
François Guilhaumon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9435161/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Macroecological distributions of gene variants highlight the functional organization of soil microbial systems. ISME Journal, 2022, 16, 726-737.	4.4	8
2	Using species distribution models only may underestimate climate change impacts on future marine biodiversity. Ecological Modelling, 2022, 464, 109826.	1.2	19
3	Global Patterns of Coastal Cephalopod Diversity Under Climate Change. Frontiers in Marine Science, 2022, 8, .	1.2	14
4	Prioritizing phylogenetic diversity to protect functional diversity of reef corals. Diversity and Distributions, 2022, 28, 1721-1734.	1.9	3
5	Can We Avoid Tacit Trade-Offs between Flexibility and Efficiency in Systematic Conservation Planning? The Mediterranean Sea as a Case Study. Diversity, 2022, 14, 9.	0.7	0
6	Combining Passive Acoustics and Environmental Data for Scaling Up Ecosystem Monitoring: A Test on Coral Reef Fishes. Remote Sensing, 2022, 14, 2394.	1.8	5
7	The aesthetic value of reef fishes is globally mismatched to their conservation priorities. PLoS Biology, 2022, 20, e3001640.	2.6	12
8	Global tropical reef fish richness could decline by around half if corals are lost. Proceedings of the Royal Society B: Biological Sciences, 2021, 288, 20210274.	1.2	17
9	An integrated approach to estimate aesthetic and ecological values of coralligenous reefs. Ecological Indicators, 2021, 129, 107935.	2.6	5
10	Ecological dependencies make remote reef fish communities most vulnerable to coral loss. Nature Communications, 2021, 12, 7282.	5.8	14
11	On the form of species–area relationships in habitat islands and true islands. Global Ecology and Biogeography, 2020, 29, 1094-1094.	2.7	2
12	An End-to-End Model Reveals Losers and Winners in a Warming Mediterranean Sea. Frontiers in Marine Science, 2019, 6, .	1.2	66
13	Capturing the big picture of Mediterranean marine biodiversity with an end-to-end model of climate and fishing impacts. Progress in Oceanography, 2019, 178, 102179.	1.5	28
14	Species-area uncertainties impact the setting of habitat conservation targets and propagate across conservation solutions. Biological Conservation, 2019, 235, 279-289.	1.9	11
15	sars: an R package for fitting, evaluating and comparing species–area relationship models. Ecography, 2019, 42, 1446-1455.	2.1	64
16	Species diversity and composition drive the aesthetic value of coral reef fish assemblages. Biology Letters, 2019, 15, 20190703.	1.0	19
17	Climate change may have minor impact on zooplankton functional diversity in the Mediterranean Sea. Diversity and Distributions, 2019, 25, 568-581.	1.9	26
18	Phytoplankton strategies to exploit nutrients in coastal lagoons with different eutrophication status during re-oligotrophication. Aquatic Microbial Ecology, 2019, 83, 131-146.	0.9	9

François Guilhaumon

#	Article	IF	CITATIONS
19	Do functional groups of planktonic copepods differ in their ecological niches?. Journal of Biogeography, 2018, 45, 604-616.	1.4	45
20	How good is your marine protected area at curbing threats?. Biological Conservation, 2018, 221, 237-245.	1.9	69
21	Investigating uncertainties in zooplankton composition shifts under climate change scenarios in the Mediterranean Sea. Ecography, 2018, 41, 345-360.	2.1	19
22	Climate change impacts on the distribution of coastal lobsters. Marine Biology, 2018, 165, 1.	0.7	15
23	Biogeographical region and environmental conditions drive functional traits of estuarine fish assemblages worldwide. Fish and Fisheries, 2017, 18, 752-771.	2.7	55
24	<scp>elementr</scp> : An R package for reducing elemental data from <scp>LA</scp> â€ <scp>ICPMS</scp> analysis of biological calcified structures. Methods in Ecology and Evolution, 2017, 8, 1659-1667.	2.2	15
25	Global mismatch between fishing dependency and larval supply from marine reserves. Nature Communications, 2017, 8, 16039.	5.8	40
26	Opposing Patterns of Seasonal Change in Functional and Phylogenetic Diversity of Tadpole Assemblages. PLoS ONE, 2016, 11, e0151744.	1.1	18
27	On the form of species–area relationships in habitat islands and true islands. Global Ecology and Biogeography, 2016, 25, 847-858.	2.7	123
28	Space invaders; biological invasions in marine conservation planning. Diversity and Distributions, 2016, 22, 1220-1231.	1.9	48
29	Identifying the drivers of abundance and size of the invasive ctenophore Mnemiopsis leidyi in Northwestern Mediterranean lagoons. Marine Environmental Research, 2016, 119, 114-125.	1.1	19
30	Island species–area relationships and species accumulation curves are not equivalent: an analysis of habitat island datasets. Global Ecology and Biogeography, 2016, 25, 607-618.	2.7	46
31	Slow growth of the overexploited milk shark <i>Rhizoprionodon acutus</i> affects its sustainability in West Africa. Journal of Fish Biology, 2015, 87, 912-929.	0.7	6
32	Conserving the functional and phylogenetic trees of life of European tetrapods. Philosophical Transactions of the Royal Society B: Biological Sciences, 2015, 370, 20140005.	1.8	70
33	Linking temporal changes in the demographic structure and individual growth to the decline in the population of a tropical fish. Estuarine, Coastal and Shelf Science, 2015, 165, 166-175.	0.9	4
34	FishMed: traits, phylogeny, current and projected species distribution of Mediterranean fishes, and environmental data. Ecology, 2015, 96, 2312-2313.	1.5	30
35	Mammalian phylogenetic diversity–area relationships at a continental scale. Ecology, 2015, 96, 2814-2822.	1.5	24
36	A biogeographical regionalization of coastal Mediterranean fishes. Journal of Biogeography, 2015, 42, 1336-1348.	1.4	33

#	Article	IF	CITATIONS
37	Diversity regulation at macroâ€scales: species richness on oceanic archipelagos. Global Ecology and Biogeography, 2015, 24, 594-605.	2.7	62
38	Representing taxonomic, phylogenetic and functional diversity: new challenges for <scp>M</scp> editerranean marineâ€protected areas. Diversity and Distributions, 2015, 21, 175-187.	1.9	57
39	Estimates of species extinctions from species–area relationships strongly depend on ecological context. Ecography, 2014, 37, 431-442.	2.1	23
40	Functional biogeography of oceanic islands and the scaling of functional diversity in the Azores. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 13709-13714.	3.3	103
41	Multifaceted diversity–area relationships reveal global hotspots of mammalian species, trait and lineage diversity. Clobal Ecology and Biogeography, 2014, 23, 836-847.	2.7	110
42	Differences in species–area relationships among the major lineages of land plants: a macroecological perspective. Global Ecology and Biogeography, 2014, 23, 1275-1283.	2.7	47
43	The effects of phenotypic plasticity and local adaptation on forecasts of species range shifts under climate change. Ecology Letters, 2014, 17, 1351-1364.	3.0	802
44	Global mismatch between species richness and vulnerability of reef fish assemblages. Ecology Letters, 2014, 17, 1101-1110.	3.0	78
45	Projected climate change and the changing biogeography of coastal Mediterranean fishes. Journal of Biogeography, 2013, 40, 534-547.	1.4	104
46	Snails on oceanic islands: testing the general dynamic model of oceanic island biogeography using linear mixed effect models. Journal of Biogeography, 2013, 40, 117-130.	1.4	52
47	How can quantitative ecology be attractive to young scientists? Balancing computer/desk work with fieldwork. Animal Conservation, 2013, 16, 134-136.	1.5	8
48	Global agricultural expansion and carnivore conservation biogeography. Biological Conservation, 2013, 165, 162-170.	1.9	39
49	Accounting for data heterogeneity in patterns of biodiversity: an application of linear mixed effect models to the oceanic island biogeography of sporeâ€producing plants. Ecography, 2013, 36, 904-913.	2.1	42
50	Arthropod Diversity in a Tropical Forest. Science, 2012, 338, 1481-1484.	6.0	445
51	Species–area relationships as a tool for the conservation of benthic invertebrates in Italian coastal lagoons. Estuarine, Coastal and Shelf Science, 2012, 114, 50-58.	0.9	11
52	The island species–area relationship: biology and statistics. Journal of Biogeography, 2012, 39, 215-231.	1.4	313
53	Combining projected changes in species richness and composition reveals climate change impacts on coastal Mediterranean fish assemblages. Global Change Biology, 2012, 18, 2995-3003.	4.2	98
54	The Mediterranean Sea under siege: spatial overlap between marine biodiversity, cumulative threats and marine reserves. Global Ecology and Biogeography, 2012, 21, 465-480.	2.7	488

#	Article	IF	CITATIONS
55	Latitudinal mismatches between the components of mammal–flea interaction networks. Global Ecology and Biogeography, 2012, 21, 725-731.	2.7	22
56	Predicting trophic guild and diet overlap from functional traits: statistics, opportunities and limitations for marine ecology. Marine Ecology - Progress Series, 2011, 436, 17-28.	0.9	69
57	Identifying hotspots of parasite diversity from species–area relationships: host phylogeny versus host ecology. Oikos, 2011, 120, 740-747.	1.2	33
58	Protected and Threatened Components of Fish Biodiversity in the Mediterranean Sea. Current Biology, 2011, 21, 1044-1050.	1.8	125
59	mmSAR: an Râ€package for multimodel species–area relationship inference. Ecography, 2010, 33, 420-424.	2.1	40
60	The Mediterranean Sea as a â€~culâ€deâ€sac' for endemic fishes facing climate change. Global Change Biology, 2010, 16, 3233-3245.	4.2	201
61	The Biodiversity of the Mediterranean Sea: Estimates, Patterns, and Threats. PLoS ONE, 2010, 5, e11842.	1.1	1,439
62	Effects of the environment on fish juvenile growth in West African stressful estuaries. Estuarine, Coastal and Shelf Science, 2009, 83, 115-125.	0.9	21
63	Recruitment patterns of young-of-the-year mugilid fishes in a West African estuary impacted by climate change. Estuarine, Coastal and Shelf Science, 2009, 85, 357-367.	0.9	21
64	Fish diversity patterns in the Mediterranean Sea: deviations from a mid-domain model. Marine Ecology - Progress Series, 2009, 376, 253-267.	0.9	37
65	Towards a consensus for calculating dendrogramâ€based functional diversity indices. Oikos, 2008, 117, 794-800.	1.2	143
66	Species abundance distributions and numerical dominance in gastrointestinal helminth communities of fish hosts. Journal of Helminthology, 2008, 82, 193-202.	0.4	24
67	Fish Predation by the Water SnakeAfronatrix anoscopusin a Guinean Rainforest Stream. Journal of Freshwater Ecology, 2008, 23, 495-496.	0.5	1
68	Taxonomic and regional uncertainty in species-area relationships and the identification of richness hotspots. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 15458-15463.	3.3	104
69	Ecological correlates of dispersal success of Lessepsian fishes. Marine Ecology - Progress Series, 2008, 363, 273-286.	0.9	55