
Ali Ouni

List of Publications by Year
in descending order

Source: https://exaly.com/author-pdf/9435225/publications.pdf

Version: 2024-02-01

98

papers

3,001

citations

21

h-index

331538

47

g-index

214721

99

all docs

99

docs citations

99

times ranked

1592

citing authors

Ali Ouni

2

Article IF Citations

1 Optimal Deep Learning LSTM Model for Electric Load Forecasting using Feature Selection and Genetic
Algorithm: Comparison with Machine Learning Approaches â€ . Energies, 2018, 11, 1636. 1.6 529

2 Many-Objective Software Remodularization Using NSGA-III. ACM Transactions on Software Engineering
and Methodology, 2015, 24, 1-45. 4.8 197

3 Do developers update their library dependencies?. Empirical Software Engineering, 2018, 23, 384-417. 3.0 189

4 Multi-Sequence LSTM-RNN Deep Learning and Metaheuristics for Electric Load Forecasting. Energies,
2020, 13, 391. 1.6 122

5 Maintainability defects detection and correction: a multi-objective approach. Automated Software
Engineering, 2013, 20, 47-79. 2.2 120

6 Multi-Criteria Code Refactoring Using Search-Based Software Engineering. ACM Transactions on
Software Engineering and Methodology, 2016, 25, 1-53. 4.8 106

7 A Cooperative Parallel Search-Based Software Engineering Approach for Code-Smells Detection. IEEE
Transactions on Software Engineering, 2014, 40, 841-861. 4.3 92

8 Design Defects Detection and Correction by Example. , 2011, , . 70

9 Search-Based Web Service Antipatterns Detection. IEEE Transactions on Services Computing, 2017, 10,
603-617. 3.2 69

10 Search-based software library recommendation using multi-objective optimization. Information and
Software Technology, 2017, 83, 55-75. 3.0 66

11 Improving multi-objective code-smells correction using development history. Journal of Systems and
Software, 2015, 105, 18-39. 3.3 59

12 Single and Multi-Sequence Deep Learning Models for Short and Medium Term Electric Load
Forecasting. Energies, 2019, 12, 149. 1.6 51

13 Prioritizing code-smells correction tasks using chemical reaction optimization. Software Quality
Journal, 2015, 23, 323-361. 1.4 49

14 Search-Based Peer Reviewers Recommendation in Modern Code Review. , 2016, , . 49

15 Search-based refactoring: Towards semantics preservation. , 2012, , . 48

16 Web service API recommendation for automated mashup creation using multi-objective evolutionary
search. Applied Soft Computing Journal, 2019, 85, 105830. 4.1 47

17 Improving reusability of software libraries through usage pattern mining. Journal of Systems and
Software, 2018, 145, 164-179. 3.3 45

18 tsDetect: an open source test smells detection tool. , 2020, , . 45

3

Ali Ouni

Article IF Citations

19 Web Service Antipatterns Detection Using Genetic Programming. , 2015, , . 42

20 Search-Based Refactoring Using Recorded Code Changes. , 2013, , . 39

21 The use of development history in software refactoring using a multi-objective evolutionary
algorithm. , 2013, , . 36

22 On the Impact of Refactoring on the Relationship between Quality Attributes and Design Metrics. ,
2019, , . 34

23 Can Refactoring Be Self-Affirmed? An Exploratory Study on How Developers Document Their
Refactoring Activities in Commit Messages. , 2019, , . 32

24 How we refactor and how we document it? On the use of supervised machine learning algorithms to
classify refactoring documentation. Expert Systems With Applications, 2021, 167, 114176. 4.4 32

25 MORE: A multiâ€•objective refactoring recommendation approach to introducing design patterns and
fixing code smells. Journal of Software: Evolution and Process, 2017, 29, e1843. 1.2 29

26 Recommending relevant classes for bug reports using multi-objective search. , 2016, , . 28

27 WhoReview: A multi-objective search-based approach for code reviewers recommendation in modern
code review. Applied Soft Computing Journal, 2021, 100, 106908. 4.1 28

28 An Interactive and Dynamic Search-Based Approach to Software Refactoring Recommendations. IEEE
Transactions on Software Engineering, 2020, 46, 932-961. 4.3 27

29 Toward the automatic classification of Self-Affirmed Refactoring. Journal of Systems and Software,
2021, 171, 110821. 3.3 27

30 Test Smell Detection Tools: A Systematic Mapping Study. , 2021, , . 27

31 An empirical study on the impact of refactoring activities on evolving client-used APIs. Information
and Software Technology, 2018, 93, 186-199. 3.0 26

32 Detecting Android Smells Using Multi-Objective Genetic Programming. , 2017, , . 25

33 Learning to detect community smells in open source software projects. Knowledge-Based Systems,
2020, 204, 106201. 4.0 24

34 Search-based metamodel matching with structural and syntactic measures. Journal of Systems and
Software, 2014, 97, 1-14. 3.3 23

35 Learning to recommend third-party library migration opportunities at the API level. Applied Soft
Computing Journal, 2020, 90, 106140. 4.1 21

36 How do i refactor this? An empirical study on refactoring trends and topics in Stack Overflow.
Empirical Software Engineering, 2022, 27, 1. 3.0 21

4

Ali Ouni

Article IF Citations

37 Predicting continuous integration build failures using evolutionary search. Information and
Software Technology, 2020, 128, 106392. 3.0 20

38 Refactoring Practices in the Context of Modern Code Review: An Industrial Case Study at Xerox. , 2021,
, . 19

39 On preserving the behavior in software refactoring: A systematic mapping study. Information and
Software Technology, 2021, 140, 106675. 3.0 19

40 On the detection of community smells using genetic programming-based ensemble classifier chain. ,
2020, , . 19

41 On the Use of Information Retrieval to Automate the Detection of Third-Party Java Library Migration
at the Method Level. , 2019, , . 17

42 MigrationMiner: An Automated Detection Tool of Third-Party Java Library Migration at the Method
Level. , 2019, , . 17

43 Towards Automated Microservices Extraction Using Muti-objective Evolutionary Search. Lecture
Notes in Computer Science, 2019, , 58-63. 1.0 16

44 Revisiting the relationship between code smells and refactoring. , 2016, , . 15

45 Search-based detection of model level changes. Empirical Software Engineering, 2017, 22, 670-715. 3.0 15

46 Bi-level Identification of Web Service Defects. Lecture Notes in Computer Science, 2016, , 352-368. 1.0 15

47 An Exploratory Study on the Refactoring of Unit Test Files in Android Applications. , 2020, , . 14

48 Multiobjective Optimization for Software Refactoring and Evolution. Advances in Computers, 2014, 94,
103-167. 1.2 13

49 SIM: An Automated Approach to Improve Web Service Interface Modularization. , 2016, , . 13

50 Improving web service interfaces modularity using multi-objective optimization. Automated Software
Engineering, 2019, 26, 275-312. 2.2 13

51 Improving the prediction of continuous integration build failures using deep learning. Automated
Software Engineering, 2022, 29, 1. 2.2 13

52 On the documentation of refactoring types. Automated Software Engineering, 2022, 29, 1. 2.2 13

53 A Machine Learning-Based Approach to Detect Web Service Design Defects. , 2017, , . 12

54 How Does Library Migration Impact Software Quality and Comprehension? An Empirical Study. Lecture
Notes in Computer Science, 2020, , 245-260. 1.0 12

5

Ali Ouni

Article IF Citations

55 Identification of Web Service Refactoring Opportunities as a Multi-objective Problem. , 2016, , . 11

56 A context-based refactoring recommendation approach using simulated annealing. , 2017, , . 11

57 Comparing Commit Messages and Source Code Metrics for the Prediction Refactoring Activities.
Algorithms, 2021, 14, 289. 1.2 11

58 On the Relationship Between Developer Experience and Refactoring. , 2020, , . 11

59 A Hybrid Approach for Improving the Design Quality of Web Service Interfaces. ACM Transactions on
Internet Technology, 2019, 19, 1-24. 3.0 10

60 An Empirical Study on the Impact of Refactoring on Quality Metrics in Android Applications. , 2021, , . 10

61 On the impact of Continuous Integration on refactoring practice: An exploratory study on
TravisTorrent. Information and Software Technology, 2021, 138, 106618. 3.0 10

62 An exploratory study on library aging by monitoring client usage in a software ecosystem. , 2017, , . 9

63 csDetector: an open source tool for community smells detection. , 2021, , . 9

64 SATDBailiff-mining and tracking self-admitted technical debt. Science of Computer Programming, 2022,
213, 102693. 1.5 9

65 How Do Developers Refactor Code to Improve Code Reusability?. Lecture Notes in Computer Science,
2020, , 261-276. 1.0 9

66 c-JRefRec: Change-based identification of Move Method refactoring opportunities. , 2017, , . 8

67 Search based software engineering. , 2020, , . 8

68 A Hierarchical DBSCAN Method for Extracting Microservices from Monolithic Applications. , 2022, , . 8

69 Prediction of Web Services Evolution. Lecture Notes in Computer Science, 2016, , 282-297. 1.0 7

70 An Ontology-Based Approach for User Interface Adaptation. Advances in Intelligent Systems and
Computing, 2017, , 199-215. 0.5 7

71 Behind the scenes: On the relationship between developer experience and refactoring. Journal of
Software: Evolution and Process, 2024, 36, e2395. 1.2 7

72 On the Diffusion and Impact of Code Smells in Web Applications. Lecture Notes in Computer Science,
2020, , 67-84. 1.0 6

6

Ali Ouni

Article IF Citations

73 Detecting Skipped Commits in Continuous Integration Using Multi-objective Evolutionary Search. IEEE
Transactions on Software Engineering, 2021, , 1-1. 4.3 6

74 Bayesian Optimized XGBoost Model for Traffic Speed Prediction Incorporating Weather Effects. , 2020,
, . 6

75 On the Value of Quality of Service Attributes for Detecting Bad Design Practices. , 2017, , . 5

76 Interactive Refactoring of Web Service Interfaces Using Computational Search. IEEE Transactions on
Services Computing, 2017, , 1-1. 3.2 5

77 A longitudinal exploratory study on code smells in server side web applications. Software Quality
Journal, 2021, 29, 901-941. 1.4 5

78 A longitudinal study of the impact of refactoring in android applications. Information and Software
Technology, 2021, 140, 106699. 3.0 5

79 On the prediction of continuous integration build failures using search-based software engineering. ,
2020, , . 5

80 Refactoring for reuse: an empirical study. Innovations in Systems and Software Engineering, 2022, 18,
105-135. 1.6 5

81 Towards a Rigorous Consideration of Occupant Behaviours of Residential Households for Effective
Electrical Energy Savings: An Overview. Energies, 2022, 15, 1741. 1.6 5

82 BF-detector: an automated tool for CI build failure detection. , 2021, , . 4

83 Multi-criteria Web Services Selection: Balancing the Quality of Design and Quality of Service. ACM
Transactions on Internet Technology, 2022, 22, 1-31. 3.0 4

84 AndroLib: Third-Party Software Library Recommendation for Android Applications. Lecture Notes in
Computer Science, 2020, , 208-225. 1.0 4

85 Increasing the Trust In Refactoring Through Visualization. , 2020, , . 4

86 Web Service API Anti-patterns Detection as a Multi-label Learning Problem. Lecture Notes in Computer
Science, 2020, , 114-132. 1.0 4

87 Improving microservices extraction using evolutionary search. Information and Software
Technology, 2022, 151, 106996. 3.0 4

88 Improving Web Services Design Quality Using Heuristic Search and Machine Learning. , 2017, , . 3

89 On the use of textual feature extraction techniques to support the automated detection of
refactoring documentation. Innovations in Systems and Software Engineering, 0, , 1. 1.6 3

90 Search-based detection of code changes introducing performance regression. Swarm and
Evolutionary Computation, 2022, 73, 101101. 4.5 3

7

Ali Ouni

Article IF Citations

91 Recommending peer reviewers in modern code review. , 2020, , . 2

92 An Exploratory Study on How Software Reuse is Discussed in Stack Overflow. Lecture Notes in
Computer Science, 2020, , 292-303. 1.0 2

93 Toward a Smell-aware Prediction Model for CI Build Failures. , 2021, , . 2

94 Search-Based Third-Party Library Migration at the Method-Level. Lecture Notes in Computer Science,
2022, , 173-190. 1.0 2

95 On the Use of Refactoring in Security Vulnerability Fixes: An Exploratory Study on Maven Libraries. ,
2022, , . 2

96 Tracking bad updates in mobile apps: a search-based approach. Empirical Software Engineering, 2022, 27,
1. 3.0 1

97 An Empirical Study on Code Smells Co-occurrences in Android Applications. , 2021, , . 0

98 On the Identification of Third-Party Library Usage Patterns for Android Applications. , 2022, , . 0

