List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9435666/publications.pdf Version: 2024-02-01

Ρληγκ Ρτλκ

#	Article	IF	CITATIONS
1	Virtual prism adaptation for spatial neglect: A double-blind study. Neuropsychological Rehabilitation, 2022, 32, 1033-1047.	1.6	10
2	Object Recognition and Visual Agnosia. , 2022, , 587-596.		0
3	Long COVID Neuropsychological Deficits after Severe, Moderate, or Mild Infection. Clinical and Translational Neuroscience, 2022, 6, 9.	0.9	24
4	Insular Cortex Mediates Attentional Capture by Behaviorally Relevant Stimuli after Damage to the Right Temporoparietal Junction. Cerebral Cortex, 2021, 31, 4245-4258.	2.9	3
5	Distinct outcome processing in deterministic and probabilistic reversal learning. Cortex, 2021, 141, 224-239.	2.4	2
6	Definition: Visual object agnosia. Cortex, 2021, 143, 281.	2.4	4
7	Rapid Sequential Implication of the Human Medial Temporal Lobe in Memory Encoding and Recognition. Frontiers in Behavioral Neuroscience, 2021, 15, 684647.	2.0	1
8	Visual but Not Auditory-Verbal Feedback Induces Aftereffects Following Adaptation to Virtual Prisms. Frontiers in Neuroscience, 2021, 15, 658353.	2.8	3
9	From Action to Cognition: Neural Reuse, Network Theory and the Emergence of Higher Cognitive Functions. Brain Sciences, 2021, 11, 1652.	2.3	12
10	Adaptation to virtual prisms and its relevance for neglect rehabilitation: a single-blind dose-response study with healthy participants. Neuropsychological Rehabilitation, 2020, 30, 753-766.	1.6	17
11	Discrete Patterns of Cross-Hemispheric Functional Connectivity Underlie Impairments of Spatial Cognition after Stroke. Journal of Neuroscience, 2020, 40, 6638-6648.	3.6	21
12	When Left Is One and Right Is Double: An Experimental Investigation of Visual Allesthesia after Right Parietal Damage. Vision (Switzerland), 2020, 4, 16.	1.2	2
13	The neuroanatomy of spatial awareness: a large-scale region-of-interest and voxel-based anatomical study. Brain Imaging and Behavior, 2020, 14, 615-626.	2.1	13
14	Neuropsychological rehabilitation of higher cortical functions after brain damage. , 2020, , 291-304.		0
15	Damage to the right temporoparietal junction, but not lateral prefrontal or insular cortex, amplifies the role of goal-directed attention. Scientific Reports, 2019, 9, 306.	3.3	15
16	The representational nature of the body schema. Physics of Life Reviews, 2019, 30, 116-118.	2.8	1
17	Functional connectivity and the failure to retrieve meaning from shape in visual object agnosia. Brain and Cognition, 2019, 131, 94-101.	1.8	7
18	Absence of an early hippocampal encoding signal after medial temporal lesions: No consequence for the spacing effect. Hippocampus, 2018, 29, 587-594.	1.9	5

#	Article	IF	CITATIONS
19	Spatiotemporal brain dynamics underlying attentional bias modifications. International Journal of Psychophysiology, 2018, 130, 29-39.	1.0	7
20	Bálint syndrome caused by bilateral medial occipital infarcts. Neurological Sciences, 2018, 39, 1813-1814.	1.9	3
21	A Model Of Space-based And Object-centered Attention In The Brain. , 2018, , .		0
22	Principles of proportional recovery after stroke generalize to neglect and aphasia. European Journal of Neurology, 2017, 24, 1084-1087.	3.3	32
23	The Dorsal Frontoparietal Network: A Core System for Emulated Action. Trends in Cognitive Sciences, 2017, 21, 589-599.	7.8	160
24	A neuroanatomical model of space-based and object-centered processing in spatial neglect. Brain Structure and Function, 2017, 222, 3605-3613.	2.3	17
25	What role for prism adaptation in the rehabilitation of pure neglect dyslexia?. Neurocase, 2017, 23, 193-200.	0.6	4
26	What does extinction have to do with confabulation?. Cortex, 2017, 87, 5-15.	2.4	14
27	Emotion Regulation After Traumatic Brain Injury. Journal of Head Trauma Rehabilitation, 2016, 31, E21-E31.	1.7	14
28	Prefrontal transcranial direct current stimulation facilitates affective flexibility. Neuropsychologia, 2016, 86, 13-18.	1.6	8
29	Electrophysiological correlates of visual binding errors after bilateral parietal damage. Neuroscience, 2016, 337, 98-106.	2.3	5
30	The role of parieto-temporal connectivity in pure neglect dyslexia. Brain Research, 2016, 1648, 144-151.	2.2	7
31	Callosal disconnection syndrome after ischemic stroke of the corpus callosum due to meningococcal meningitis: A case report. Journal of the Neurological Sciences, 2016, 369, 119-120.	0.6	6
32	Theta-band functional connectivity in the dorsal fronto-parietal network predicts goal-directed attention. Neuropsychologia, 2016, 92, 20-30.	1.6	52
33	Effects of group psychotherapy on anger management following acquired brain injury. Brain Injury, 2016, 30, 1121-1130.	1.2	7
34	Neural Correlate of Anterograde Amnesia in Wernicke–Korsakoff Syndrome. Brain Topography, 2015, 28, 760-770.	1.8	24
35	Variability of behavioural responses to transcranial magnetic stimulation: Origins and predictors. Neuropsychologia, 2015, 74, 137-144.	1.6	39
36	The role of visual saliency for the allocation of attention: Evidence from spatial neglect and hemianopia. Neuropsychologia, 2015, 73, 70-81.	1.6	24

#	Article	IF	CITATIONS
37	Two Intrinsic Coupling Types for Resting-State Integration in the Human Brain. Brain Topography, 2015, 28, 318-329.	1.8	53
38	Exploring the world with Bálint syndrome: biased bottom-up guidance of gaze by local saliency differences. Experimental Brain Research, 2014, 232, 1233-1240.	1.5	6
39	Cognitive–behavioural group therapy improves a psychophysiological marker of stress in caregivers of patients with Alzheimer's disease. Aging and Mental Health, 2014, 18, 801-808.	2.8	38
40	Task relevance effects in electrophysiological brain activity: Early, but not first. NeuroImage, 2014, 101, 68-75.	4.2	12
41	Visual object agnosia is associated with a breakdown of object-selective responses in the lateral occipital cortex. Neuropsychologia, 2014, 60, 10-20.	1.6	22
42	Network mechanisms of responsiveness to continuous thetaâ€burst stimulation. European Journal of Neuroscience, 2013, 38, 3230-3238.	2.6	31
43	Mechanism of disorientation: Reality filtering versus content monitoring. Cortex, 2013, 49, 2628-2636.	2.4	12
44	Isolated prospective confabulation in Wernicke–Korsakoff syndrome: a case for reality filtering. Neurocase, 2013, 19, 90-104.	0.6	14
45	Spatial neglect and the neural coding of attentional priority. Neuroscience and Biobehavioral Reviews, 2013, 37, 705-722.	6.1	44
46	Modulation of environmental reduplicative paramnesia by perceptual experience. Neurocase, 2013, 19, 445-450.	0.6	5
47	The parietal cortex and saccade planning: lessons from human lesion studies. Frontiers in Human Neuroscience, 2013, 7, 254.	2.0	43
48	Effects of Pro-Cholinergic Treatment in Patients Suffering from Spatial Neglect. Frontiers in Human Neuroscience, 2013, 7, 574.	2.0	7
49	EEG Alpha Band Synchrony Predicts Cognitive and Motor Performance in Patients with Ischemic Stroke. Behavioural Neurology, 2013, 26, 187-189.	2.1	48
50	Neuropsychology across the Lifespan: Proceedings of the Third Meeting of the Federation of European Societies of Neuropsychology. Behavioural Neurology, 2013, 26, 165-165.	2.1	0
51	EEG alpha band synchrony predicts cognitive and motor performance in patients with ischemic stroke. Behavioural Neurology, 2013, 26, 187-9.	2.1	34
52	The behavioral significance of coherent resting-state oscillations after stroke. NeuroImage, 2012, 61, 249-257.	4.2	128
53	Forms of confabulation: Dissociations and associations. Neuropsychologia, 2012, 50, 2524-2534.	1.6	60
54	The Frontoparietal Attention Network of the Human Brain. Neuroscientist, 2012, 18, 502-515.	3.5	488

#	Article	IF	CITATIONS
55	Visual search in spatial neglect studied with a preview paradigm. Frontiers in Human Neuroscience, 2012, 6, 93.	2.0	13
56	The neural correlates of object-centered processing in reading: A lesion study of neglect dyslexia. Neuropsychologia, 2012, 50, 1142-1150.	1.6	47
57	Preserved visual language identification despite severe alexia. Neuropsychologia, 2012, 50, 1327-1334.	1.6	8
58	Peripheral dysgraphia characterized by the co-occurrence of case substitutions in uppercase and letter substitutions in lowercase writing. Cortex, 2011, 47, 1038-1051.	2.4	9
59	The attention network of the human brain: Relating structural damage associated with spatial neglect to functional imaging correlates of spatial attention. Neuropsychologia, 2011, 49, 3063-3070.	1.6	74
60	Early eventâ€related cortical activity originating in the frontal eye fields and inferior parietal lobe predicts the occurrence of correct and error saccades. Human Brain Mapping, 2011, 32, 358-369.	3.6	18
61	Absence of visual feedback abolishes expression of hemispatial neglect in self-guided spatial completion. Journal of Neurology, Neurosurgery and Psychiatry, 2011, 82, 1279-1282.	1.9	12
62	Bilateral impairment of concurrent saccade programming in hemispatial neglect. Neuropsychologia, 2010, 48, 880-886.	1.6	5
63	Computer-assisted Therapy significantly Improves Anomia for Verbs. Procedia, Social and Behavioral Sciences, 2010, 6, 229-230.	0.5	0
64	Behaviorally spontaneous confabulation in limbic encephalitis: The roles of reality filtering and strategic monitoring. Journal of the International Neuropsychological Society, 2010, 16, 995-1005.	1.8	20
65	The Dorsal Attention Network Mediates Orienting toward Behaviorally Relevant Stimuli in Spatial Neglect. Journal of Neuroscience, 2010, 30, 12557-12565.	3.6	117
66	Cognitive rehabilitation of episodic memory disorders: from theory to practice. Frontiers in Human Neuroscience, 2010, 4, .	2.0	20
67	Looking left with left neglect: The role of spatial attention when active vision selects local image features for fixation. Cortex, 2009, 45, 1156-1166.	2.4	48
68	Disorientation, Confabulation, and Extinction Capacity: Clues on How the Brain Creates Reality. Biological Psychiatry, 2009, 65, 966-972.	1.3	48
69	Cortical and subcortical anatomy of chronic spatial neglect following vascular damage. Behavioral and Brain Functions, 2008, 4, 43.	3.3	65
70	A non-spatial bias favouring fixated stimuli revealed in patients with spatial neglect. Brain, 2007, 130, 3211-3222.	7.6	43
71	Temporal dynamics of attentional control settings in patients with spatial neglect. Brain Research, 2006, 1092, 190-197.	2.2	14
72	Decision-making in amnesia: Do advantageous decisions require conscious knowledge of previous behavioural choices?. Neuropsychologia, 2006, 44, 1315-1324.	1.6	86

#	Article	IF	CITATIONS
73	Reflexive Orienting in Spatial Neglect Is Biased towards Behaviourally Salient Stimuli. Cerebral Cortex, 2006, 16, 337-345.	2.9	26
74	Dynamic modulation of visual detection by auditory cues in spatial neglect. Neuropsychologia, 2005, 43, 1258-1265.	1.6	22
75	The Inferior Temporal Lobe Mediates Distracter-Resistant Visual Search of Patients with Spatial Neglect. Journal of Cognitive Neuroscience, 2005, 17, 788-799.	2.3	26
76	Visual extinction of similar and dissimilar stimuli: Evidence for level-dependent attentional competition. Cognitive Neuropsychology, 2005, 22, 111-127.	1.1	19
77	The space of senses: impaired crossmodal interactions in a patient with Balint syndrome after bilateral parietal damage. Neuropsychologia, 2004, 42, 1737-1748.	1.6	43
78	Disorganised Memory after Right Dorsolateral Prefrontal Damage. Neurocase, 2004, 10, 52-59.	0.6	20
79	Defective Spatial Imagery with Pure Gerstmann's Syndrome. European Neurology, 2004, 52, 1-6.	1.4	29
80	Decoupling of autonomic and cognitive emotional reactions after cerebellar stroke. Annals of Neurology, 2003, 53, 654-658.	5.3	62
81	Expectation-based attentional modulation of visual extinction in spatial neglect. Neuropsychologia, 2002, 40, 2199-2205.	1.6	22
82	Probabilistic contingency learning with limbic or prefrontal damage Behavioral Neuroscience, 2001, 115, 993-1001.	1.2	10
83	Dissociated active and passive tactile shape recognition: a case study of pure tactile apraxia. Brain, 2001, 124, 2287-2298.	7.6	49
84	Hypothalamic amnesia with spontaneous confabulations: A clinicopathologic study. Neurology, 2001, 56, 1597-1600.	1.1	37
85	Probabilistic contingency learning with limbic or prefrontal damage Behavioral Neuroscience, 2001, 115, 993-1001.	1.2	3
86	Recovery from spontaneous confabulations parallels recovery of temporal confusion in memory. Neurology, 2000, 55, 74-83.	1.1	128
87	Spontaneous confabulations after Orbitofrontal damage: The role of temporal context confusion and self-monitoring. Neurocase, 1999, 5, 243-250.	0.6	37
88	Spontaneous confabulators fail to suppress currently irrelevant memory traces. Nature Neuroscience, 1999, 2, 677-681.	14.8	211
89	Spontaneous Confabulations after Orbitofrontal Damage: The Role of Temporal Context Confusion and Self-monitoring. Neurocase, 1999, 5, 243-250.	0.6	8
90	Association learning in the acute confusional state. Journal of Neurology, Neurosurgery and Psychiatry, 1998, 65, 390-392.	1.9	6