018, 122, 10413-10422.	1.5	35
11	Liquid-Phase Multicomponent Adsorption and Separation of Xylene Mixtures by Flexible MIL-53 Adsorbents. Journal of Physical Chemistry C, 2018, 122, 386-397.	1.5	52
12	Purification of 2,5-Dimethylfuran from <i>n</i> -Butanol Using Defect-Engineered Metal–Organic Frameworks. ACS Sustainable Chemistry and Engineering, 2018, 6, 7931-7939.	3.2	24
13	DMOF-1 as a Representative MOF for SO ₂ Adsorption in Both Humid and Dry Conditions. Journal of Physical Chemistry C, 2018, 122, 23493-23500.	1.5	51
14	Acid Gas Stability of Zeolitic Imidazolate Frameworks: Generalized Kinetic and Thermodynamic Characteristics. Chemistry of Materials, 2018, 30, 4089-4101.	3.2	86
15	Recovery of Acid-Gas-Degraded Zeolitic Imidazolate Frameworks by Solvent-Assisted Crystal Redemption (SACRed). ACS Applied Materials & Samp; Interfaces, 2017, 9, 34597-34602.	4.0	24
16	Direct Intranuclear Anticancer Drug Delivery via Polydimethylsiloxane Nanoparticles: in Vitro and in Vivo Xenograft Studies. ACS Applied Materials & Samp; Interfaces, 2017, 9, 34625-34633.	4.0	17
17	Heat-Treatment of Defective UiO-66 from Modulated Synthesis: Adsorption and Stability Studies. Journal of Physical Chemistry C, 2017, 121, 23471-23479.	1.5	73
18	Butanol Separation from Humid CO ₂ -Containing Multicomponent Vapor Mixtures by Zeolitic Imidazolate Frameworks. ACS Sustainable Chemistry and Engineering, 2017, 5, 9467-9476.	3.2	41

#	Article	IF	CITATIONS
19	Engineering Porous Organic Cage Crystals with Increased Acid Gas Resistance. Chemistry - A European Journal, 2016, 22, 10743-10747.	1.7	31
20	Synergistic Effects of Water and SO ₂ on Degradation of MIL-125 in the Presence of Acid Gases. Journal of Physical Chemistry C, 2016, 120, 27230-27240.	1.5	79
21	Computational Identification and Experimental Evaluation of Metal–Organic Frameworks for Xylene Enrichment. Journal of Physical Chemistry C, 2016, 120, 12075-12082.	1.5	46
22	Interactions of SO ₂ -Containing Acid Gases with ZIF-8: Structural Changes and Mechanistic Investigations. Journal of Physical Chemistry C, 2016, 120, 27221-27229.	1.5	115
23	GPCR-Based Chemical Biosensors for Medium-Chain Fatty Acids. ACS Synthetic Biology, 2015, 4, 1261-1269.	1.9	83
24	Photocatalytic Degradation of Naphthalene by Electrospun Mesoporous Carbon-Doped Anatase TiO ₂ Nanofiber Mats. Industrial & Engineering Chemistry Research, 2014, 53, 18900-18909.	1.8	73