
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9435109/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Therapeutic potential of macrophage colony-stimulating factor in chronic liver disease. DMM Disease Models and Mechanisms, 2022, 15, .	1.2	7
2	Spinal cord injury reprograms muscle fibroadipogenic progenitors to form heterotopic bones within muscles. Bone Research, 2022, 10, 22.	5.4	6
3	Stable colony-stimulating factor 1 fusion protein treatment increases hematopoietic stem cell pool and enhances their mobilisation in mice. Journal of Hematology and Oncology, 2021, 14, 3.	6.9	15
4	Healing of sub-critical femoral osteotomies in mice is unaffected by tacrolimus and deletion of recombination activating gene 1., 2021, 41, 345-354.		1
5	Vincristine-induced peripheral neuropathy is driven by canonical NLRP3 activation and IL-1β release. Journal of Experimental Medicine, 2021, 218, .	4.2	29
6	CSF1R-dependent macrophages control postnatal somatic growth and organ maturation. PLoS Genetics, 2021, 17, e1009605.	1.5	44
7	Role of macrophages and phagocytes in orchestrating normal and pathologic hematopoietic niches. Experimental Hematology, 2021, 100, 12-31.e1.	0.2	8
8	Treatment with a long-acting chimeric CSF1 molecule enhances fracture healing of healthy and osteoporotic bones. Biomaterials, 2021, 275, 120936.	5.7	11
9	Osteal macrophages support osteoclast-mediated resorption and contribute to bone pathology in a postmenopausal osteoporosis mouse model. Journal of Bone and Mineral Research, 2021, 36, 2214-2228.	3.1	25
10	Macrophages form erythropoietic niches and regulate iron homeostasis to adapt erythropoiesis in response to infections and inflammation. Experimental Hematology, 2021, 103, 1-14.	0.2	9
11	Fragmentation of tissue-resident macrophages during isolation confounds analysis of single-cell preparations from mouse hematopoietic tissues. Cell Reports, 2021, 37, 110058.	2.9	36
12	A Transgenic Line That Reports CSF1R Protein Expression Provides a Definitive Marker for the Mouse Mononuclear Phagocyte System. Journal of Immunology, 2020, 205, 3154-3166.	0.4	59
13	Imaging flow cytometry reveals that granulocyte colony-stimulating factor treatment causes loss of erythroblastic islands in the mouse bone marrow. Experimental Hematology, 2020, 82, 33-42.	0.2	23
14	Interleukin-1 Is Overexpressed in Injured Muscles Following Spinal Cord Injury and Promotes Neurogenic Heterotopic Ossification. Journal of Bone and Mineral Research, 2020, 37, 531-546.	3.1	16
15	Deformation behavior of porous PHBV scaffold in compression: A finite element analysis study. Journal of the Mechanical Behavior of Biomedical Materials, 2019, 96, 1-8.	1.5	14
16	Inhibition of JAK1/2 Tyrosine Kinases Reduces Neurogenic Heterotopic Ossification After Spinal Cord Injury. Frontiers in Immunology, 2019, 10, 377.	2.2	41
17	CD169+ macrophages are critical for osteoblast maintenance and promote intramembranous and endochondral ossification during bone repair. Biomaterials, 2019, 196, 51-66.	5.7	124
18	Macrophages Driving Heterotopic Ossification: Convergence of Genetically-Driven and Trauma-Driven Mechanisms. Journal of Bone and Mineral Research, 2018, 33, 365-366.	3.1	17

#	Article	IF	CITATIONS
19	Self-repopulating recipient bone marrow resident macrophages promote long-term hematopoietic stem cell engraftment. Blood, 2018, 132, 735-749.	0.6	69
20	Continuous blockade of CXCR4 results in dramatic mobilization and expansion of hematopoietic stem and progenitor cells. Blood, 2017, 129, 2939-2949.	0.6	39
21	Osteomacs and Bone Regeneration. Current Osteoporosis Reports, 2017, 15, 385-395.	1.5	105
22	Characterization of Normal Murine Carpal Bone Development Prompts Re-Evaluation of Pathologic Osteolysis as the Cause of Human Carpal-Tarsal Osteolysis Disorders. American Journal of Pathology, 2017, 187, 1923-1934.	1.9	11
23	Early anti-inflammatory intervention ameliorates axial disease in the proteoglycan-induced spondylitis mouse model of ankylosing spondylitis. BMC Musculoskeletal Disorders, 2017, 18, 228.	0.8	10
24	Role of bone marrow macrophages in controlling homeostasis and repair in bone and bone marrow niches. Seminars in Cell and Developmental Biology, 2017, 61, 12-21.	2.3	97
25	Resting and injuryâ€induced inflamed periosteum contain multiple macrophage subsets that are located at sites of bone growth and regeneration. Immunology and Cell Biology, 2017, 95, 7-16.	1.0	56
26	Macrophage-derived oncostatin M contributes to human and mouse neurogenic heterotopic ossifications. JCl Insight, 2017, 2, .	2.3	87
27	<scp>CD169</scp> ⁺ macrophages mediate pathological formation of woven bone in skeletal lesions of prostate cancer. Journal of Pathology, 2016, 239, 218-230.	2.1	37
28	Inflammation-driven bone formation in a mouse model of ankylosing spondylitis: sequential not parallel processes. Arthritis Research and Therapy, 2016, 18, 35.	1.6	46
29	Intrauterine Bone Marrow Transplantation in Osteogenesis Imperfecta Mice Yields Donor Osteoclasts and Osteomacs but Not Osteoblasts. Stem Cell Reports, 2015, 5, 682-689.	2.3	12
30	Macrophages: Their Emerging Roles in Bone. Journal of Bone and Mineral Research, 2015, 30, 2140-2149.	3.1	219
31	Neurological heterotopic ossification following spinal cord injury is triggered by macrophageâ€mediated inflammation in muscle. Journal of Pathology, 2015, 236, 229-240.	2.1	131
32	Tissue engineered humanized bone supports human hematopoiesisÂinÂvivo. Biomaterials, 2015, 61, 103-114.	5.7	62
33	Osteoclasts control reactivation of dormant myeloma cells by remodelling the endosteal niche. Nature Communications, 2015, 6, 8983.	5.8	296
34	Fracture Healing via Periosteal Callus Formation Requires Macrophages for Both Initiation and Progression of Early Endochondral Ossification. American Journal of Pathology, 2014, 184, 3192-3204.	1.9	240
35	Deletion of bone-marrow-derived receptor for AGEs (RAGE) improves renal function in an experimental mouse model of diabetes. Diabetologia, 2014, 57, 1977-1985.	2.9	26
36	Mobilization with granulocyte colony-stimulating factor blocks medullar erythropoiesis by depleting F4/80+VCAM1+CD169+ER-HR3+Ly6G+ erythroid island macrophages in the mouse. Experimental Hematology, 2014, 42, 547-561.e4.	0.2	82

#	Article	IF	CITATIONS
37	Unravelling the Pluripotency Paradox in Fetal and Placental Mesenchymal Stem Cells: Oct-4 Expression and the Case of the Emperor's New Clothes. Stem Cell Reviews and Reports, 2013, 9, 408-421.	5.6	28
38	Expression profiling in spondyloarthropathy synovial biopsies highlights changes in expression of inflammatory genes in conjunction with tissue remodelling genes. BMC Musculoskeletal Disorders, 2013, 14, 354.	0.8	19
39	Absence of B Cells Does Not Compromise Intramembranous Bone Formation during Healing in a Tibial Injury Model. American Journal of Pathology, 2013, 182, 1501-1508.	1.9	16
40	Activated human T cells express alternative mRNA transcripts encoding a secreted form of RANKL. Genes and Immunity, 2013, 14, 336-345.	2.2	29
41	Unraveling macrophage contributions to bone repair. BoneKEy Reports, 2013, 2, 373.	2.7	184
42	Smg1 haploinsufficiency predisposes to tumor formation and inflammation. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E285-94.	3.3	50
43	The novel CXCR4 antagonist POL5551 mobilizes hematopoietic stem and progenitor cells with greater efficiency than Plerixafor. Leukemia, 2013, 27, 2322-2331.	3.3	43
44	Hematopoietic stem cell mobilizing agents G-CSF, cyclophosphamide or AMD3100 have distinct mechanisms of action on bone marrow HSC niches and bone formation. Leukemia, 2012, 26, 1594-1601.	3.3	136
45	Excessive bone formation in a mouse model of ankylosing spondylitis is associated with decreases in Wnt pathway inhibitors. Arthritis Research and Therapy, 2012, 14, R253.	1.6	79
46	βâ€glucan triggers spondylarthritis and Crohn's disease–like ileitis in SKG mice. Arthritis and Rheumatism, 2012, 64, 2211-2222.	6.7	224
47	Osteal macrophages promote in vivo intramembranous bone healing in a mouse tibial injury model. Journal of Bone and Mineral Research, 2011, 26, 1517-1532.	3.1	394
48	Soluble lymphotoxin is an important effector molecule in GVHD and GVL. Blood, 2010, 115, 122-132.	0.6	49
49	Bone marrow macrophages maintain hematopoietic stem cell (HSC) niches and their depletion mobilizes HSCs. Blood, 2010, 116, 4815-4828.	0.6	695
50	An antibody against the colony-stimulating factor 1 receptor depletes the resident subset of monocytes and tissue- and tumor-associated macrophages but does not inhibit inflammation. Blood, 2010, 116, 3955-3963.	0.6	410
51	Responses <i>in vivo</i> to purified poly(3â€hydroxybutyrateâ€ <i>co</i> â€3â€hydroxyvalerate) implanted in a murine tibial defect model. Journal of Biomedical Materials Research - Part A, 2009, 91A, 845-854.	2.1	29
52	Osteomacs are critical for optimal intramembranous bone formation in a tibial defect model of bone healing. Bone, 2009, 44, S30.	1.4	2
53	OsteoMacs maintain the endosteal hematopoietic stem cell niche and participate in mobilization. Bone, 2009, 44, S32-S33.	1.4	0
54	Osteomacs: Osteoclast precursors during inflammatory bone disease but regulators of physiologic bone remodeling. Bone, 2009, 44, S136-S137.	1.4	6

#	Article	IF	CITATIONS
55	Conventional dendritic cells are the critical donor APC presenting alloantigen after experimental bone marrow transplantation. Blood, 2009, 113, 5644-5649.	0.6	79
56	Re: Structural and cellular differences between metaphyseal and diaphyseal periosteum in different-aged rats. Bone, 2008, 42, 825-826.	1.4	0
57	Osteal macrophages: A new twist on coupling during bone dynamics. Bone, 2008, 43, 976-982.	1.4	166
58	Microphthalmia transcription factor regulates the expression of the novel osteoclast factor GPNMB. Gene, 2008, 413, 32-41.	1.0	78
59	Osteal Tissue Macrophages Are Intercalated throughout Human and Mouse Bone Lining Tissues and Regulate Osteoblast Function In Vitro and In Vivo. Journal of Immunology, 2008, 181, 1232-1244.	0.4	597
60	Antigen-specific suppression of established arthritis in mice by dendritic cells deficient in NF-κB. Arthritis and Rheumatism, 2007, 56, 2255-2266.	6.7	91
61	Identification and Isolation of Synovial Dendritic Cells. Methods in Molecular Medicine, 2007, 136, 165-181.	0.8	1
62	Regulation of bone biology by prostaglandin endoperoxide H synthases (PGHS): A rose by any other name…. Cytokine and Growth Factor Reviews, 2006, 17, 203-216.	3.2	35
63	RANKL protein is expressed at the pannus–bone interface at sites of articular bone erosion in rheumatoid arthritis. Rheumatology, 2006, 45, 1068-1076.	0.9	134
64	ESE-1 Is a Novel Transcriptional Mediator of Angiopoietin-1 Expression in the Setting of Inflammation. Journal of Biological Chemistry, 2004, 279, 12794-12803.	1.6	55
65	Lack of requirement of osteopontin for inflammation, bone erosion, and cartilage damage in the K/BxN model of autoantibody-mediated arthritis. Arthritis and Rheumatism, 2004, 50, 2685-2694.	6.7	25
66	Differential transcriptional effects of PTH and estrogen during anabolic bone formation. Journal of Cellular Biochemistry, 2004, 93, 476-490.	1.2	27
67	Responses to the proinflammatory cytokines interleukin-1 and tumor necrosis factor ? in cells derived from rheumatoid synovium and other joint tissues involve nuclear factor ?B-mediated induction of the Ets transcription factor ESE-1. Arthritis and Rheumatism, 2003, 48, 1249-1260.	6.7	99
68	Vegfb gene knockout mice display reduced pathology and synovial angiogenesis in both antigen-induced and collagen-induced models of arthritis. Arthritis and Rheumatism, 2003, 48, 2660-2669.	6.7	118
69	Angiopoietin-1 is expressed in the synovium of patients with rheumatoid arthritis and is induced by tumour necrosis factor alpha. Annals of the Rheumatic Diseases, 2003, 62, 100-107.	O.5	87
70	Critical Roles for Interleukin 1 and Tumor Necrosis Factor α in Antibody-induced Arthritis. Journal of Experimental Medicine, 2002, 196, 77-85.	4.2	307
71	Increase in expression of receptor activator of nuclear factor ?B at sites of bone erosion correlates with progression of inflammation in evolving collagen-induced arthritis. Arthritis and Rheumatism, 2002, 46, 3055-3064.	6.7	71
72	Nuclear RelB+cells are found in normal lymphoid organs and in peripheral tissue in the context of inflammation, but not under normal resting conditions. Immunology and Cell Biology, 2002, 80, 164-169.	1.0	23

#	Article	IF	CITATIONS
73	TRANCE/RANKL Knockout Mice Are Protected from Bone Erosion in a Serum Transfer Model of Arthritis. American Journal of Pathology, 2001, 159, 1689-1699.	1.9	745
74	Comparison of differentiated dendritic cell infiltration of autoimmune and osteoarthritis synovial tissue. Arthritis and Rheumatism, 2001, 44, 105-110.	6.7	30
75	Association of clinical, radiological and synovial immunopathological responses to antiâ€rheumatic treatment in rheumatoid arthritis. Rheumatology, 2001, 40, 1243-1255.	0.9	18
76	Identification and Isolation of Synovial Dendritic Cells. , 2001, 64, 175-187.		0
77	Differentiated dendritic cells expressing nuclear RelB are predominantly located in rheumatoid synovial tissue perivascular mononuclear cell aggregates. Arthritis and Rheumatism, 2000, 43, 791.	6.7	101
78	RelB nuclear translocation regulates B cell MHC molecule, CD40 expression, and antigen-presenting cell function. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 11421-11426.	3.3	61
79	Dendritic cells: The driving force behind autoimmunity in rheumatoid arthritis?. Immunology and Cell Biology, 1999, 77, 420-427.	1.0	56
80	Dendritic cells and the pathogenesis of rheumatoid arthritis. Journal of Leukocyte Biology, 1999, 66, 286-292.	1.5	99
81	Inhibition of Ku autoantigen binding activity to the E2F motif after ultraviolet B irradiation of melanocytic cells. Melanoma Research, 1998, 8, 471-481.	0.6	7