Chris Gerada

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/9434943/chris-gerada-publications-by-year.pdf

Version: 2024-04-19

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

5,846 56 451 35 h-index g-index citations papers 8,098 536 6.44 4.9 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
451	Application of Actor-Critic Deep Reinforcement Learning Method for Obstacle Avoidance of WMR. <i>Lecture Notes in Electrical Engineering</i> , 2022 , 5485-5494	0.2	
450	Performance Entitlement by Using Novel High Strength Electrical Steels and Copper Alloys for High-Speed Laminated Rotor Induction Machines. <i>Electronics (Switzerland)</i> , 2022 , 11, 210	2.6	0
449	Rotor Slot Design of Squirrel Cage Induction Motors with Improved Rated Efficiency and Starting Capability. <i>IEEE Transactions on Industry Applications</i> , 2022 , 1-1	4.3	
448	Synchronous Reluctance Machines: A Comprehensive Review and Technology Comparison. <i>Proceedings of the IEEE</i> , 2022 , 1-18	14.3	3
447	Effect of Multi-size Magnetic Powder Gradation on Magnetic Properties of Novel Composite Magnetic Materials for HSPMSM. <i>IEEE Transactions on Transportation Electrification</i> , 2022 , 1-1	7.6	
446	A Comprehensive Design Guideline of Hairpin Windings for High Power Density Electric Vehicle Traction Motors. <i>IEEE Transactions on Transportation Electrification</i> , 2022 , 1-1	7.6	O
445	. IEEE Transactions on Power Electronics, 2022 , 37, 749-760	7.2	9
444	A Low-Complexity Modulated Model Predictive Torque and Flux Control Strategy for PMSM Drives without Weighting Factor. <i>IEEE Journal of Emerging and Selected Topics in Power Electronics</i> , 2022 , 1-1	5.6	1
443	Profiling the Eddy Current Losses Variations of High-Speed Permanent Magnet Machines in Plug-in Hybrid Electric Vehicles. <i>IEEE Transactions on Transportation Electrification</i> , 2022 , 1-1	7.6	
442	Torque Limiters for Aerospace Actuator Application. <i>Energies</i> , 2022 , 15, 1467	3.1	O
441	Review on the Traditional and Integrated Passives: State-of-the-Art Design and Technologies. <i>Energies</i> , 2022 , 15, 88	3.1	O
440	Analytical Methodology for Eddy Current Loss Simulation in Armature Windings of Synchronous Electrical Machines With Permanent Magnets. <i>IEEE Transactions on Industrial Electronics</i> , 2022 , 69, 9761	-§ ? 70	1
439	Electromagnetic Torque Fluctuating Properties under Dynamic RISC Fault in Turbogenerators. <i>Energies</i> , 2022 , 15, 3821	3.1	
438	On the Use of Topology Optimization for Synchronous Reluctance Machines Design. <i>Energies</i> , 2022 , 15, 3719	3.1	1
437	Electromechanical Characteristics Analysis under DSISC Fault in Synchronous Generators. <i>Machines</i> , 2022 , 10, 432	2.9	1
436	Integrated Damper Cage for THD Improvements of Variable Speed Salient-Pole Synchronous Generators for the More Electric Aircraft. <i>IEEE Transactions on Transportation Electrification</i> , 2021 , 1-1	7.6	1
435	Significance of Anisotropic Thermal Expansion in High Speed Electric Machines Employing NdFeB Permanent Magnets. <i>Energies</i> , 2021 , 14, 7558	3.1	2

(2021-2021)

434	Impact of Static Air-Gap Eccentricity on Thermal Responses of Stator Winding Insulation in Synchronous Generators. <i>IEEE Transactions on Industrial Electronics</i> , 2021 , 1-1	8.9	0
433	An Extended State Loop-Filter with Position Error Observer for Sensorless IPMSM Drives. <i>IEEE Transactions on Industrial Electronics</i> , 2021 , 1-1	8.9	
432	Hybrid Recurrent Neural Network Architecture-Based Intention Recognition for Human-Robot Collaboration. <i>IEEE Transactions on Cybernetics</i> , 2021 , PP,	10.2	3
431	Open-Circuit Air-Gap Magnetic Field Calculation of Interior Permanent Magnet Synchronous Motor With V-Shaped Segmented Skewed Poles Using Hybrid Analytical Method. <i>IEEE Transactions on Magnetics</i> , 2021 , 1-1	2	2
430	Optimization and Analysis of a High Power Density and Fault Tolerant Starter G enerator for Aircraft Application. <i>Energies</i> , 2021 , 14, 113	3.1	3
429	Calculation Model of Armature Reaction Magnetic Field of Interior Permanent Magnet Synchronous Motor with Segmented Skewed Poles. <i>IEEE Transactions on Energy Conversion</i> , 2021 , 1-1	5.4	1
428	Electrical Machines for the More Electric Aircraft: Partial Discharges Investigation. <i>IEEE Transactions on Industry Applications</i> , 2021 , 57, 1389-1398	4.3	12
427	Open and Closed Rotor Slots Design of Single and Double Cages Induction Motor 2021,		2
426	Hairpin Windings: Sensitivity Analysis and Guidelines to Reduce AC Losses 2021,		2
425	Open-Circuit Fault Control Techniques for Bearingless Multisector Permanent Magnet Synchronous Machines. <i>IEEE Transactions on Industry Applications</i> , 2021 , 57, 2527-2536	4.3	3
424	Integrated Motor Drive: Mass and Volume Optimization of the Motor with an Integrated Filter Inductor. <i>Energies</i> , 2021 , 14, 4564	3.1	2
423	. IEEE Transactions on Industrial Electronics, 2021 , 68, 2919-2930	8.9	11
422	Four-Degree-of-Freedom Overmodulation Strategy for Five-Phase Space Vector Pulsewidth Modulation. <i>IEEE Journal of Emerging and Selected Topics in Power Electronics</i> , 2021 , 9, 1578-1590	5.6	9
421	. IEEE Transactions on Industrial Electronics, 2021 , 68, 5100-5111	8.9	12
420	. IEEE Transactions on Industrial Electronics, 2021 , 68, 5638-5649	8.9	6
419	New Three-Phase Current Reconstruction for PMSM Drive With Hybrid Space Vector Pulsewidth Modulation Technique. <i>IEEE Transactions on Power Electronics</i> , 2021 , 36, 662-673	7.2	20
418	. IEEE Transactions on Industrial Electronics, 2021 , 68, 9070-9080	8.9	2
417	. IEEE Transactions on Industrial Electronics, 2021 , 68, 7535-7544	8.9	7

416	. IEEE Transactions on Energy Conversion, 2021 , 36, 547-559	5.4	2
415	An Analytical-Numerical Approach to Model and Analyse Squirrel Cage Induction Motors. <i>IEEE Transactions on Energy Conversion</i> , 2021 , 36, 421-430	5.4	4
414	. IEEE Transactions on Energy Conversion, 2021 , 36, 23-35	5.4	2
413	. IEEE/ASME Transactions on Mechatronics, 2021 , 26, 1129-1139	5.5	6
412	. IEEE Transactions on Transportation Electrification, 2021 , 7, 793-803	7.6	6
411	Rotor Design Optimization of Squirrel Cage Induction Motor - Part I: Problem Statement. <i>IEEE Transactions on Energy Conversion</i> , 2021 , 36, 1271-1279	5.4	11
410	Rotor Design Optimization of Squirrel Cage Induction Motor - Part II: Results Discussion. <i>IEEE Transactions on Energy Conversion</i> , 2021 , 36, 1280-1288	5.4	7
409	. IEEE Transactions on Industrial Electronics, 2021 , 68, 160-174	8.9	18
408	Improved Thermal Modelling and Experimental Validation of Oil-Flooded High Performance Machines with Slot-Channel Cooling. <i>IEEE Transactions on Transportation Electrification</i> , 2021 , 1-1	7.6	1
407	Squirrel Cage Induction Motor: A Design-Based Comparison Between Aluminium and Copper Cages. <i>IEEE Open Journal of Industry Applications</i> , 2021 , 2, 110-120	4.7	2
406	Lifetime Estimation of Enameled Wires Under Accelerated Thermal Aging Using Curve Fitting Methods. <i>IEEE Access</i> , 2021 , 9, 18993-19003	3.5	2
405	On Torque Improvement by Current Harmonic Injection in Isotropic and Anisotropic Multi-Phase Machines. <i>IEEE Journal of Emerging and Selected Topics in Industrial Electronics</i> , 2021 , 1-1	2.6	1
404	High Speed Synchronous Reluctance Machines: Modeling, Design and Limits. <i>IEEE Transactions on Energy Conversion</i> , 2021 , 1-1	5.4	4
403	Optimised Design of Permanent Magnet Assisted Synchronous Reluctance Machines for Household Appliances. <i>IEEE Transactions on Energy Conversion</i> , 2021 , 1-1	5.4	6
402	Open and Short Circuit Post-Fault Control Strategies for Multi-Three-Phase Interior Permanent Magnet Machines. <i>IEEE Transactions on Energy Conversion</i> , 2021 , 1-1	5.4	1
401	Femtocore: An Application Specific Processor for Vertically Integrated High Performance Real-Time Controls. <i>IEEE Open Journal of the Industrial Electronics Society</i> , 2021 , 1-1	3.6	O
400	A PMSM with Enhanced Anisotropic Rotor Configuration for Sensorless Operations. <i>IEEE Transactions on Energy Conversion</i> , 2021 , 1-1	5.4	O
399	Enhanced Active Disturbance Rejection Current Controller for Permanent Magnet Synchronous Machines Operated at Low Sampling Time Ratio. <i>IEEE Journal of Emerging and Selected Topics in Industrial Electronics</i> , 2021 , 1-1	2.6	3

(2021-2021)

398	Segmented Hairpin Topology for Reduced Losses at High Frequency Operations. <i>IEEE Transactions on Transportation Electrification</i> , 2021 , 1-1	7.6	3	
397	Fast and Simple Tuning Rules of Synchronous Reference Frame Proportional-Integral Current Controller. <i>IEEE Access</i> , 2021 , 9, 22156-22170	3.5	4	
396	A Novel Flux Barrier Parametrization for Synchronous Reluctance Machines. <i>IEEE Transactions on Energy Conversion</i> , 2021 , 1-1	5.4	4	
395	High Speed Synchronous Reluctance Machines: Materials Selection and Performance Boundaries. <i>IEEE Transactions on Transportation Electrification</i> , 2021 , 1-1	7.6	2	
394	The Novel Singular-Perturbation-Based Adaptive Control with EModification for Cable Driven System. <i>Actuators</i> , 2021 , 10, 45	2.4		
393	Analysis and Design of Dual-Rotor Synchronous Reluctance Machine. <i>IEEE Journal of Emerging and Selected Topics in Power Electronics</i> , 2021 , 9, 4376-4383	5.6	2	
392	Homothetic Design in Synchronous Reluctance Machines and Effects on Torque Ripple. <i>IEEE Transactions on Energy Conversion</i> , 2021 , 36, 2195-2205	5.4	3	
391	Modeling and Analysis in Trajectory Tracking Control for Wheeled Mobile Robots with Wheel Skidding and Slipping: Disturbance Rejection Perspective. <i>Actuators</i> , 2021 , 10, 222	2.4	2	
390	Experimental Statistical Method Predicting AC Losses on Random Windings and PWM Effect Evaluation. <i>IEEE Transactions on Energy Conversion</i> , 2021 , 36, 2287-2296	5.4	3	
389	Neural Network aided PMSM multi-objective design and optimization for more-electric aircraft applications. <i>Chinese Journal of Aeronautics</i> , 2021 ,	3.7	2	
388	Analysis and Performance of Five-Phase Piecewise-Random-Switching-Frequency Space Vector Pulse Width Modulation. <i>IEEE Transactions on Energy Conversion</i> , 2021 , 36, 2339-2347	5.4	1	
387	How non-conventional machining affects the surface integrity and magnetic properties of non-oriented electrical steel. <i>Materials and Design</i> , 2021 , 210, 110051	8.1	3	
386	A Thermal Modeling Approach and Experimental Validation for an Oil Spray-Cooled Hairpin Winding Machine. <i>IEEE Transactions on Transportation Electrification</i> , 2021 , 7, 2914-2926	7.6	5	
385	Electrical Machine Slot Thermal Condition Effects on Back-Iron Extension Thermal Benefits. <i>IEEE Transactions on Transportation Electrification</i> , 2021 , 7, 2927-2938	7.6	1	
384	4-MW Class High-Power-Density Generator for Future Hybrid-Electric Aircraft. <i>IEEE Transactions on Transportation Electrification</i> , 2021 , 7, 2952-2964	7.6	10	
383	A Scalable System Architecture for High-Performance Fault Tolerant Machine Drives. <i>IEEE Open Journal of the Industrial Electronics Society</i> , 2021 , 2, 428-440	3.6	O	
382	Robust Adaptive Control Based on Variable Boundary for a Twin-Motor Cable Driven System. <i>IEEE Transactions on Industrial Electronics</i> , 2021 , 1-1	8.9		
381	Hairpin Windings: An Opportunity for Next-Generation E-Motors in Transportation. <i>IEEE Industrial Electronics Magazine</i> , 2021 , 2-10	6.2	3	

380	A Novel Current Limitation Technique Exploiting the Maximum Capability of Power Electronic Inverter and Bearingless Machine. <i>IEEE Transactions on Industry Applications</i> , 2021 , 1-1	4.3	1
379	Active Thermal Control for Modular Power Converters in Multi-Phase Permanent Magnet Synchronous Motor Drive System. <i>IEEE Access</i> , 2021 , 9, 7054-7063	3.5	2
378	Modular Power Sharing Control for Bearingless Multi-Three Phase Permanent Magnet Synchronous Machine. <i>IEEE Transactions on Industrial Electronics</i> , 2021 , 1-1	8.9	1
377	Commercial Aircraft Electrification durrent State and Future Scope. <i>Energies</i> , 2021 , 14, 8381	3.1	5
376	Rotor UMP characteristics and vibration properties in synchronous generator due to 3D static air-gap eccentricity faults. <i>IET Electric Power Applications</i> , 2020 , 14, 961-971	1.8	6
375	Induction-Machine-Based Starter/Generator Systems: Techniques, Developments, and Advances. <i>IEEE Industrial Electronics Magazine</i> , 2020 , 14, 4-19	6.2	11
374	. IEEE Transactions on Energy Conversion, 2020 , 35, 1289-1300	5∙4	7
373	Challenges and Opportunities for Wound Field Synchronous Generators in Future More Electric Aircraft. <i>IEEE Transactions on Transportation Electrification</i> , 2020 , 6, 1466-1477	7.6	23
372	High-Speed Electric Drives: A Step Towards System Design. <i>IEEE Open Journal of the Industrial Electronics Society</i> , 2020 , 1, 10-21	3.6	8
371	Stable and Robust Design of Active Disturbance-Rejection Current Controller for Permanent Magnet Machines in Transportation Systems. <i>IEEE Transactions on Transportation Electrification</i> , 2020 , 6, 1421-1433	7.6	9
370	The Role of Neural Networks in Predicting the Thermal Life of Electrical Machines. <i>IEEE Access</i> , 2020 , 8, 40283-40297	3.5	8
369	Electric drive systems with long feeder cables. IET Electric Power Applications, 2020, 14, 16-30	1.8	3
368	Performance Enhancement of Direct Torque-Controlled Permanent Magnet Synchronous Motor with a Flexible Switching Table. <i>Energies</i> , 2020 , 13, 1907	3.1	8
367	Improved V-shaped interior permanent magnet rotor topology with inward-extended bridges for reduced torque ripple. <i>IET Electric Power Applications</i> , 2020 , 14, 2404-2411	1.8	O
366	AC loss Analysis in Winding of Electrical Machines with varying Strands-in-hand and Bundle Shapes 2020 ,		2
365	Rectangular and Random Conductors: AC Losses Evaluations and Manufacturing Considerations 2020 ,		8
364	Analysis of a Five-Phase PM Vernier Machine Topology with Two-Slot Pitch Winding 2020,		1
363	Characteristic analysis and direct measurement for air gap magnetic field of external rotor permanent magnet synchronous motors in electric vehicles. <i>IET Electric Power Applications</i> , 2020 , 14, 1784-1794	1.8	O

(2020-2020)

362	2020,		5	
361	Eccentric position diagnosis of static eccentricity fault of external rotor permanent magnet synchronous motor as an in-wheel motor. <i>IET Electric Power Applications</i> , 2020 , 14, 2263-2272	1.8	4	
360	. IEEE Transactions on Industry Applications, 2020 , 56, 183-193	4.3	22	
359	. IEEE Transactions on Industry Applications, 2020 , 56, 1485-1494	4.3	6	
358	Control-Winding Direct Power Control Strategy for Five-Phase Dual-Stator Winding Induction Generator DC Generating System. <i>IEEE Transactions on Transportation Electrification</i> , 2020 , 6, 73-82	7.6	5	
357	A Third-Order Super-Twisting Extended State Observer for Dynamic Performance Enhancement of Sensorless IPMSM Drives. <i>IEEE Transactions on Industrial Electronics</i> , 2020 , 67, 5948-5958	8.9	17	
356	Highly Ordered BN? B N? Stacking Structure for Improved Thermally Conductive Polymer Composites. <i>Advanced Electronic Materials</i> , 2020 , 6, 2000627	6.4	7	
355	Advantages of a Double Three-Phase Winding Layout for a Dual Rotor E-Bike Motor Considering Third Current Harmonic Injection Technique 2020 ,		1	
354	Challenges and Future opportunities of Hairpin Technologies 2020,		13	
353	Hybrid Magnet Configuration to Reduce the Content of Rare Earth Elements in a PM-SynRel Machine 2020 ,		1	
352	Analysis and Modelling of High Frequency Effects on Synchronous Generator Armature Conductors 2020 ,		1	
351	. IEEE Transactions on Energy Conversion, 2020 , 1-1	5.4	6	
350	Feasibility Design Study of High-Performance, High-Power-Density Propulsion Motor for Middle-Range Electric Aircraft 2020 ,		2	
349	Power Devices Aging Equalization of Interleaved DCDC Boost Converters via Power Routing. <i>IEEE Journal of Emerging and Selected Topics in Industrial Electronics</i> , 2020 , 1, 91-101	2.6	5	
348	. IEEE Transactions on Industrial Electronics, 2020 , 1-1	8.9	4	
347	Influence of Rotor Design on Electromagnetic Performance in Interior Permanent Magnet Machines 2020 ,		1	
346	Multi-Sector Windings For Bearing Relief E-Machine: Saturation and Cross Coupling Effects 2020,		1	
345	. IEEE Transactions on Industrial Electronics, 2020 , 67, 180-191	8.9	23	

344	. IEEE Transactions on Industrial Electronics, 2020 , 67, 2618-2629	8.9	35
343	. IEEE Transactions on Industrial Electronics, 2020 , 67, 2553-2563	8.9	18
342	. IEEE Transactions on Industrial Electronics, 2020 , 67, 1844-1854	8.9	7
341	. IEEE Transactions on Industrial Electronics, 2020 , 67, 2667-2677	8.9	10
340	A Nonlinear Extended State Observer for Rotor Position and Speed Estimation for Sensorless IPMSM Drives. <i>IEEE Transactions on Power Electronics</i> , 2020 , 35, 733-743	7.2	31
339	. IEEE Transactions on Industrial Electronics, 2020 , 67, 2630-2641	8.9	30
338	High Torque Density Torque Motor With Hybrid Magnetization Pole Arrays for Jet Pipe Servo Valve. <i>IEEE Transactions on Industrial Electronics</i> , 2020 , 67, 2133-2142	8.9	8
337	. IEEE Transactions on Industrial Electronics, 2020 , 67, 1728-1738	8.9	13
336	. IEEE Transactions on Industrial Electronics, 2020 , 67, 7343-7353	8.9	39
335	High-Speed Permanent Magnet Synchronous Motor Iron Loss Calculation Method Considering Multiphysics Factors. <i>IEEE Transactions on Industrial Electronics</i> , 2020 , 67, 5360-5368	8.9	21
334	. IEEE Transactions on Industrial Electronics, 2020 , 67, 4315-4325	8.9	8
333	. IEEE Transactions on Industrial Electronics, 2020 , 67, 2607-2617	8.9	11
332	. IEEE Transactions on Industrial Electronics, 2020 , 67, 4391-4401	8.9	2
331	Post-Fault Operation of Bearingless Multisector SPM Machines by Space Vector Control. <i>IEEE Transactions on Power Electronics</i> , 2020 , 35, 4168-4177	7.2	8
330	Simplified Analytical Machine Sizing for Surface Mounted Permanent Magnet Machines 2019,		1
329	On the Design of Partial Discharge-Free Low Voltage Electrical Machines 2019 ,		15
328	Single-Phase Open-Circuit Fault Operation of Bearingless Multi-Sector PM Machines 2019,		3
327	Braking Torque Compensation Strategy and Thermal Behavior of a Dual Three-Phase Winding PMSM During Short-Circuit Fault 2019 ,		5

326	Optimized Sizing of IPM Machines for Automotive Traction Application 2019,		3
325	Comparative Study on Two Modular Spoke-Type PM Machines for In-Wheel Traction Applications. <i>IEEE Transactions on Energy Conversion</i> , 2019 , 34, 2137-2147	5.4	6
324	Novel 24-slots14-poles fractional-slot concentrated winding topology with low-space harmonics for electrical machine. <i>Journal of Engineering</i> , 2019 , 2019, 3784-3788	0.7	5
323	Numerical investigations of convective phenomena of oil impingement on end-windings. <i>Journal of Engineering</i> , 2019 , 2019, 4022-4026	0.7	1
322	DC Drift Error Mitigation Method for Three-Phase Current Reconstruction With Single Hall Current Sensor. <i>IEEE Transactions on Magnetics</i> , 2019 , 55, 1-4	2	14
321	Challenges of the Optimization of a High-Speed Induction Machine for Naval Applications. <i>Energies</i> , 2019 , 12, 2431	3.1	7
320	Detent Force, Thrust, and Normal Force of the Short-Primary Double-Sided Permanent Magnet Linear Synchronous Motor With Slot-Shift Structure. <i>IEEE Transactions on Energy Conversion</i> , 2019 , 34, 1411-1421	5.4	23
319	Research on the Compensation Matching Design and Output Performance for Two-Axis-Compensated Compulsators. <i>IEEE Transactions on Plasma Science</i> , 2019 , 47, 2445-2451	1.3	4
318	Eddy Current Losses Analysis and Optimization Design of Litz-Wire Windings for Air-Core Compulsators. <i>IEEE Transactions on Plasma Science</i> , 2019 , 47, 2532-2538	1.3	8
317	. IEEE Transactions on Industry Applications, 2019 , 55, 3649-3659	4.3	10
317	. <i>IEEE Transactions on Industry Applications</i> , 2019 , 55, 3649-3659 Flux-Density Harmonics Analysis of Switched-Flux Permanent Magnet Machines. <i>IEEE Transactions on Magnetics</i> , 2019 , 55, 1-7	4.3	10
	Flux-Density Harmonics Analysis of Switched-Flux Permanent Magnet Machines. <i>IEEE Transactions</i>		
	Flux-Density Harmonics Analysis of Switched-Flux Permanent Magnet Machines. <i>IEEE Transactions on Magnetics</i> , 2019 , 55, 1-7	2	6
316 315	Flux-Density Harmonics Analysis of Switched-Flux Permanent Magnet Machines. <i>IEEE Transactions on Magnetics</i> , 2019 , 55, 1-7 . <i>IEEE Transactions on Industry Applications</i> , 2019 , 55, 3544-3554 Comparative Study of Two Novel Double-Sided Hybrid-Excitation Flux-Reversal Linear Motors With	2 4.3	6
316 315 314	Flux-Density Harmonics Analysis of Switched-Flux Permanent Magnet Machines. <i>IEEE Transactions on Magnetics</i> , 2019 , 55, 1-7 . <i>IEEE Transactions on Industry Applications</i> , 2019 , 55, 3544-3554 Comparative Study of Two Novel Double-Sided Hybrid-Excitation Flux-Reversal Linear Motors With Surface and Interior PM Arrangements. <i>IEEE Transactions on Magnetics</i> , 2019 , 55, 1-7 Fully-integrated high-speed IM for improving high-power marine engines. <i>IET Electric Power</i>	2 4.3	6 32 9
316 315 314 313	Flux-Density Harmonics Analysis of Switched-Flux Permanent Magnet Machines. <i>IEEE Transactions on Magnetics</i> , 2019 , 55, 1-7 . <i>IEEE Transactions on Industry Applications</i> , 2019 , 55, 3544-3554 Comparative Study of Two Novel Double-Sided Hybrid-Excitation Flux-Reversal Linear Motors With Surface and Interior PM Arrangements. <i>IEEE Transactions on Magnetics</i> , 2019 , 55, 1-7 Fully-integrated high-speed IM for improving high-power marine engines. <i>IET Electric Power Applications</i> , 2019 , 13, 148-153 Simplified Damper Cage Circuital Model and Fast Analytical Numerical Approach for the Analysis of	2 4·3 2	6 32 9
316 315 314 313 312	Flux-Density Harmonics Analysis of Switched-Flux Permanent Magnet Machines. <i>IEEE Transactions on Magnetics</i> , 2019 , 55, 1-7 . <i>IEEE Transactions on Industry Applications</i> , 2019 , 55, 3544-3554 Comparative Study of Two Novel Double-Sided Hybrid-Excitation Flux-Reversal Linear Motors With Surface and Interior PM Arrangements. <i>IEEE Transactions on Magnetics</i> , 2019 , 55, 1-7 Fully-integrated high-speed IM for improving high-power marine engines. <i>IET Electric Power Applications</i> , 2019 , 13, 148-153 Simplified Damper Cage Circuital Model and Fast Analytical Numerical Approach for the Analysis of Synchronous Generators. <i>IEEE Transactions on Industrial Electronics</i> , 2019 , 66, 8361-8371 Performance Improvement of Bearingless Multisector PMSM With Optimal Robust Position	2 4-3 2 1.8 8.9	6 32 9 2

308	Dual-Rotor Permanent Magnet Motor for Electric Superbike 2019 ,		3
307	Thermal analysis of fault-tolerant electrical machines for aerospace actuators. <i>IET Electric Power Applications</i> , 2019 , 13, 843-852	1.8	14
306	Coupling calculation and analysis of three-dimensional temperature and fluid field for high-power high-speed permanent magnet machine. <i>IET Electric Power Applications</i> , 2019 , 13, 820-825	1.8	7
305	Torque Ripple Investigation in Squirrel Cage Induction Machines 2019,		2
304	Fluid flow and heat transfer analysis of TEFC machine end regions using more realistic end-winding geometry. <i>Journal of Engineering</i> , 2019 , 2019, 3831-3835	0.7	3
303	Influence of Slot Combination on Performance of Brushless Doubly Fed Generator With Hybrid Rotor. <i>IEEE Transactions on Magnetics</i> , 2019 , 55, 1-6	2	4
302	2019,		1
301	Free-Form Design of Electrical Machine Rotor Cores for Production Using Additive Manufacturing. Journal of Mechanical Design, Transactions of the ASME, 2019, 141,	3	16
300	Thermal Barrier for High-Voltage Permanent Magnet Synchronous Motor with Air-cooling Hybrid Ventilation Systems 2019 ,		1
299	The potential of exploiting non-symmetric structures in electrical machines 2019,		1
298	Fault-Tolerant Electrical Machines for Transport Applications 2019,		1
297	Reduced Order Lumped Parameter Thermal Network for Dual Three-Phase Permanent Magnet Machines 2019 ,		8
296	Comparative Analysis of AC losses with round magnet wire and Litz wire winding of a High Speed PM Machine 2019 ,		6
295	Modeling of Classical Synchronous Generators Using Size-Efficient Lookup Tables With Skewing Effect. <i>IEEE Access</i> , 2019 , 7, 174551-174561	3.5	2
294	Reliability vs. Performances of Electrical Machines: Partial Discharges Issue 2019,		7
293	Simplified Lumped Parameter Thermal Network for Short-Duty Dual Three-Phase Permanent Magnet Machines 2019 ,		1
292	Enhancing the Torque Density of Conventional PM-SynRel Machine with Hybrid Flux Barrier 2019,		2
291	Multi-physics Design Optimisation of PM-assisted Synchronous Reluctance Motor for Traction Application 2019 ,		2

(2018-2019)

290	An Analytical Subdomain Model for Dual-Rotor Permanent Magnet Motor With Halbach Array. <i>IEEE Transactions on Magnetics</i> , 2019 , 55, 1-16	2	12
289	Smart Current Limitation Technique for a Multiphase Bearingless Machine with Combined Winding System 2019 ,		1
288	Rotor UMP & Mechanical Response in HSPMSM in Typical Running Conditions 2019,		1
287	Active Thermal Control for Power Converters in Modular Winding Permanent Magnet Synchronous Motor 2019 ,		2
286	Sensitivity Analysis of Machine Components Thermal Properties Effects on Winding Temperature 2019 ,		3
285	Trade-off Study of a High Power Density Starter-Generator for Turboprop Aircraft System 2019 ,		1
284	Improved Thermal Management and Analysis for Stator End-Windings of Electrical Machines. <i>IEEE Transactions on Industrial Electronics</i> , 2019 , 66, 5057-5069	8.9	69
283	A Methodology to Remove Stator Skew in SmallMedium Size Synchronous Generators via Innovative Damper Cage Designs. <i>IEEE Transactions on Industrial Electronics</i> , 2019 , 66, 4296-4307	8.9	11
282	Fixed switching frequency predictive control of an asymmetric source dual inverter system with a floating bridge for multilevel operation. <i>IET Power Electronics</i> , 2019 , 12, 450-457	2.2	8
281	The Influence of Winding Location in Flux-Switching Permanent-Magnet Machines. <i>IEEE Transactions on Magnetics</i> , 2019 , 55, 1-5	2	4
280	Consideration on Eddy Current Reduction Techniques for Solid Materials Used in Unconventional Magnetic Circuits. <i>IEEE Transactions on Industrial Electronics</i> , 2019 , 66, 4870-4879	8.9	1
279	. IEEE Transactions on Industrial Electronics, 2019 , 66, 5600-5610	8.9	14
278	A Novel Thermal Network Model Used for Temperature Calculation and Analysis on Brushless Doubly-Fed Generator With Winding Encapsulating Structure. <i>IEEE Transactions on Industry Applications</i> , 2019 , 55, 1473-1483	4.3	6
277	Magnetic Field Modeling and Analysis of Spherical Actuator With Two-Dimensional Longitudinal Camber Halbach Array. <i>IEEE Transactions on Industrial Electronics</i> , 2019 , 66, 9112-9121	8.9	14
276	An Integrated Method for Three-Phase AC Excitation and High-Frequency Voltage Signal Injection for Sensorless Starting of Aircraft Starter/Generator. <i>IEEE Transactions on Industrial Electronics</i> , 2019 , 66, 5611-5622	8.9	23
275	PWM-VSI Fault Diagnosis for a PMSM Drive Based on the Fuzzy Logic Approach. <i>IEEE Transactions on Power Electronics</i> , 2019 , 34, 759-768	7.2	83
274	. IEEE Transactions on Energy Conversion, 2018 , 33, 1311-1320	5.4	13
273	Considerations on the Effects That Core Material Machining Has on an Electrical Machine's Performance. <i>IEEE Transactions on Energy Conversion</i> , 2018 , 33, 1154-1163	5.4	30

272	Design and testing of electromechanical actuator for aerospace applications 2018,		5
271	Design Optimization of a High-Speed Synchronous Reluctance Machine. <i>IEEE Transactions on Industry Applications</i> , 2018 , 54, 233-243	4.3	43
270	Radial Force Control of Multisector Permanent-Magnet Machines for Vibration Suppression. <i>IEEE Transactions on Industrial Electronics</i> , 2018 , 65, 5395-5405	8.9	31
269	Comprehensive Monitoring of Electrical Machine Parameters Using an Integrated Fiber Bragg Grating-Based Sensor System. <i>Journal of Lightwave Technology</i> , 2018 , 36, 1046-1051	4	10
268	Space Vectors and Pseudoinverse Matrix Methods for the Radial Force Control in Bearingless Multisector Permanent Magnet Machines. <i>IEEE Transactions on Industrial Electronics</i> , 2018 , 65, 6912-692	2 <mark>8</mark> .9	21
267	. IEEE Transactions on Industrial Electronics, 2018 , 65, 5302-5312	8.9	30
266	. IEEE Transactions on Industry Applications, 2018 , 54, 4080-4090	4.3	12
265	Design and Losses Analysis of a High Power Density Machine for Flooded Pump Applications. <i>IEEE Transactions on Industry Applications</i> , 2018 , 54, 3260-3270	4.3	36
264	Comparison of electrical machines for use with a high-horsepower marine engine turbocharger 2018 ,		3
263	Synchronous Reluctance Motor Iron Losses: Considering Machine Nonlinearity at MTPA, FW, and MTPV Operating Conditions. <i>IEEE Transactions on Energy Conversion</i> , 2018 , 33, 1402-1410	5.4	17
262	. IEEE Transactions on Industrial Electronics, 2018 , 65, 4483-4491	8.9	12
261	Development of Aircraft Electric Starter Generator System Based on Active Rectification Technology. <i>IEEE Transactions on Transportation Electrification</i> , 2018 , 4, 985-996	7.6	43
260	Magnetic Field and Torque Output of Packaged Hydraulic Torque Motor. <i>Energies</i> , 2018 , 11, 134	3.1	1
259	Development and structure of multi-DOF spherical induction motor 2018,		1
258	Thermal analysis of fault-tolerant electrical machines for more electric aircraft applications. <i>Journal of Engineering</i> , 2018 , 2018, 461-467	0.7	9
257	. IEEE/ASME Transactions on Mechatronics, 2018 , 23, 2054-2065	5.5	15
256	. IEEE Transactions on Industry Applications, 2018 , 54, 5760-5771	4.3	1
255	Analysis, Modeling, and Design Considerations for the Excitation Systems of Synchronous Generators. <i>IEEE Transactions on Industrial Electronics</i> , 2018 , 65, 2996-3007	8.9	29

254	State of the Art of Electric Taxiing Systems 2018 ,		16
253	Design Considerations of Fault-Tolerant Electromechanical Actuator Systems for More Electric Aircraft (MEA) 2018 ,		4
252	Performance Comparison of Doubly Salient Reluctance Generators for High-Voltage DC Power System of More Electric Aircraft 2018 ,		2
251	Performance Analysis of PMSM for High-Speed Starter-Generator System 2018,		4
250	Investigation of AC Copper and Iron Losses in High-Speed High-Power Density PMSM 2018,		12
249	2018,		4
248	2018,		6
247	Design and Testing of PMSM for Aerospace EMA Applications 2018 ,		18
246	The Influence of Strands and Bundle-Level Arrangements of Magnet Wires on AC Losses in the Winding of High is peed Traction Machine 2018 ,		6
245	The Influence of Stator Material on the Power Density and Iron Loss of a High-Performace Starter-Generator for More Electric Aircraft 2018 ,		8
244	Electrical Machine Rotor Shielding for Low Cost Electrical Drive 2018,		1
243	2018,		3
242	Open-Circuit Fault Tolerant Study of Bearingless Multi-Sector Permanent Magnet Machines 2018,		3
241	Synchronous Reluctance Motor Iron Losses: Analytical Model and Optimization 2018,		3
240	Novel Core Designs to Miniaturise Passive Magnetic Components 2018,		3
239	Design of an Integrated Inductor for 45kW Aerospace Starter-Generator 2018 ,		1
238	Response to Discussion of A Modular Speed-Drooped System for High Reliability Integrated Modular Motor Drives <i>IEEE Transactions on Industry Applications</i> , 2018 , 54, 4994-4995	4.3	1
237	Influence of rotor endcaps on the electromagnetic performance of high-speed PM machine. <i>IET Electric Power Applications</i> , 2018 , 12, 1142-1149	1.8	14

236	Multi-Physics and Multi-Objective Optimization of a High Speed PMSM for High Performance Applications. <i>IEEE Transactions on Magnetics</i> , 2018 , 54, 1-5	2	26
235	. IEEE Transactions on Industrial Electronics, 2017 , 64, 3548-3556	8.9	6
234	. IEEE Transactions on Industry Applications, 2017 , 53, 2906-2914	4.3	11
233	CQICO and Multiobjective Thermal Optimization for High-Speed PM Generator. <i>IEEE Transactions on Magnetics</i> , 2017 , 1-1	2	3
232	A Fast Method for Modeling Skew and Its Effects in Salient-Pole Synchronous Generators. <i>IEEE Transactions on Industrial Electronics</i> , 2017 , 64, 7679-7688	8.9	14
231	2017,		44
230	Design optimization of integrated rotor-less inductors for high-speed AC drive applications 2017,		2
229	Self-Excitation and Energy Recovery of Air-Core Compulsators. <i>IEEE Transactions on Plasma Science</i> , 2017 , 45, 1168-1174	1.3	6
228	2017,		2
227	Radial force control of Multi-Sector Permanent Magnet machines considering radial rotor displacement 2017 ,		6
226	Comparative study of permanent magnet-synchronous and permanent magnet-flux switching machines for high torque to inertia applications 2017 ,		18
225	Power Loss and Thermal Analysis of a MW High-Speed Permanent Magnet Synchronous Machine. <i>IEEE Transactions on Energy Conversion</i> , 2017 , 32, 1468-1478	5.4	65
224	Design Optimization of a Short-Term Duty Electrical Machine for Extreme Environment. <i>IEEE Transactions on Industrial Electronics</i> , 2017 , 64, 9784-9794	8.9	5
223	. IEEE Transactions on Plasma Science, 2017 , 45, 1387-1393	1.3	3
222	. IEEE Transactions on Industrial Electronics, 2017 , 64, 6116-6126	8.9	95
221	. IEEE Transactions on Industry Applications, 2017 , 53, 1106-1115	4.3	26
220	. IEEE Transactions on Industrial Electronics, 2017 , 64, 2468-2475	8.9	10
219	Distributed speed control for multi-three phase electrical motors with improved power sharing capability 2017 ,		1

218	Position control study of a bearingless multi-sector permanent magnet machine 2017,		7
217	A new strategy of efficiency enhancement for traction systems in electric vehicles. <i>Applied Energy</i> , 2017 , 205, 880-891	10.7	25
216	A hybrid sensorless control solution for an automotive drive application 2017,		2
215	Analysis of induction machine: Comparison of modelling techniques 2017,		6
214	Use of optical fibres for multi-parameter monitoring in electrical AC machines 2017,		3
213	. IEEE Transactions on Industry Applications, 2017 , 53, 5405-5414	4.3	8
212	Design and control of segmented triple three-phase SPM machines for fault tolerant drives 2017,		2
211	Radial force control for triple three-phase sectored SPM machines. Part I: Machine model 2017 ,		7
210	Comparison of surface mounted and uneven consequent-pole PM high-speed machines 2017,		4
209	2017,		3
208	Radial force control for triple three-phase sectored SPM machines. Part II: Open winding fault tolerant control 2017 ,		9
207	Design and Initial Testing of a High-Speed 45-kW Switched Reluctance Drive for Aerospace Application. <i>IEEE Transactions on Industrial Electronics</i> , 2017 , 64, 988-997	8.9	92
206	Improved Damper Cage Design for Salient-Pole Synchronous Generators. <i>IEEE Transactions on Industrial Electronics</i> , 2017 , 64, 1958-1970	8.9	28
205	. IEEE Transactions on Industrial Electronics, 2017 , 64, 2415-2423	8.9	20
204	Speed control for multi-three phase synchronous electrical motors in fault condition 2017,		4
203	2017,		4
202	Comparative study and optimal design of alternative PM configuration transverse flux linear machine 2017 ,		2
201	Speed control with load sharing capabilities for multi-three phase synchronous motors 2017 ,		2

200	Design optimization of integrated rotational inductor for high-speed AC drive applications 2017,		2
199	A semi-flooded cooling for a high speed machine: Concept, design and practice of an oil sleeve 2017 ,		10
198	Performance improvement of simplified synchronous generators using an active power filter 2017,		1
197	A hybrid analytical-numerical approach for the analysis of salient-pole synchronous generators with a symmetrical damper cage 2017 ,		2
196	Realising robust low speed sensorless PMSM control using current derivatives obtained from standard current sensors 2017 ,		2
195	Controlling DC permeability in cast steels. <i>Journal of Magnetism and Magnetic Materials</i> , 2017 , 429, 79-	85 .8	2
194	High-Speed Solid Rotor Permanent Magnet Machines: Concept and Design. <i>IEEE Transactions on Transportation Electrification</i> , 2016 , 2, 391-400	7.6	39
193	Lifetime Consumption and Degradation Analysis of the Winding Insulation of Electrical Machines 2016 ,		19
192	Development and design of a high performance traction machine for the FreedomCar 2020 traction machine targets 2016 ,		2
191	Advanced Materials for Extreme Environment Aerospace Actuators. <i>Materials Science Forum</i> , 2016 , 856, 119-124	0.4	
190	Design optimization of Halbach array permanent magnet motor to achieve sensorless performance using genetic algorithm. <i>COMPEL - the International Journal for Computation and Mathematics in Electrical and Electronic Engineering</i> , 2016 , 35, 1741-1759	0.7	3
189	Short term duty electrical machines 2016 ,		4
188	2016,		2
187	2016,		6
186	2016,		8
185	Global design optimization strategy of a synchronous reluctance machine for light electric vehicles 2016 ,		11
184	Radial force control of multi-sector permanent magnet machines 2016,		11
183	Integrated motor drives: state of the art and future trends. <i>IET Electric Power Applications</i> , 2016 , 10, 757-771	1.8	85

182	2016,		7
181	Design and optimization of a high power density machine for flooded industrial pump 2016,		11
180	Damper cage loss reduction and no-load voltage THD improvements in salient-pole synchronous generators 2016 ,		8
179	Fault Tolerant Design of Fractional Slot Winding Permanent Magnet Aerospace Actuator. <i>IEEE Transactions on Transportation Electrification</i> , 2016 , 2, 380-390	7.6	28
178	Impact of Slot/Pole Combination on Inter-Turn Short-Circuit Current in Fault-Tolerant Permanent Magnet Machines. <i>IEEE Transactions on Magnetics</i> , 2016 , 52, 1-9	2	18
177	Condition monitoring approach for permanent magnet synchronous motor drives based on the INFORM method. <i>IET Electric Power Applications</i> , 2016 , 10, 54-62	1.8	13
176	Multiobjective Optimization of a Magnetically Levitated Planar Motor With Multilayer Windings. <i>IEEE Transactions on Industrial Electronics</i> , 2016 , 63, 3522-3532	8.9	22
175	Computation of Wound Rotor Induction Machines Based on Coupled Finite Elements and Circuit Equation Under a First Space Harmonic Approximation. <i>IEEE Transactions on Magnetics</i> , 2016 , 52, 1-4	2	4
174	Modeling and analysis of eddy current losses in permanent magnet machines with multi-stranded bundle conductors. <i>Mathematics and Computers in Simulation</i> , 2016 , 130, 48-56	3.3	3
173	Thermal management of a permanent magnet motor for an directly coupled pump 2016,		13
172	Modelling short- and open-circuit faults in permanent magnet synchronous machines using Modelica. <i>Journal of Engineering</i> , 2016 , 2016, 73-79	0.7	3
172 171		0.7	3
	Modelica. <i>Journal of Engineering</i> , 2016 , 2016, 73-79 Non-linear circuit based model of permanent magnet synchronous machine under inter-turn fault: a	·	
171	Modelica. <i>Journal of Engineering</i> , 2016 , 2016, 73-79 Non-linear circuit based model of permanent magnet synchronous machine under inter-turn fault: a simple approach based on healthy machine data. <i>IET Electric Power Applications</i> , 2016 , 10, 560-570	·	14
171	Modelica. <i>Journal of Engineering</i> , 2016 , 2016, 73-79 Non-linear circuit based model of permanent magnet synchronous machine under inter-turn fault: a simple approach based on healthy machine data. <i>IET Electric Power Applications</i> , 2016 , 10, 560-570 Axial position estimation of conical shaped motor for green taxiing application 2016 ,	·	14
171 170 169	Modelica. Journal of Engineering, 2016, 2016, 73-79 Non-linear circuit based model of permanent magnet synchronous machine under inter-turn fault: a simple approach based on healthy machine data. IET Electric Power Applications, 2016, 10, 560-570 Axial position estimation of conical shaped motor for green taxiing application 2016, Integrated output filter inductor for permanent magnet motor drives 2016,	·	14 4 5
171 170 169 168	Modelica. Journal of Engineering, 2016, 2016, 73-79 Non-linear circuit based model of permanent magnet synchronous machine under inter-turn fault: a simple approach based on healthy machine data. IET Electric Power Applications, 2016, 10, 560-570 Axial position estimation of conical shaped motor for green taxiing application 2016, Integrated output filter inductor for permanent magnet motor drives 2016, Structural design optimization of a high speed synchronous reluctance machine 2016,	·	14 4 5

164	Trade-off analysis and design of a high power density PM machine for flooded industrial pump 2016 ,		10
163	High speed drives review: Machines, converters and applications 2016,		13
162	High Torque-Density In-Wheel Electrical Machine for an Electric Bus 2016,		1
161	Assessment of cooling methods for increased power density in electrical machines 2016,		13
160	Active Magnetic Bearing system design featuring a predictive current control 2016,		3
159	Topology investigation on high speed PM generator with back wound windings 2016,		4
158	. IEEE Transactions on Industrial Electronics, 2016 , 63, 5558-5568	8.9	39
157	Evaluation of saliency tracking as an alternative for health monitoring in PMSM-drives under non-stationary conditions. <i>IET Electric Power Applications</i> , 2016 , 10, 284-293	1.8	5
156	. IEEE Transactions on Industry Applications, 2016 , 1-1	4.3	16
155	A Multilevel Converter With a Floating Bridge for Open-End Winding Motor Drive Applications. <i>IEEE Transactions on Industrial Electronics</i> , 2016 , 63, 5366-5375	8.9	52
154	Electrothermal Combined Optimization on Notch in Air-Cooled High-Speed Permanent-Magnet Generator. <i>IEEE Transactions on Magnetics</i> , 2015 , 51, 1-10	2	7
153	A topology selection consideration of electrical machines for traction applications: towards the FreedomCar 2020 targets 2015 ,		5
152	Permanent magnet machine design trade-offs to achieve sensorless control at high load. <i>COMPEL - the International Journal for Computation and Mathematics in Electrical and Electronic Engineering</i> , 2015 , 34, 324-343	0.7	3
151	A dual inverter for an open end winding induction motor drive without an isolation transformer 2015 ,		13
150	Design Considerations for the Tooth Shoe Shape for High-Speed Permanent Magnet Generators. <i>IEEE Transactions on Magnetics</i> , 2015 , 51, 1-4	2	7
149	Analysis and Design of a Magnetically Levitated Planar Motor With Novel Multilayer Windings. <i>IEEE Transactions on Magnetics</i> , 2015 , 51, 1-9	2	5
148	A high-speed electric drive for the more electric engine 2015 ,		21
147	Electrical machines for aerospace applications 2015 ,		18

146	A review on turn-turn short circuit fault management 2015 ,		6
145	Vibration measurement of electrical machines using integrated fibre Bragg gratings 2015,		2
144	Demagnetization Analysis for Halbach Array Configurations in Electrical Machines. <i>IEEE Transactions on Magnetics</i> , 2015 , 51, 1-9	2	39
143	Control Integrated Studies on High Speed Permanent Magnetic Generators System. <i>IEEE Transactions on Magnetics</i> , 2015 , 51, 1-4	2	2
142	TurnEurn short circuit fault management in permanent magnet machines. <i>IET Electric Power Applications</i> , 2015 , 9, 634-641	1.8	15
141	Thermal effects of stator potting in an axial-flux permanent magnet synchronous generator. <i>Applied Thermal Engineering</i> , 2015 , 75, 421-429	5.8	28
140	Automatic Design of Synchronous Reluctance Motors Focusing on Barrier Shape Optimization. <i>IEEE Transactions on Industry Applications</i> , 2015 , 51, 1465-1474	4.3	99
139	Accuracy improvement of carrier signal injection sensorless control for IPMSM in consideration of inverter nonlinearity 2015 ,		3
138	End barrier shape optimizations and sensitivity analysis of synchrnous reluctance machines 2015,		8
137	Analysis and optimization of a double-sided air-cored tubular generator 2015 ,		1
137	Analysis and optimization of a double-sided air-cored tubular generator 2015 , 2015 ,		1
136	2015, Comparison of multi-physics optimization methods for high speed synchrnous reluctance machines	3.1	
136	 2015, Comparison of multi-physics optimization methods for high speed synchrnous reluctance machines 2015, Development of an Axial Flux MEMS BLDC Micromotor with Increased Efficiency and Power 	3.1	10
136 135 134	 2015, Comparison of multi-physics optimization methods for high speed synchrnous reluctance machines 2015, Development of an Axial Flux MEMS BLDC Micromotor with Increased Efficiency and Power Density. <i>Energies</i>, 2015, 8, 6608-6626 An investigation into the geometric parameters affecting field uniformity in four pole magnetisers. 		10
136 135 134	2015, Comparison of multi-physics optimization methods for high speed synchrnous reluctance machines 2015, Development of an Axial Flux MEMS BLDC Micromotor with Increased Efficiency and Power Density. Energies, 2015, 8, 6608-6626 An investigation into the geometric parameters affecting field uniformity in four pole magnetisers. International Journal of Applied Electromagnetics and Mechanics, 2015, 48, 225-232 State space model of a modular speed-drooped system for high reliability integrated modular		10 7 5
136 135 134 133	2015, Comparison of multi-physics optimization methods for high speed synchrnous reluctance machines 2015, Development of an Axial Flux MEMS BLDC Micromotor with Increased Efficiency and Power Density. Energies, 2015, 8, 6608-6626 An investigation into the geometric parameters affecting field uniformity in four pole magnetisers. International Journal of Applied Electromagnetics and Mechanics, 2015, 48, 225-232 State space model of a modular speed-drooped system for high reliability integrated modular motor drives 2015,	0.4	10 7 5 4

128	Multi-physics optimization strategies for high speed synchronous reluctance machines 2015,		11
127	More Electric Aircraft Electro-Mechanical Actuator Regenerated Power Management 2015,		19
126	Mechanical and thermal design of an aeroengine starter/generator 2015,		8
125	Analysis and Optimization of a Double-Sided Air-Cored Tubular Generator. <i>IEEE Transactions on Magnetics</i> , 2015 , 51, 1-4	2	3
124	Optimal design of an electro-mechanical actuator for aerospace application 2015,		21
123	Design considerations for high performance traction machines: Aiming for the FreedomCar 2020 targets 2015 ,		7
122	Estimating current derivatives for sensorless motor drive applications 2015,		11
121	A dual two-level inverter with a single source for open end winding induction motor drive application 2015 ,		10
120	2015,		4
119	Converter topologies comparison for more electric aircrafts high speed Starter/Generator application 2015 ,		20
118	Selection of slot-pole combination of permanent magnet machines for aircraft actuation 2015,		3
117	Solid rotor interior permanent magnet machines for high speed applications 2015,		1
116	Optimization on the tooth top shape of a high speed permanent magnetic generator 2015,		2
115	. IEEE Transactions on Industrial Electronics, 2014 , 61, 2946-2959	8.9	423
114	. IEEE Transactions on Industry Applications, 2014 , 50, 3617-3627	4.3	79
113	Analysis of Vertical Strip Wound Fault-Tolerant Permanent Magnet Synchronous Machines. <i>IEEE Transactions on Industrial Electronics</i> , 2014 , 61, 1158-1168	8.9	45
112	High-speed electrical machines and drives [Special section intro.]. <i>IEEE Transactions on Industrial Electronics</i> , 2014 , 61, 2943-2945	8.9	16
111	A High-Speed Permanent-Magnet Machine for Fault-Tolerant Drivetrains. <i>IEEE Transactions on Industrial Electronics</i> , 2014 , 61, 3071-3080	8.9	41

110	Comparative design analysis of Permanent Magnet rotor topologies for an aircraft starter-generator 2014 ,	8
109	Self-Commissioning of Interior Permanent- Magnet Synchronous Motor Drives With High-Frequency Current Injection. <i>IEEE Transactions on Industry Applications</i> , 2014 , 50, 3295-3303	48
108	Design of a High-Force-Density Tubular Motor. <i>IEEE Transactions on Industry Applications</i> , 2014 , 50, 2523 ₇ 2\$32	28
107	Design Optimisation of a Fault-Tolerant PM Motor Drive for an Aerospace Actuation Application 2014 ,	14
106	Winding concepts for ultra reliable electrical machines 2014 ,	4
105	Design and Modeling of a 45kW, Switched Reluctance Starter-Generator for a Regional Jet Application 2014 ,	4
104	Permanent Magnet Starter-Generator for Aircraft Application 2014,	8
103	Development of a Modelica Library for Electro-Mechanical Actuator System Studies including Fault Scenarios and Losses 2014 ,	1
102	Thermal-Electromagnetic Analysis of Solid Rotor Induction Machine 2014,	3
101	Enhanced Cooling for an Electric Starter-Generator for Aerospace Application 2014 ,	5
100	A Novel Multi-Level Electro-Mechanical Actuator Virtual Testing and Analysis Tool 2014 ,	14
99	Thermal design of a permanent magnetic motor for direct drive wheel actuator 2014 ,	14
98	High speed permanent magnet machine design with minimized stack-length under electromagnetic and mechanical constraints. <i>International Journal of Applied Electromagnetics and Mechanics</i> , 2014 , 0.4 46, 95-109	6
97	The electromagnetic design of a high speed, 45kW, switched reluctance machine having a novel rotor geometry for aerospace application 2014 ,	7
96	Development of an aircraft wheel actuator for green taxiing 2014,	22
95	Mechanical and thermal management design of a motor for an aircraft wheel actuator 2014 ,	7
94	Performance evaluation of converter topologies for high speed Starter/Generator in aircraft applications 2014 ,	6
93	An Optimized Bi-directional, Wide Speed Range Electric Starter-Generator for Aerospace Application 2014 ,	9

92	High speed solid rotor induction machine: Analysis and performances 2014,		6
91	Design aspects of a high torque density machine for an aerospace traction application 2014,		4
90	Fast computing tool for performance evaluation in Interior Permanent Magnet machines 2014,		1
89	Comparison of different methods for incipient fault diagnosis in PMSMs with coaxial insulated windings 2014 ,		2
88	Induction Motors Versus Permanent-Magnet Actuators for Aerospace Applications. <i>IEEE Transactions on Industrial Electronics</i> , 2014 , 61, 4315-4325	8.9	52
87	Sensorless control of PM motor drives 🖪 technology status review 2013,		50
86	Piezoelectric Fan Cooling: A Novel High Reliability Electric Machine Thermal Management Solution. <i>IEEE Transactions on Industrial Electronics</i> , 2013 , 60, 4841-4851	8.9	27
85	Barriers shapes and minimum set of rotor parameters in the automated design of Synchronous Reluctance machines 2013 ,		30
84	Self-commissioning of interior permanent magnet synchronous motor drives with high-frequency current injection 2013 ,		17
83	Computational fluid dynamics modelling of an entire synchronous generator for improved thermal management. <i>IET Electric Power Applications</i> , 2013 , 7, 231-236	1.8	16
82	Estimation of Eddy Current Loss in Semi-Closed Slot Vertical Conductor Permanent Magnet Synchronous Machines Considering Eddy Current Reaction Effect. <i>IEEE Transactions on Magnetics</i> , 2013 , 49, 5326-5335	2	28
81	Torque density improvements for high performance machines 2013,		19
80	Evaluation of motor-drive segmentation strategies for fault-tolerance 2013,		4
79	High speed electrical generators, application, materials and design 2013,		19
78	Design of synchronous reluctance machines with multi-objective optimization algorithms 2013,		16
77	Diagnosis of incipient faults in PMSMs with coaxially insulated windings 2013,		11
76	Use of an artificial neural network for current derivative estimation 2013,		5
75	Considerations for Manufacturing and Experimental Validation of a PM, Tubular Motor for a Matrix Converter Driven Aerospace Application. <i>Applied Mechanics and Materials</i> , 2013 , 416-417, 293-299	0.3	

(2012-2012)

74	Design of a Five-Phase Brushless DC Motor for a Safety Critical Aerospace Application. <i>IEEE Transactions on Industrial Electronics</i> , 2012 , 59, 3532-3541	8.9	65
73	A Thermal Improvement Technique for the Phase Windings of Electrical Machines. <i>IEEE Transactions on Industry Applications</i> , 2012 , 48, 79-87	4.3	106
72	Design considerations for an outer rotor, field wound, flux switching machine 2012,		6
71	Performance Evaluation of a Vector-Control Fault-Tolerant Flux-Switching Motor Drive. <i>IEEE Transactions on Industrial Electronics</i> , 2012 , 1-1	8.9	33
70	Modeling of Different Winding Configurations for Fault-Tolerant Permanent Magnet Machines to Restrain Interturn Short-Circuit Current. <i>IEEE Transactions on Energy Conversion</i> , 2012 , 27, 351-361	5.4	55
69	A computationally efficient design procedure for actuator motors using magnetic reluctance-and thermal resistance network models 2012 ,		14
68	Aerospace actuator design: A comparative analysis of Permanent Magnet and Induction Motor configurations 2012 ,		6
67	Fault tolerant winding design 🖟 compromise between losses and fault tolerant capability 2012 ,		9
66	CFD modelling of an entire synchronous generator for improved thermal management 2012,		12
65	Thermal modelling and selection of a high speed permanent magnet surface mount electrical machine 2012 ,		5
64	A fault tolerant single sided matrix converter for flight control actuation systems. <i>Journal of Zhejiang University: Science C</i> , 2012 , 13, 866-874		
63	A SyR and IPM machine design methodology assisted by optimization algorithms 2012 ,		21
62	2012,		2
61	A Single Sided Matrix Converter Drive for a Brushless DC Motor in Aerospace Applications. <i>IEEE Transactions on Industrial Electronics</i> , 2012 , 59, 3542-3552	8.9	63
60	Fault-tolerant electrical machine design within a rotorcraft actuation drive system optimisation 2012 ,		8
59	Electrical machine design for optimal self- sensing properties of SPMSMs 2012,		3
58	Design, modelling and testing of a high speed induction machine drive 2012,		2
57	Electrical Machines for High Speed Applications with a Wide Constant-Power Region Requirement. Journal of International Conference on Electrical Machines and Systems, 2012, 1, 274-281		1

56	A Brushless DC motor design for an aircraft electro-hydraulic actuation system 2011,		5
55	Detection of inter-coil short circuits in the stator winding of a PM machine by using saliency tracking schemes 2011 ,		2
54	Considerations for the design of a tubular motor for an aerospace application 2011,		9
53	Analytical modeling of a vertically distributed winding configuration for Fault Tolerant Permanent Magnet Machines to suppress inter-turn short circuit current limiting 2011 ,		8
52	Design Considerations for a Fault-Tolerant Flux-Switching Permanent-Magnet Machine. <i>IEEE Transactions on Industrial Electronics</i> , 2011 , 58, 2818-2825	8.9	109
51	Design Aspects of High-Speed High-Power-Density Laminated-Rotor Induction Machines. <i>IEEE Transactions on Industrial Electronics</i> , 2011 , 58, 4039-4047	8.9	91
50	Winding condition monitoring scheme for a permanent magnet machine using high-frequency injection. <i>IET Electric Power Applications</i> , 2011 , 5, 89	1.8	48
49	Rotor losses in fault-tolerant permanent magnet synchronous machines. <i>IET Electric Power Applications</i> , 2011 , 5, 75	1.8	18
48	Fault-tolerant, matrix converter, permanent magnet synchronous motor drive for open-circuit failures. <i>IET Electric Power Applications</i> , 2011 , 5, 654	1.8	18
47	Development of a new fault-tolerant induction motor control strategy using an enhanced equivalent circuit model. <i>IET Electric Power Applications</i> , 2011 , 5, 618	1.8	26
47		1.8	3
	equivalent circuit model. <i>IET Electric Power Applications</i> , 2011 , 5, 618	1.8	
46	equivalent circuit model. <i>IET Electric Power Applications</i> , 2011 , 5, 618 2011 ,	1.8	3
46 45	equivalent circuit model. <i>IET Electric Power Applications</i> , 2011 , 5, 618 2011 , Feasibility and electromagnetic design of direct drive wheel actuator for green taxiing 2011 , Electrical machines for high speed applications with a wide constant-power region requirement	1.8	26
46 45 44	equivalent circuit model. IET Electric Power Applications, 2011, 5, 618 2011, Feasibility and electromagnetic design of direct drive wheel actuator for green taxiing 2011, Electrical machines for high speed applications with a wide constant-power region requirement 2011,	1.8	3 26 18
46 45 44 43	equivalent circuit model. IET Electric Power Applications, 2011, 5, 618 2011, Feasibility and electromagnetic design of direct drive wheel actuator for green taxiing 2011, Electrical machines for high speed applications with a wide constant-power region requirement 2011, Permanent magnet motor design optimisation for sensorless control 2011,	1.8	3 26 18
46 45 44 43 42	equivalent circuit model. IET Electric Power Applications, 2011, 5, 618 2011, Feasibility and electromagnetic design of direct drive wheel actuator for green taxiing 2011, Electrical machines for high speed applications with a wide constant-power region requirement 2011, Permanent magnet motor design optimisation for sensorless control 2011, A fault-tolerant control scheme for a dual flux-switching permanent magnet motor drive 2011, Weight optimisation of a surface mount permanent magnet synchronous motor using genetic	1.8	3 26 18 2

38	Inductance characteristics of PMSMs and their impact on saliency-based sensorless control 2010,		13
37	Novel fault tolerant design of flux switching machines 2010 ,		10
36	A combined electromagnetic and thermal optimisation of an aerospace electric motor 2010,		6
35	A comparative study of permanent magnet - synchronous and permanent magnet - flux switching machines for fault tolerant drive systems 2010 ,		13
34	A Low-Intrusion Load and Efficiency Evaluation Method for In-Service Motors Using Vibration Tests With an Accelerometer. <i>IEEE Transactions on Industry Applications</i> , 2010 , 46, 1341-1349	4.3	15
33	Multiphase Power Converter Drive for Fault-Tolerant Machine Development in Aerospace Applications. <i>IEEE Transactions on Industrial Electronics</i> , 2010 , 57, 575-583	8.9	127
32	Design issues of high-speed permanent magnet machines for high-temperature applications 2009,		13
31	Loading effects on saliency based sensorless control of PMSMs 2009,		7
30	Analysis of the end winding heat transfer variation with altitude in electric motors 2009,		3
29	Optimal design of a high speed concentrated wound PMSM 2009 ,		14
28	Operation of an induction motor with an open circuit fault by controlling the zero sequence voltage 2009 ,		6
27	Rating issues in fault tolerant PMSM 2009 ,		6
26	Performance comparison of fault tolerant PM machine for static load holding application 2009,		1
25	. IEEE Transactions on Industrial Electronics, 2009 , 56, 1708-1717	8.9	21
24	A simplified model for induction machines with faults to aid the development of fault tolerant drives 2008 ,		1
23	Investigation of induction machine phase open circuit faults using a simplified equivalent circuit model 2008 ,		9
23			9

20	On-line detection of stator winding short-circuit faults in a PM machine using HF signal injection 2008 ,		14
19	Identification of Induction Machine Electrical Parameters Using Genetic Algorithms Optimization 2008 ,		12
18	A power converter for fault tolerant machine development in aerospace applications 2008,		4
17	High Torque Density PM Machines for High Performance Operation 2007,		8
16	The results do mesh. <i>IEEE Industry Applications Magazine</i> , 2007 , 13, 62-72	o.6	39
15	Fault-Tolerance Analysis of Multi-Phase Single Sided Matrix Converter for Brushless DC Drives 2007 ,		4
14	Evaluation and Modeling of Cross Saturation Due to Leakage Flux in Vector-Controlled Induction Machines. <i>IEEE Transactions on Industry Applications</i> , 2007 , 43, 694-702	3	20
13	Integrated Machine design for Electro Mechanical Actuation 2007,		9
12	A 5-Phase Fault-Tolerant Brushless Permanent Magnet Motor Drive for an Aircraft Thin Wing Surface Actuator 2007 ,		7
11	Fault-Tolerant Brushless DC Motor Drive For Electro-Hydrostatic Actuation System In Aerospace Application. <i>Conference Record - IAS Annual Meeting (IEEE Industry Applications Society)</i> , 2006 ,		9
10	Non-linear dynamic modelling of vector controlled PM synchronous machines 2005,		3
9	Operating induction motor drives with turn-to-turn faults 2005,		5
8	Winding turn-to-turn faults in permanent magnet synchronous machine drives		28
7	Transient torque response improvement in presence of axial saturation due to skewing of rotor slots in induction motors		1
6	The implications of winding faults in induction motor drives		13
5	Evaluation of a vector controlled induction motor drive using the dynamic magnetic circuit model		3
4	The impact of matrix converter technology on motor design for an integrated flight control surface actuation system		8
3	Evaluation and modelling of cross saturation due to leakage flux in vector controlled induction machines		3

An investigation into the suitability of unbalanced motor operation, the Eh-star-circuit for stray load loss measurement

4

1 Mechanical and thermal design of an aeroengine starter/generator

1